OBSERVER'S HANDBOOK 1989

EDITOR: ROY L. BISHOP THE ROYAL ASTRONOMICAL SOCIETY OF CANADA

CONTRIBUTORS AND ADVISORS

- ALAN H. BATTEN, Dominion Astrophysical Observatory, 5071 W. Saanich Road, Victoria, BC, Canada V8X 4M6 (The Nearest Stars).
- LARRY D. BOGAN, Department of Physics, Acadia University, Wolfville, NS, Canada BOP 1X0 (Configurations of Saturn's Satellites).
- TERENCE DICKINSON, Yarker, ON, Canada KOK 3N0 (The Planets).
- DAVID W. DUNHAM, International Occultation Timing Association, 7006 Megan Lane, Greenbelt, MD 20770, U.S.A. (Lunar and Planetary Occultations).
- ALAN DYER, ALISTER LING, Edmonton Space Sciences Centre, 11211-142 St., Edmonton, AB, Canada T5M 4A1 (Messier Catalogue, Deep-Sky Objects).
- FRED ESPENAK, Planetary Systems Branch, NASA-Goddard Space Flight Centre, Greenbelt, MD, U.S.A. 20771 (Eclipses and Transits).
- MARIE FIDLER, 23 Lyndale Dr., Willowdale, ON, Canada M2N 2X9 (Observatories and Planetaria).
- VICTOR GAIZAUSKAS, J. W. DEAN, Herzberg Institute of Astrophysics, National Research Council, Ottawa, ON, Canada K1A 0R6 (Solar Activity).
- ROBERT F. GARRISON, David Dunlap Observatory, University of Toronto, Box 360, Richmond Hill, ON, Canada L4C 4Y6 (The Brightest Stars).
- IAN HALLIDAY, Herzberg Institute of Astrophysics, National Research Council, Ottawa, ON, Canada K1A 0R6 (Miscellaneous Astronomical Data).
- WILLIAM HERBST, Van Vleck Observatory, Wesleyan University, Middletown, CT, U.S.A. 06457 (Galactic Nebulae).
- JAMES T. HIMER, 339 Woodside Bay S.W., Calgary, AB, Canada, T2W 3K9 (Galaxies).
- HELEN S. HOGG, David Dunlap Observatory, University of Toronto, Box 360, Richmond Hill, ON, Canada L4C 4Y6 (Foreword).
- DAVID H. LEVY, Jarnac Observatory, Route 7, Box 414, Tucson, AZ, U.S.A., 85747 (Comets).
- BARRY F. MADORE, David Dunlap Observatory, University of Toronto, Box 360, Richmond Hill, ON, Canada L4C 4Y6 (Galaxies).
- BRIAN G. MARSDEN, Smithsonian Astrophysical Observatory, 60 Garden St., Cambridge, MA, U.S.A. 02138 (Comets, Asteroids).
- JANET A. MATTEI, American Association of Variable Star Observers, 25 Birch St., Cambridge, MA, U.S.A. 02138-1205 (Variable Stars).
- ROBERT L. MILLIS, Lowell Observatory, Mars Hill Road, 1400 West, Flagstaff, AZ, U.S.A. 86001 (Planetary Appulses and Occultations).
- PETER M. MILLMAN, Herzberg Institute of Astrophysics, National Research Council, Ottawa, ON, Canada K1A 0R6 (Meteors, Fireballs and Meteorites).
- ANTHONY F. J. MOFFAT, Département de Physique, Université de Montréal, Montréal, PQ, Canada H3C 3J7 (Star Clusters).
- JOHN R. PERCY, Erindale College and Department of Astronomy, University of Toronto, Toronto, ON, Canada M5S 1A1 (Sky Month by Month).
- P. BLYTH ROBERTSON, Energy, Mines and Resources Canada, 1 Observatory Crescent, Ottawa, ON, Canada K1A 0Y3 (Meteorite Impact Sites).
- AKIO SENDA, International Lunar Occultation Centre, Geodesy and Geophysics Division, Hydrographic Department, Tsukiji-5, Chuo-ku, Tokyo, 104 Japan (Total and Grazing Lunar Occultations).
- KEN TAPPING, Herzberg Institute of Astrophysics, National Research Council, Ottawa, ON, Canada K1A 0R6 (Radio Sources).
- JOSEPH F. VEVERKA, Centre for Radiophysics and Space Research, Cornell University, Ithaca, NY, U.S.A. 14853 (Planetary Satellites).
- CHARLES E. WORLEY, U.S. Naval Observatory, Washington, DC, U.S.A. 20390 (Double Stars).

OBSERVER'S HANDBOOK 1989

EDITOR ROY L. BISHOP

EIGHTY-FIRST YEAR OF PUBLICATION

© THE ROYAL ASTRONOMICAL SOCIETY OF CANADA 136 DUPONT STREET, TORONTO, ONTARIO M5R 1V2 1988

ISSN 0080-4193

PRINTED IN CANADA BY THE UNIVERSITY OF TORONTO PRESS

IN PRAISE OF AMATEUR ASTRONOMERS By Helen Sawyer Hogg

And especially Canadian amateurs, in order to confine my words to the available space. Actually I could use almost all this space just discussing what is meant by the term "amateur astronomer" and various reactions to it. We could start with the definition of "amateur" from *Webster's Third New International Dictionary*, unabridged: "one that engages in a particular pursuit, study or science as a pastime rather than as a profession". And the definition of "profession" is: "a principal calling, vocation or employment." But precise meanings of words are often elusive. I was startled recently to hear one of our distinguished historians of science declare that Galileo was NOT an astronomer. Who deserves the title more than someone who discovered the craters on the Moon and the moons of Jupiter? In recent years, since I retired from the University payroll, I have wondered if, despite almost 50 years working as a professional astronomer. I am now best described as an amateur astronomer.

The term amateur astronomer certainly covers a wide range of activities. At the top of this category are those observers really dedicated to a study of the sky. They manage to spend many night hours, often well bundled up against harsh elements, scanning the skies with a particular field of interest in mind. Unlike many of us, they seem able to get along on very few hours sleep, and maintain their regular job by day.

In recent years the discoveries of Canadian amateurs have been really notable. The person who gives us the up-to-date information about them is Terence Dickinson. For almost 50 years the *Toronto Star* has had a weekly column on Saturdays on astronomy. Dickinson took over writing this when I gave up the task in 1981 after 30 years. His columns are full of the latest discoveries of both amateur and professional astronomers. The title of the column has expanded considerably from "With The Stars" to "The Universe". Dickinson's articles also appear in the beautiful periodical *Equinox* and other publications, and he has written some fine books.

Dickinson estimates that there are 30 000 amateur astronomers in Canada. Most of those making prominent discoveries are R.A.S.C. members. We can mention only a few. Warren Morrison of Peterborough, Ontario discovered Nova Cygni in 1978 and in January, 1985 caught the recurrent nova RS Ophiuchi on its first observed upswing in 18 years. Rolf Meier of Ottawa is the top Canadian observer for comets because he has discovered four from an observatory in Canada. His rival is Canadian David Levy who has also found four, but Levy works near Tucson, Arizona for better observing conditions. Recently Asteroid 3673 was named for Levy in recognition of his work. Jack Newton of Victoria, B.C. has taken and published many outstanding photographs, using telescopes and cameras of his own design, and now has a second book in press with Philip Teece (Cambridge University Press). Clifford Cunningham of Kitchener has had years of devotion to asteroids which have culminated this past year with invitations to use large professional telescopes and the publication of his attractive book, with human appeal, Introduction to Asteroids. Andrew Lowe of Calgary is one of the few observers who has had the good fortune to watch an asteroid blot out a star. An unusual branch of amateur astronomy is pursued by Réal Manseau of Drummondville, Quebec, who makes detailed replicas of historical astronomical instruments such as Isaac Newton's first reflecting telescope. Few amateurs are engaged in radio astronomy, but Frank Roy of Ottawa is, and hopes to make an all-sky radio survey.

A large proportion of amateurs are simply "armchair astronomers". They delight in reading astronomical items, they talk astronomy at social gatherings, and their monetary donations help maintain societies like this one. We are indebted to them for the fostering of public interest in astronomy. Then there are the "casual observers" whose interest in the sky has been sparked by a contemporary celestial event or even a chance remark. With binoculars or telescopes, especially on mild summer nights, they enjoy finding the beauties of the heavens, the moons of Jupiter, the rings of Saturn, the double cluster in Perseus, and the most distant object the human unaided eye can see, the Great Galaxy in Andromeda. Then there are the "telescope makers" who delight in building their own, often complex instruments. Some in this category become more interested in the instrument than in studying the sky itself. All sorts of astronomical undertakings except those requiring the most expensive and sophisticated instrumentation have amateurs in their midst.

Over the decades and the centuries, amateur astronomers of many nations have made a massive and a significant contribution to our understanding of the universe.

Now the dictionary gives another definition of amateur: "one that engages in an activity in an inexperienced or incompetent manner". This definition certainly does NOT apply to readers and users of the *Observer's Handbook* who are pursuing a most excellent course for astronomical experience and competence.

COVER PHOTOGRAPH

Unlike many photographs involving the Moon and other objects, this image of seven Canada Geese against the Harvest Moon is *not* a superposition of two separate photographs. This singular image was taken on October 2, 1982 (23:00 EDT) by Hein van Asperen of Brockville, Ontario, a member of the Kingston Centre of The Royal Astronomical Society of Canada. Mr. van Asperen was aware that migrating geese were occasionally passing in front of the Moon that evening, but was able to obtain only one negative with birds in view (1/1000 s exposure on Ilford FP4 film (ISO 125) at the prime focus of his home-made, 200 mm aperture, 1150 mm focal length, Newtonian telescope). The Moon was full two hours earlier. Assuming a wingspan of 1.6 m, from the dimensions on the photograph the geese were about 2 km from the telescope. From this, the time of the photograph, and the position of the Moon, the altitude of the birds must have been about 1.2 km. In contemplating this geese know the night sky far better than most men in the darkness below. (RLB)

EDITOR'S COMMENTS

I am very pleased that once again this Handbook opens with a Foreword by Canada's most distinguished astronomer, Dr. Helen Sawyer Hogg. Also, it is worthy of note that, 60 years ago, the name "Mr. P. Millman" is cited in the Editor's comments for assisting with the preparation of *The Observer's Handbook for 1929*.

Among the many changes in this edition: with the assistance of David Levy, Dr. Brian Marsden, and Ian Shelton, the note Reporting of Astronomical Discoveries has been revised; Dr. Joseph Veverka has updated the table Satellites of the Solar System; several of the constants appearing on pages 16 and 17 have been revised in accordance with the 1986 adjustment of the fundamental physical constants (Rev. Mod. Phys., 59, 1121, 1987); the section Solar Activity has been revised by Dr. Gaizauskas and a new contributor, J. W. Dean of the Herzberg Institute of Astrophysics; a new section, **Observing Comets**, has been introduced by David Levy of Tucson, Arizona, USA; on the recommendation and with the assistance of Patrick Kelly of the Halifax Centre of the Society, pronunciations have been added for the genitive forms in the table **Constellations**; once again Dr. Robert Garrison has updated The Brightest Stars table; Dr. Janet Mattei has provided information concerning the variable star P Cygni in the section Variable Stars; Dr. Anthony Moffat has added information on the Hyades in the section Star Clusters; a new section consisting of a brief description and finder chart for the black hole candidate **Cygnus X-1** has been added, and thanks are due to Dr. Tom Bolton of the University of Toronto for reviewing this section; Alan Dyer has completely revised The Messier Catalogue and the table The Finest N.G.C. Objects, and he and a new contributor, Alister Ling of the Edmonton Centre of the Society, have prepared an expanded table entitled **Deep-Sky Challenge Objects**; a new contributor, James Himer of the Calgary Centre of the Society, has collaborated with Dr. Barry Madore to expand the table Galaxies with Proper Names. Revisions of a more routine nature (but, in many cases, no less time consuming) have been made to several other sections by the respective contributors (see the inside front cover), and I apologize for not mentioning them individually here.

In addition to the regular contributors, several individuals have provided information and/or made recommendations that have been incorporated into this edition: Brian Beattie, the Librarian of the Society; Randall Brooks, Douglas Pitcairn and Joe Yurchesyn, all of the Halifax Centre of the Society; and Max Radloff of the Minnesota Astronomical Society. Overall, significant additions and/or revisions have been made to more than three-quarters of the pages of this edition, the largest ever.

The Royal Astronomical Society of Canada is once again indebted to the Nautical Almanac Office of the U.S. Naval Observatory and its Director, Dr. P. K. Seidelmann, for essential pre-publication material from *The Astronomical Almanac*. The Astronomy Department of St. Mary's University provided the Vehrenberg chart used in preparing the diagram of Pluto's path. The Society's Executive-Secretary, Rosemary Freeman, deserves much credit for efficiently handling many details concerning the advertising and distribution of this publication throughout the year. Special acknowledgement is also due to Acadia University and its Department of Physics for providing an editor for the *Observer's Handbook*.

Suggestions for making this Handbook more useful to observers, both amateur and professional, are always welcome and should be sent directly to the Editor. Good observing *quo ducit Urania*!

ROY L. BISHOP, EDITOR DEPARTMENT OF PHYSICS ACADIA UNIVERSITY WOLFVILLE, NOVA SCOTIA CANADA BOP 1X0 BITNET: BISHOP@ACADIA

AN INVITATION FOR MEMBERSHIP IN THE ROYAL ASTRONOMICAL SOCIETY OF CANADA

The history of The Royal Astronomical Society of Canada goes back to the middle of the nineteenth century. The Society was incorporated within the province of Ontario in 1890, received its Royal Charter in 1903, and was federally incorporated in 1968. The National Office of the Society is located at 136 Dupont Street, Toronto, Ontario M5R 1V2, telephone (416) 924 7973. The business office and library are housed there.

The Society is devoted to the advancement of astronomy and allied sciences, and has members in many countries and from all walks of life. Any serious user of this HANDBOOK would benefit from membership. An applicant may affiliate with one of the twenty Centres across Canada, or may join the Society directly as an unattached member. Centres are located in Newfoundland (St. John's), Nova Scotia (Halifax), Quebec (Montreal (2), and Quebec), Ontario (Ottawa, Kingston, Toronto, Hamilton, Niagara Falls, Kitchener-Waterloo, London, Windsor, and Sarnia), Manitoba (Winnipeg), Saskatchewan (Saskatoon), Alberta (Edmonton and Calgary), and British Columbia (Vancouver and Victoria). Contact the National Office for the address of any of the Centres.

Members receive the publications of the Society free of charge: the OBSERVER'S HANDBOOK (published annually in November), and the bimonthly JOURNAL and NATIONAL NEWSLETTER which contain articles on many aspects of astronomy. The membership year begins October 1, and members receive the publications of the Society for the following calendar year. Annual fees are currently \$25, and \$15 for persons under 18 years. Life membership is \$500. (To cover higher mailing costs, these fees are to be read as U.S. dollars for members outside of Canada. Also, persons wishing to affiliate with one of the Centres are advised that some Centres levy a small surcharge.)

REPORTING OF ASTRONOMICAL DISCOVERIES

To report a possible significant discovery (e.g. a new comet, nova, or supernova) a message should be sent to the International Astronomical Union's Central Bureau for Astronomical Telegrams. Send a telex or telegram to (TWX) 710-320-6842 ASTROGRAM CAM and/or electronic mail to MARSDEN@CFA.BITNET or MARSDEN@CFAPS2.SPAN. Messages arriving by these methods are monitored at all times. If these preferred methods of communication are unavailable, a telephone call may be made to 617-495-7244 or -7440 or -7444, but telephone calls are discouraged, and these numbers will not be answered at all times. Also, a follow-up letter should be sent to the Central Bureau (60 Garden St., Cambridge, MA 02138, USA).

For any new object, specify the date and time of observation, RA and Dec (with epoch), magnitude, and some physical description. For photographic discoveries, confirmation with a second image is highly desirable. In the case of a new comet, the rate of motion in RA and Dec should also be indicated. Inexperienced observers should have their observation checked before contacting the Central Bureau. The Bureau has a computer service to which observers can subscribe, read circulars, and report observations. For an account of the history and operation of the Bureau, see *Sky and Telescope*, August 1980, p.92.

SUGGESTIONS FOR FURTHER READING

- Astronomical Almanac for the Year 1989.² Nautical Almanac Office of the U.S. Naval Observatory, U.S. Government Printing Office, Washington, D.C. The standard reference for detailed tabular predictions of astronomical phenomena (primarily Solar System).
- Burnham, Robert. Burnham's Celestial Handbook, Volumes 1, 2 and 3.² Dover Publications, Inc., New York, 1978. A comprehensive, well-presented, observer's guide to the universe beyond the Solar System.
- Cunningham, Clifford. Introduction To Asteroids.¹ An attractive, informative account of the minor planets.
- Dickinson, Terence. Exploring The Night Sky. Camden House Publishing Ltd., Camden East, Ontario, 1987. A brief, illustrated guide to stargazing, especially suitable for children.
- Dickinson, Terence. Nightwatch. Camden House Publishing Ltd., Camden East, Ontario, 1983. An attractive, comprehensive, introductory guide to observing the sky.
- Espenak, Fred. Fifty Year Canon Of Solar Eclipses: 1986–2035.¹ Predictions for all solar eclipses visible on Earth for half a century.
- Harrison, Edward R. Cosmology.¹ Cambridge University Press, Cambridge, 1981. An elegant, stimulating introduction to the structure of the universe.
- Hogg, Helen Sawyer. The Stars Belong To Everyone. Doubleday Canada Ltd., Toronto, 1976. Superb introduction to the sky (now, unfortunately, out-of-print).
- Jones, K. G. (editor). Webb Society Deep-Sky Observer's Handbook.² Seven volumes: 1: Double Stars, 2: Planetary and Gaseous Nebulae, 3: Open and Globular Clusters, 4: Galaxies, 5: Clusters of Glaxies, 6: Anonymous Galaxies. 7: The Southern Sky. Enslow Publishers, Inc., Hillside, New Jersey, 1979-1987. An invaluable reference for the experienced observer. Peltier, Leslie. *Starlight Nights*.¹² A charming autobiography that every person who
- loves the night should read.
- Sky and Telescope.¹ A monthly magazine containing articles on all aspects of astronomy.
- Texereau, Jean. How To Make A Telescope.² (2nd edition, 1984). The best guide to making a Newtonian telescope. Whipple, Fred. *The Mystery of Comets.*¹ An authoritative, fascinating account of
- these visitors to the inner Solar System.

ATLASES

- Moon, Mars and Venus, by A. Rukl. A compact, detailed, lunar atlas. Hamlyn Publishing Group Ltd., Toronto and New York, 1976 (now, unfortunately, out-of-print).
- Norton's Star Atlas.¹² (Epoch 1950.0) A classic. Contains 8700 stars to magnitude 6.3 on 8 charts.
- Sky Atlas 2000.0,¹² by Wil Tirion. Large format, modern and detailed. Contains 43 000 stars to magnitude 8.0 on 26 charts. Uranometria 2000.0,¹² by W. Tirion, B. Rappaport, and G. Lovi. A comprehen-
- sive, general-purpose star atlas. Two volumes (Volume 1 covers the northern sky to declination -6° . Volume 2 will be available in 1989). Contains a third of a million stars to magnitude 9.5 and more than 10 000 clusters, nebulae, and galaxies on 473 charts.
- ¹ Available from: Sky Publishing Corp., P.O. Box 9111, Belmont, MA 02178-9111, U.S.A.
- ² Available from: Willmann-Bell, Inc., Box 35025, Richmond, VA 23235, U.S.A.

VISITING HOURS AT SOME CANADIAN OBSERVATORIES AND PLANETARIA

COMPILED BY MARIE FIDLER

OBSERVATORIES

Burke-Gaffney Observatory, Saint Mary's University, Halifax, Nova Scotia B3H 3C3.

October-March: Saturday evenings, 7:00 p.m. April-September: Saturday evenings, 9:00 p.m. Monday evening or daytime tours by arrangement. Phone 420-5633.

Canada-France-Hawaii Telescope, Mauna Kea, Hawaii, U.S.A. 96743.

R.A.S.C. members visiting the "Big Island" are welcome to day-time visits to the CFHT installations. Arrangements should be made in advance either by writing to Canada-France-Hawaii Telescope Corporation, P.O. Box 1597, Kamuela, HI 96743, U.S.A., or by telephone (808) 885-7944.

David Dunlap Observatory, Richmond Hill, Ontario L4C 4Y6. Tuesday mornings throughout the year, 10:00 a.m. Saturday evenings, April through October, by reservation. Telephone (416) 884-2112.

Dominion Astrophysical Observatory, 5071 West Saanich Road, Victoria, B.C. V8X 4M6.

May-August: Daily, 9:15 a.m.-4:30 p.m.

September-April: Monday to Friday, 9:15 a.m.-4:30 p.m.

Public observing, Saturday evenings, April-October inclusive. Phone (604) 388-0012.

- Dominion Radio Astrophysical Observatory, Penticton, B.C. V2A 6K3. Conducted Tours: Sundays, July and August only, 2:00–5:00 p.m. Visitors' Centre: Open year round during daylight hours. For information please phone (604) 497-5321.
- Hume Cronyn Observatory, University of Western Ontario, London, ON, N6A 3K7. For tour and program information please phone (519) 661-3183.
- National Museum of Science and Technology, 1867 St. Laurent Blvd., Ottawa, Ontario. K1A 0M8.

Evening tours, by appointment only. Telephone (613) 991-3073.

October-June: Group tours: Mon. through Thurs. Public visits, Fri. (2nd Fri. French)

July-August: Public visits: Tues. (French), Wed. and Thurs. (English).

Observatoire astronomique du mont Mégantic, Notre-Dame-des-Bois, P.Q. JOB 2E0.

Telephone (514) 343-6718 for information on summer programs.

Science North Solar Observatory, 100 Ramsey Lake Road, Sudbury, ON, P3A 2K3. Three heliostats provide viewing of the solar spectrum and the Sun in hydrogen-alpha and white light in a darkened theatre where a multi-media interpretation of the Sun is also presented. Open most days except for offseason Mondays. For information call (705) 522-3701.

Gordon MacMillan Southam Observatory, 1100 Chestnut St., Vancouver, BC, V6J 3J9.

Open Fri., Sat., Sun. and statutory holidays 12:00–5:00 p.m., 7:00 p.m.-11:00 p.m., weather and volunteer staff permitting. Extended hours during school holidays. For information call (604) 738-2855. University of British Columbia Observatory, 2219 Main Mall, Vancouver, B.C. V6T 1W5.

Free public observing, clear Saturday evenings: telephone (604) 228-6186. Tours: telephone (604) 228-2802.

PLANETARIA

- Alberta Science Centre/Calgary Centennial Planetarium, 701–11 Street S.W., P.O. Box 2100, Stn. M, Calgary, Alberta T2P 2M5. For program information, telephone (403) 264-4060 or 221-3700.
- Doran Planetarium, Laurentian University, Ramsey Lake Road, Sudbury, Ontario P3E 2C6. Telephone (705) 675-1151, ext. 2222 for information.
- *Dow Planetarium*, 1000 St. Jacques Street W., Montreal, P.Q. H3C 1G7. Live shows in French and in English every open day. Closed three weeks in September after Labour Day. For general information telephone (514) 872-4530.
- *Edmonton Space Sciences Centre*, Coronation Park, 11211-142 Street, Edmonton, Alberta T5M 4A1. Features planetarium Star Theatre, IMAX film theatre, and exhibit galleries. Public shows daily in both theatres. Telephone 451-7722 for program information. Also contains Science Magic telescope shop and bookstore: telephone 451-6516. Administration Office 452-9100.
- *The Halifax Planetarium*, The Education Section of Nova Scotia Museum, Summer Street, Halifax, N.S. B3H 3A6.

Free public shows take place on some evenings at 8:00 p.m. and group shows can be arranged. The planetarium is located in the Sir James Dunn Building, Dalhousie University. For information, telephone (902) 429-4610.

- The Lockhart Planetarium, 394 University College, 500 Dysart Road, The University of Manitoba, Winnipeg, Manitoba R3T 2M8. For group reservations, telephone (204) 474-9785.
- H.R. MacMillan Planetarium, 1100 Chestnut Street, Vancouver, B.C. V6J 3J9. Public shows Tuesdays through Sundays and on most holidays; open daily during the summer. For show information telephone (604) 736-3656.
- Manitoba Planetarium, 190 Rupert Avenue at Main Street, Winnipeg, Manitoba R3B 0N2. Shows daily except some Mondays. New "Touch the Universe" science gallery features over 60 interactive exhibits. Museum Gift Shop has scientific books and equipment. Program information recording: 943-3142; switchboard (204) 956-2830.
- McLaughlin Planetarium, 100 Queen's Park, Toronto, Ontario M5S 2C6. Public shows Tues.-Fri. 3:00 and 7:30. Additional shows on weekends and during summer. School shows, Astrocentre with solar telescope, and evening courses. Sky information (416) 586-5751. For show times and information call (416) 586-5736.
- Ontario Science Centre, 770 Don Mills Road, Don Mills, Ontario M3C 1T3. Open daily except Christmas Day from 10:00 a.m. to 6:00 p.m. Telephone (416) 429-4100.

SYMBOLS

SUN, MOON, AND PLANETS

 The Sun New Moon Full Moon First Quarter 	 € The Moon generally ♀ Mercury ♀ Venus ⊕ Earth 	4 Jupiter り Saturn む Uranus Ψ Neptune
C Last Quarter	ර Mars	P Pluto
	SIGNS OF THE ZODIAC	

THE GREEK ALPHABET

Α, α	Alpha	I, i Iota	P,ρ Rho
Β, β	Beta	К, к Карра	Σ, σ Sigma
Γ, γ	Gamma	Λ, λ Lambda	T, τ Tau
Δ, δ	Delta	Μ, μ Μu	Y, v Upsilon
Ε, ε	Epsilon	N, v Nu	Φ, φ Phi
Ζ, ζ	Zeta	Ξ, ξ Xi	X, χ Chi
Η, η	Eta	O, o Omicron	Ψ, Ψ Psi
Θ, θ, ί) Theta	Π, π Ρί	Ω, ω Omega

CO-ORDINATE SYSTEMS AND TERMINOLOGY

Astronomical positions are usually measured in a system based on the *celestial* poles and *celestial equator*, the intersections of Earth's rotation axis and equatorial plane, respectively, and the infinite sphere of the sky. *Right ascension* (R.A. or α) is measured in hours (h), minutes (m) and seconds (s) of time, eastward along the celestial equator from the *vernal equinox*. *Declination* (Dec. or δ) is measured in degrees (^o), minutes (') and seconds (") of arc, northward (N or +) or southward (S or -) from the celestial equator toward the N or S celestial pole.

Positions can also be measured in a system based on the *ecliptic*, the intersection of Earth's orbit plane and the infinite sphere of the sky. The Sun appears to move eastward along the ecliptic during the year. *Longitude* is measured eastward along the ecliptic from the vernal equinox; *latitude* is measured at right angles to the ecliptic, northward or southward toward the N or S ecliptic pole. The vernal equinox is one of the two intersections of the ecliptic and the celestial equator; it is the one at which the Sun crosses the celestial equator moving from south to north.

Objects are *in conjunction* if they have the same longitude or R.A., and are *in opposition* if they have longitudes or R.A.'s which differ by 180°. If the second object is not specified, it is assumed to be the Sun. For instance, if a planet is "in conjunction", it has the same longitude as the Sun. At *superior conjunction*, the planet is more distant than the Sun; at *inferior conjunction*, it is nearer. (See the diagram on page 114.)

If an object crosses the ecliptic moving northward, it is at the *ascending node* of its orbit; if it crosses the ecliptic moving southward, it is at the *descending node*.

Elongation is the difference in longitude between an object and a second object (usually the Sun). At conjunction, the elongation of a planet is thus zero.

D

BASIC DATA

PRINCIPAL ELEMENTS OF THE SOLAR SYSTEM

	Mean Distance from Sun		Period of Revolution		Focen	Inclina	Long.	Long. of Peri-	Mean Long.
Planet	AU	millions of km	Sidereal (P)	Syn- odic	tricity (e)	tion (i)	Node (Ω)	helion (π)	Epoch (L)
				days		0	0	0	0
Mercury	0.387	57.9	87.97d	116	0.206	7.0	47.9	76.8	222.6
Venus	0.723	108.2	224.70	584	0.007	3.4	76.3	131.0	174.3
Earth	1.000	149.6	365.26		0.017	0.0	0.0	102.3	100.2
Mars	1.524	227.9	686.98	780	0.093	1.8	49.2	335.3	258.8
Jupiter	5.203	778.3	11.86a	399	0.048	1.3	100.0	13.7	259.8
Saturn	9.539	1427.0	29.46	378	0.056	2.5	113.3	92.3	280.7
Uranus	19.182	2869.6	84.01	370	0.047	0.8	73.8	170.0	141.3
Neptune	30.058	4496.6	164.79	367	0.009	1.8	131.3	44.3	216.9
Pluto	39.439	5899.9	247.69	367	0.250	17.2	109.9	224.2	181.6

MEAN ORBITAL ELEMENTS

These elements, for epoch 1960 Jan. 1.5 E.T., are taken from the *Explanatory Supplement* to the American Ephemeris and Nautical Almanac.

PHYSICAL ELEMENTS

	Object	Equat. Diam. km	Ob- late- ness	$\begin{array}{l} \text{Mass} \\ \oplus = 1 \end{array}$	Den- sity g/cm ³	Grav- ity ⊕ = 1	Esc. Speed km/s	Rotn. Period d	Incl.	Albedo
\odot	Sun	1 392 000	0	332 946.0	1.41	27.9	617.5	25-35*		
E	Moon	3 4 7 6	0	0.012300	3.34	0.17	2.4	27.3217	6.7	0.12
ğ	Mercury	4 878	0	0.055274	5.43	0.38	4.3	58.646	0.0	0.11
Ŷ	Venus	12 104	0	0.815005	5.24	0.91	10.4	243.017	177.3	0.65
\oplus	Earth	12756	1/298	1.000000	5.52	1.00	11.2	0.9973	23.4	0.37
ð	Mars	6787	1/193	0.107447	3.94	0.38	5.0	1.0260	25.2	0.15
24	Jupiter	142 800	1/15	317.833	1.33	2.54	59.6	0.4101†	3.1	0.52
þ	Saturn	120 000	1/9	95.159	0.70	1.08	35.6	0.4440	26.7	0.47
ð	Uranus	51 200	1/45	14.500	1.30	0.91	21.3	0.718	97.9	0.51
Ψ	Neptune	48 600	1/40	17.204	1.76	1.19	23.8	0.768	29.6	0.41
Б	Pluto	2 300	0?	0.0026?	1.1?	0.05?	1.2?	6.3867	94	0.5?

The table gives the *mean* density, the gravity and escape speed at the pole and the inclination of equator to orbit.

*Depending on latitude

[†]For the most rapidly rotating part of Jupiter, the equatorial region.

SATELLITES OF THE SOLAR SYSTEM

Name	Diam. (km)	Mass (10 ²⁰ kg)	Mean Dist. from Planet (10 ³ km/")	Eccen- tricity	Vis. Mag.	Discovery
		Density (t/m ³)	Rev. Period (d)	Orbit Incl (°)	Vis. Albedo	
SATELLITE OF E	ARTH					
Moon	3476	734.9 ± 0.7 3.34	384.5/ 27.322	0.0549 18–29	-12.7 0.11	
SATELLITES OF	Mars					
I Phobos	21	$(1.3 \pm 0.2) \times 10^{-4} \\ \sim 2$	9.4/25 0.319	0.015 1.1	11.6 0.07	A. Hall, 1877
II Deimos	12	$(1.8 \pm 0.2) \times 10^{-5}$ ~2	23.5/ 63 1.263	0.0005 1.8v	12.7 0.07	A. Hall, 1877
SATELLITES OF	Jupiter					
XVI Metis	(40)	_	128/ 42 0.294	0	17.5 (0.05)	S. Synnott, 1979
XV Adrastea	(25)		129/ 42 0.297	0	18.7 (0.05)	Jewitt, Danielson, Synnott, 1979
V Amalthea	170		180/ 59 0.498	0.003 0.4	14.1 0.05	E. Barnard, 1892
XIV Thebe	(100)	-	222/ 73 0.674	0.013 —	16.0 (0.05)	S. Synnott, 1979
I lo†	3630	892 ± 4 3.55	422/138 1.769	0.004 0	5.0 0.6	Galileo, 1610
II Europa [†]	3140	487 ± 5 3.04	671/220 3.551	0.010 0.5	5.3 0.6	Galileo, 1610
III Ganymede [†]	5260	1 490 ± 6 1.93	1 070/351 7.155	0.001 0.2	4.6 0.4	Galileo, 1610

By Joseph Veverka

Apparent magnitude and mean distance from planet are at mean opposition distance. The inclination of the orbit is referred to the planet's equator; a value greater than 90° indicates retrograde motion.

Values in parentheses are uncertain.

D

Note: Pronunciations of the names of the planetary satellites are given on p. 115.

¹Laplace resonance. Longitudes satisfy $\lambda_I - 3\lambda_E + 2\lambda_G = 180^\circ$. Also, mean motions are such that $n_I \approx 2n_E$ and $n_E \approx 2n_G$.

Name	Diam. (km)	Mass (10 ²⁰ kg)	Mean Dist. from Planet (10 ³ km/")	Eccen- tricity	Vis. Mag.	Discovery
		Density (t/m ³)	Rev. Period (d)	Orbit Incl (°)	Vis. Albedo	
IV Callisto	4800	1075 ± 4 1.83	1 885/ 618 16.689	0.007 0.2	5.6 0.2	Galileo, 1610
XIII Leda	(15)	—	11 110/3640 240	0.147 27	20	C. Kowal, 1974
VI Himalia	185		11 470/3760 251	0.158 28	14.8 0.03	C. Perrine, 1904
X Lysithea	(35)	-	11 710/3840 260	0.107 29	18.4	S. Nicholson, 1938
VII Elara	75		11 740/3850 260	0.207 28	16.8 0.03	C. Perrine, 1905
XII Ananke	(30)		21 200/6954 631	0.17 147	18.9 —	S. Nicholson, 1951
XI Carme	(40)		22 350/7330 692	0.21 164	18.0 —	S. Nicholson, 1938
VIII Pasiphae	(50)		23 330/7650 735	0.38 148	17.1	P. Melotte, 1908
IX Sinope	(35)		23 370/7660 758	0.28 153	18.3	S. Nicholson, 1914
SATELLITES OF	SATURN					
XV Atlas	30	-	137/ 23 0.601	0.002 0.3	(18) 0.4	R. Terrile, 1980
XVI Prometheus [†]	100	—	139/ 23 0.613	0.002 0.0	(15) 0.6	S. Collins, D. Carlson, 1980
XVII Pandora [†]	90		142/ 24 0.628	0.004 0.1	(16) 0.5	S. Collins, D. Carlson, 1980
X Janus*	190		151/ 25 0.695	0.009 0.3	(14) 0.6	A. Dollfus, 1966
XI Epimetheus*	120		151/ 25 0.695	0.007 0.1	(15) 0.5	J. Fountain, S. Larson, 1966
I Mimas	390	0.38 ± 0.01 1.2	187/ 30 0.942	0.020 1.5	12.5 0.8	W. Herschel, 1789
II Enceladus	500	0.8 ± 0.3 1.1	238/ 38 1.370	0.004 0.02	11.8 1.0	W. Herschel, 1789

[†]Shepherds of the F-ring. *Co-orbital satellites. Horseshoe libration $(\lambda_J - \lambda_E)$ about 180°.

Name	Diam. (km)	Mass (10 ²⁰ kg)	Mean Dist. from Planet (10 ³ km/")	Eccen- tricity	Vis. Mag.	Discovery
		Density (t/m ³)	Rev. Period (d)	Orbit Incl (°)	Vis. Albedo	
III Tethys	1060	7.6 ± 0.9 1.2	295/ 48 1.888	0.000 1.1	10.3 0.8	G. Cassini, 1684
XIII Telesto	25	_	295/ 48 1.888ª	~0 ~0	(18) 0.7	Smith, Larson, Reitsema, 1980
XIV Calypso	25		295/ 48 1.888 ^b	~0 ~0	(18) 1.0	Pascu, Seidelmann, Baum, Currie, 1980
IV Dione	1120	10.5 ± 0.3 1.4	378/ 61 2.737	0.002 0.02	10.4 0.6	G. Cassini, 1684
XII Helene	30	—	378/ 61 2.737°	0.005 0.2	(18) 0.6	P. Laques, J. Lecacheux, 1980
V Rhea	1530	24.9 ± 1.5 1.3	526/ 85 4.517	0.001 0.4	9.7 0.6	G. Cassini, 1672
VI Titan	5550†	1345.7 ± 0.3 1.88	1 221/ 197 15.945	0.029 0.3	8.4 0.2	C. Huygens, 1655
VII Hyperion	255		1 481/ 239 21.276	0.104 0.4	14.2 0.3	W. Bond, G. Bond, W. Lassell, 1848
VIII Iapetus	1460	18.8 ± 1.2 1.2	3 561/ 575 79.331	0.028 14.7	11.0v 0.08 -0.4	G. Cassini, 1671
IX Phoebe	220		12 960/2096 550.46	0.163 150	16.5 0.05	W. Pickering, 1898
SATEL LITES OF	LIDANUS					
VI Cordelia ^d	25*	—	49.8/3.7 0.333	~0 ~0	22.4 <0.1	Voyager 2, 1986
VII Ophelia ^d	30*		53.8/4.0 0.375	~0 ~0	22.2 <0.1	Voyager 2, 1986
VIII Bianca	40*		59.2/4.4 0.433	~0 ~0	21.9 <0.1	Voyager 2, 1986

^aLibrates about trailing (L₅) Lagrangian point of Tethys' orbit. ^bLibrates about leading (L₄) Lagrangian point of Tethys' orbit. ^cLibrates about leading (L₄) Lagrangian point of Dione's orbit with a period of ~790 d. ^dShepherds of the ϵ -ring. [†]Cloud-top diameter. Solid-body diameter equals 5150 km. *Diameter assuming same albedo (0.07) as Puck.

D

Name	Diam. (km)	Mass (10 ²⁰ kg)	Mean Dist. from Planet (10 ³ km/")	Eccen- tricity	Vis. Mag.	Discovery
		Density (t/m ³)	Rev. Period (d)	Orbit Incl (°)	Vis. Albedo	
IX Cressida	60*		61.8/ 4.6 0.463	~0 ~0	21.4 <0.1	Voyager 2, 1986
X Desdemona	55*		62.6/ 4.7 0.475	~0 ~0	21.5 <0.1	Voyager 2, 1986
XI Juliet	85*		64.4/ 4.9 0.492	~0 ~0	21.1 <0.1	Voyager 2, 1986
XII Portia	110*	_ _	66.1/ 5.0 0.513	~0 ~0	20.8 <0.1	Voyager 2, 1986
XIII Rosalind	55*		70.0/ 5.2 0.558	~0 ~0	21.5 <0.1	Voyager 2, 1986
XIV Belinda	65*		75.3/ 5.6 0.621	~0 ~0	21.4 <0.1	Voyager 2, 1986
XV Puck	155*		86.0/ 6.5 0.763	~0 ~0	20.3 0.07	Voyager 2, 1985
V Miranda [†]	485	0.75 ± 0.22 1.26 ± 0.39	129.9/ 9.7 1.413	0.017 3.4	16.5 0.34	G. Kuiper, 1948
[Ariel [†]	1160	13.4 ± 2.4 1.65 ± 0.30	190.9/14.3 2.521	0.0028 0	14.0 0.40	W. Lassell, 1851
II Umbriel [†]	11 9 0	12.7 ± 2.4 1.44 ± 0.28	266.0/20.0 4.146	0.0035 0	14.9 0.19	W. Lassell, 1851
III Titania	1610	34.7 ± 1.8 1.59 ± 0.09	436.3/32.7 8.704	0.0024 0	13.9 0.28	W. Herschel, 1787
V Oberon	1550	29.2 ± 1.6 1.50 ± 0.10	583.4/43.8 13.463	0.0007 0	14.1 0.24	W. Herschel, 1787
SATELLITES OF	Neptune					
Triton	(3500)	1300? ?	354/17 5.877	<0.0005 160.0	13.6 (0.4)	W. Lassell, 1846
II Nereid	(300)	_	5 600/264 365.21	0.75 27.6	18.7	G. Kuiper, 1949
SATELLITE OF P	LUTO					
Charon	1300		19.1/ 0.9 6.387	~0 ~0	17	J. Christy, 1978

†Near resonance(?). $\lambda_M - 3\lambda_A + 2\lambda_U$ drifts slowly (period ≈ 12.5 a).

SOME ASTRONOMICAL AND PHYSICAL DATA

Many of the numbers listed below are determined by measurement. Exceptions include defined quantities (indicated by three lines in the equal sign \equiv), quantities calculated from defined quantities (e.g. m/ly, AU/pc), and numbers of mathematical origin such as π and conversion factors in angular measure. Of the measured quantities, some are known to only approximate precision. For these the equal sign is reduced to \approx . Many others are known to quite high precision. In these cases all digits shown are significant, with the uncertainties occurring after the last digit. The units, symbols, and nomenclature are based on recommendations of the International Astronomical Union, the International Union of Pure and Applied Physics, and the Metric Commission Canada. A concise review of physical measurement standards appears in Physics in Canada 44, p. 3, 1988. (RLB)

LENGTH

D

1 astronomical unit (AU	$1.49597870 imes10^{11}$	m = 499.004782 light-seconds
1 light-year (ly)	$9.460536 \times 10^{15}\mathrm{m}$	(based on average Gregorian year)
	53 239.8 AU	
1 parsec (pc)	$3.085678 \times 10^{16} \mathrm{m}$	
	$206264.8\mathrm{AU}=3.2$	261 631 light-years
1 mile*	1.609 344 km	
1 micron*	l μm	
1 Angstrom*).1 nm	

TIME

Day:	Mean sidereal (equinox to equinox)	=	86164.092 s
•	Mean rotation (fixed star to fixed star)	<u></u>	86164.100 s
	Day (d)	=	86400. s
	Mean solar		86400.001 s
Month	: Draconic (node to node)	=	27.21222 d
	Tropical (equinox to equinox)	=	27.321 58 d
	Sidereal (fixed star to fixed star)	=	27.321 66 d
	Anomalistic (perigee to perigee)	=	27.55455 d
	Synodic (New Moon to New Moon)	=	29.530 59 d
Year:	Eclipse (lunar node to lunar node)	=	346.6201 d
	Tropical (equinox to equinox) (a)	=	365.2422 d
	Average Gregorian	=	365.2425 d
	Average Julian	=	365.2500 d
	Sidereal (fixed star to fixed star)	=	365.2564 d
	Anomalistic (perihelion to perihelion)	=	365.2596 d

EARTH

 $Mass = 5.974 \times 10^{24} \text{ kg}$ Radius: Equatorial, a = 6378.140 km; Polar, b = 6356.755 km; Mean, $\sqrt[3]{a^2b} = 6371.004$ km 1° of latitude = $111.133 - 0.559 \cos 2\phi$ km (at latitude ϕ) 1° of longitude = 111.413 $\cos \phi - 0.094 \cos 3\phi$ km Distance of sea horizon for eye h metres above sea-level $\approx 3.9 \sqrt{h}$ km (refraction inc.) Standard atmospheric pressure $\equiv 101.325$ kPa (≈ 1 kg above 1 cm²) Speed of sound in standard atmosphere = 331 m s^{-1} Magnetic field at surface $\approx 5 \times 10^{-5}$ T Magnetic poles: 76°N, 101°W; 66°S, 140°E Standard acceleration of gravity $\equiv 9.806 65 \text{ m s}^{-2}$ Age ≈4.6 Ga Meteoric flux $\approx 1 \times 10^{-15} \text{ kg m}^{-2} \text{ s}^{-1}$ Escape speed from Earth = 11.2 km s^{-1} Solar parallax = $8''.794\,148$ (Earth equatorial radius $\div 1$ AU) Constant of aberration = 20''.49552*Deprecated unit. Unit on right is preferred.

16

Obliquity of ecliptic = $23^{\circ}.4407$ (1989.0) Annual general precession = 50''.26; Precession period = $25\,800$ a Orbital speed = 29.8 km s^{-1} Escape speed at 1 AU from $Sun = 42.1 \text{ km s}^{-1}$ SUN Mass = 1.9891×10^{30} kg; Radius = 696 265 km; Eff. temperature = 5770 K Output: Power = 3.85×10^{26} W; $M_{bol} = 4.75$ Luminous intensity = 2.84×10^{27} cd; M_V = 4.84At 1 AU, outside Earth's atmosphere: Energy flux = 1.37 kW m^{-2} ; $m_{bol} = -26.82$ Illuminance = 1.27×10^5 lx; m_v = -26.73Inclination of the solar equator on the ecliptic of date = $7^{\circ}25$ Longitude of the ascending node of the solar equator on the ecliptic of date = 76° Period of rotation at equator = 25.38 d (sidereal), 27.275 d (mean synodic) Solar wind speed near Earth ≈ 450 km s⁻¹ (travel time, Sun to Earth ≈ 5 d) Solar velocity = 19.75 km s⁻¹ toward α = 18.07 h, δ = +30° (solar apex) MILKY WAY GALAXY Mass $\approx 10^{12}$ solar masses Centre: $\alpha = 17 \text{ h} 42.5 \text{ min}, \delta = -28^{\circ} 59' (1950)$ Distance to centre ≈ 9 kpc, diameter ≈ 100 kpc North pole: $\alpha = 12 \text{ h} 49 \text{ min}, \delta = 27^{\circ} 24' (1950)$ Rotational speed (at Sun) $\approx 250 \text{ km s}^{-1}$ Rotational period (at Sun) ≈220 Ma Velocity relative to the 3 K background ≈ 600 km s⁻¹ toward $\alpha \approx 10$ h, $\delta \approx -20^{\circ}$ SOME CONSTANTS Speed of light, $c \equiv 299792458$. m s⁻¹ (This, in effect, defines the metre.) Planck's constant, $h = 6.6261 \times 10^{-34} \text{ J s} = 4.135 \text{ } 67 \times 10^{-15} \text{ eV s}$ Gravitational constant, $G = 6.672 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$ Elementary charge, $e = 1.602 \ 18 \times 10^{-19} \ C$ Constant in Coulomb's law $\equiv 10^{-7} c^2$ (SI units) (This defines the coulomb.) Avogadro constant, $N_A = 6.022 \ 1 \times 10^{26} \ \text{kmol}^{-1}$ Boltzmann constant, k = 1.381×10^{-23} J K⁻¹ = 8.617×10^{-5} eV K⁻¹ ≈ 1 eV/10⁴ K Stefan-Boltzmann constant, $\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$ Wien's law, $\lambda_m T = 2.898 \times 10^{-3} \text{ m K}$ (per d λ) Hubble constant, $H \approx 50$ to 75 km s⁻¹ Mpc⁻¹ (depending on method of determination) Volume of ideal gas at 0°C, 101.325 kPa = $22.41 \text{ m}^3 \text{ kmol}^{-1}$ MASS AND ENERGY Atomic mass unit (u) = 1.66054×10^{-27} kg = N_A^{-1} = 931.494 MeV Electron rest mass = $9.109.4 \times 10^{-31}$ kg = $548.579.9 \mu u = 0.510.999$ MeV Proton rest mass = $1.007\ 276\ 5\ u = 938.27\ MeV = 1.672\ 62 \times 10^{-27}\ kg$ Neutron rest mass = $1.008\ 664\ 9\ u = 939.57\ MeV = 1.674\ 93 \times 10^{-27}\ kg$ Some atomic masses: $^{1}H = 1.007 825 u$ ${}^{5}\text{Li} = 5.0125 \text{ u}$ $^{16}O = 15.994915 u$ $^{8}Be = 8.005\ 305\ u$ 56 Fe = 55.934 940 u $^{2}H = 2.014 \ 102 \ u$ ${}^{12}C \equiv 12.000\ 000\ u$ ²³⁵U = 235.043 928 u $^{4}\text{He} = 4.002\ 603\ \text{u}$ Electron-volt (eV) = $1.602 \ 18 \times 10^{-19} \ J$ 1 eV per event = 23 060 cal mol⁻¹ Thermochemical calorie (cal) $\equiv 4.184 \text{ J}$ $1 \text{ erg s}^{-1} \equiv 10^{-7} \text{ W}$ C + O₂ \rightarrow CO₂ + 4.1 eV pc $4^{1}H \rightarrow {}^{4}He + 26.73 \text{ MeV}$ 1 kg TNT releases 4.20 MJ (\approx 1 kWh) Relation between rest mass (m), linear momentum (p), total energy (E), kinetic mc² energy (KE), and $\gamma \equiv (1 - v^2/c^2)^{-0.5}$:

MAGNITUDE RELATIONS

D

Log of light intensity ratio $\equiv 0.4$ times magnitude difference Distance Modulus (D) \equiv apparent magnitude (m) – absolute magnitude (M) Log of distance in ly = 0.2 D + 1.513 435 (neglecting absorption) Magnitude of sum of magnitudes $m_i = -2.5 \log \Sigma 10^{-0.4m_i}$

OPTICAL WAVELENGTH DATA

Bright-adapted (photopic) visible range $\approx 400 - 750 \text{ nm}$ Dark-adapted (scotopic) visible range $\approx 400 - 620 \text{ nm}$ Wavelength of peak sensitivity of human eye $\approx 555 \text{ nm}$ (photopic), $\approx 510 \text{ nm}$ (scotopic) Mechanical equivalent of light: $1 \text{ lm} \equiv 1/633 \text{ W}$ at 540 THz ($\lambda \approx 555 \text{ nm}$) Colours (representative wavelength, nm): violet (420), blue (470), green (530), yellow (580), orange (610), red (660).

Some useful wavelengths (element, spectral designation or colour and/or (Fraunhofer line):

H Lyman α	121.6 nm	N ₂ ⁺ blue**	465.2	Hg yellow	579.1
Ca (K solar)	393.4	Hβ (F solar)*	486.1	Na (D ₂ solar)	589.0
Ca (H solar)	396.8	O ⁺⁺ green*	495.9	Na (D ₁ solar)	589.6
Hg violet	404.7	O ⁺⁺ green*	500.7	O red**	630.0
Hδ (h solar)	410.2	Hg green	546.1	He-Ne laser	632.8
Hγ (g solar)	434.0	O yelgreen**	557.7	O red**	636.4
Hg deep blue	435.8	Hg yellow	577.0	Hα (C solar)	656.3
Canana and the		1 - he of according			

*Strong contributor to the visual light of gaseous nebulae.

**Strong auroral lines.

DOPPLER RELATIONS FOR LIGHT

$$\begin{split} \alpha &\equiv \text{angle between velocity of source and line from source to observer.} \\ \beta &\equiv v/c \\ \gamma &\equiv (1 - \beta^2)^{-0.5} \\ \text{Frequency: } \nu &= \nu_0 \gamma^{-1} (1 - \beta \cos \alpha)^{-1} \\ z &\equiv (\lambda - \lambda_0)/\lambda_0 = \gamma (1 - \beta \cos \alpha) - 1 \\ \text{For } \alpha &= \pi \begin{cases} z &= (1 + \beta)^{0.5} (1 - \beta)^{-0.5} - 1 & (\approx \beta \text{ if } \beta \leqslant 1) \\ \beta &= [(1 + z)^2 - 1][(1 + z)^2 + 1]^{-1} \end{cases} \end{split}$$

ANGULAR RELATIONS

 $\begin{aligned} \pi &= 3.141\ 592\ 654 \approx (113\ \div\ 355)^{-1}\\ 1'' &= 4.848\ 14 \times 10^{-6}\ rad,\ 1\ rad = 206\ 265''\\ \text{Number of square degrees on a sphere} &= 41\ 253.\\ \text{For } 360^\circ &= 24\ h,\ 15^\circ &= 1\ h,\ 15' &= 1\ min,\ 15'' &= 1\ s\\ \text{Relations between sidereal time t, right ascension } \alpha, \text{ hour angle } h, \text{ declination } \delta, \text{ azimuth A}\\ \text{(measured east of north), altitude } a, \text{ and latitude } \phi: \end{aligned}$

 $\begin{array}{l} h=t-\alpha\\ \sin a=\sin\delta\sin\varphi+\cos h\cos\delta\cos\varphi\\ \cos\delta\sin h=-\cos a\sin A\\ \sin\delta=\sin a\sin\varphi+\cos a\cos A\cos\varphi\\ Annual precession in \alpha\cong 3.0730+1.3362\sin\alpha\tan\delta$ seconds Annual precession in $\delta\cong 20''.043\cos\alpha\end{array}$

SOME SI SYMBOLS AND PREFIXES

m	metre	Ν	newton (kg m s^{-2})	f	femto	10-15
kg	kilogram	J	joule (N m)	р	pico	10-12
รั	second	W	watt $(J s^{-1})$	n	nano	10 ^{_9}
min	minute	Pa	pascal (N m ⁻²)	μ	micro	10-6
h	hour	t	tonne (10^3 kg)	m	milli	10 ⁻³
d	day	Hz	hertz (s^{-1})	с	centi	10 ⁻²
a	year	С	coulomb (A s)	k	kilo	10 ³
Α	ampere	Т	tesla (Wb m ⁻²)	Μ	mega	10 ⁶
rad	radian	cd	candela (lm sr ⁻¹)	G	giga	10 ⁹
sr	steradian	lx	$lux (lm m^{-2})$	Т	tera	10 ¹²

18

TABLE OF PRECESSION FOR ADVANCING 50 YEARS

If declination is positive, use inner R.A. scale; if declination is negative, use outer R.A. scale, and reverse the sign of the precession in declination

R.A.	tor Dec. –	h m 24 00 23 30 23 00	22 30 22 00 21 30	21 00 20 30 20 00	19 30 19 00 18 30 18 00	12 00 11 30 11 00	10 30 10 00 9 30	9 8 00 00 00	200 20 20 20 20 20 20 20 20 20 20 20 20
Ŗ.A.	tor Dec.+	1112 1112 1112 1112 112 112 112 112 112	10 30 10 00 9 30	8 8 00 8 8 00 8 8 00	6 30 6 30 6 30	23 00 23 00	22 30 21 30 21 30	21 00 20 30 20 00	19 19 18 19 00 18 00
Prec.	п Dec.	, -16.7 -16.6 -16.1	-15.4 -14.5 -13.3	-11.8 -10.2 -8.4	6.4 - 2.2 0.0	+16.7 +16.6 +16.1	+15.4 +14.5 +13.3	+111.8 +10.2 + 8.4	+++ 2.2 0.0
	°0	+2.56 2.56 2.56	2.56 2.56 2.56	2.56 2.56 2.56	2.56 2.56 2.56 2.56	2.56 2.56 2.56	2.56 2.56 2.56	2.56 2.56 2.56	2.56 2.56 2.56
	10°	m +2.56 2.59 2.61	2.64 2.66 2.68	2.70 2.72 2.73	2.74 2.75 2.76 2.76	2.56 2.54 2.51	2.49 2.46 2.44	2.42 2.41 2.39	2.38 2.37 2.37 2.36
	20°	+2.56 2.61 2.67	2.72 2.76 2.81	2.85 2.88 2.91	2.94 2.95 2.97	2.56 2.51 2.46	2.41 2.36 2.31	2.27 2.24 2.21	2.19 2.15 2.16 2.16
	30°	+2.56 2.64 2.73	2.81 2.88 2.95	3.02 3.07 3.12	3.15 3.18 3.20 3.20	2.56 2.48 2.39	2.31 2.24 2.17	2.11 2.05 2.00	1.97 1.94 1.92 1.92
ascension	40°	+2.56 2.68 2.80	2.92 3.03 3.13	3.22 3.30 3.37	3.42 3.46 3.50	2.56 2.44 2.32	2.20 2.09 1.99	$1.90 \\ 1.82 \\ 1.75$	1.70 1.66 1.63
in right a	50°	+2.56 2.73 2.90	3.07 3.22 3.37	3.50 3.61 3.71	3.79 3.84 3.88 3.89	2.56 2.39 2.22	2.05 1.90 1.75	1.62 1.51 1.41	1.28 1.28 1.25
cession	°09	+2.56 +2.81 3.06	3.30 3.53 3.73	3.92 4.09 4.23	4.34 4.42 4.49	2.56 2.31 2.06	1.82 1.60 1.39	$ \begin{array}{c} 1.20 \\ 1.03 \\ 0.89 \end{array} $	0.78 0.70 0.65 0.63
Pre	70°	+2.56 +2.56 3.35	3.73 4.09 4.42	4.72 4.99 5.21	5.39 5.52 5.59 5.62	2.56 2.16 1.77	$1.39 \\ 1.03 \\ 0.70$	$^{0.40}_{-0.09}$	-0.27 -0.39 -0.47 -0.50
	75°	+2.56 3.10 3.64	4.15 4.64 5.09	5.50 5.86 6.16	6.40 6.57 6.68 6.72	2.56 2.02 1.49	$\begin{array}{c} 0.97\\ 0.48\\ +0.03\end{array}$	-0.38 -0.74 -1.04	-1.28 -1.45 -1.56 -1.59
	80°	+2.56 3.39 4.20	4.98 5.72 6.41	7.03 7.57 8.03	8.40 8.82 8.88 8.88	2.56 1.74 0.93	$+0.14 \\ -0.60 \\ -1.28$	$^{-1.90}_{-2.45}$	-3.27 -3.54 -3.70 -3.75
	δ = 85°	+ 2.56 4.22 5.85	7.43 8.92 10.31	11.56 12.66 13.58	14.32 14.85 15.18 15.29	+ 0.90 - 0.73	- 2.31 - 3.80 - 5.19	- 6.44 - 7.54 - 8.46	$\begin{array}{r} - & 9.20 \\ - & 9.73 \\ -10.06 \\ -10.17 \end{array}$
Prec.	Dec.	, +16.7 +16.6 +16.1	+15.4 +14.5 +13.3	+11.8 +10.2 + 8.4	+++ + 4.3 0.0	-16.7 -16.6 -16.1	-15.4 -14.5 -13.3	-11.8 -10.2 - 8.4	
Ŗ.A.	Dec.+	ч ⁰⁰¹	2 30 2 30 2 30	и 6 0 0 0 0 0 0 0 0 0 0 0 0	4 5 5 9 00 00 00 00 00 00 00	13 30 13 30 13 20	13 30 14 00 14 30	15 00 15 30 16 00	16 30 17 00 18 00
R.A.	Dec	h 12 00 13 00 13 00	13 30 14 00 14 30	15 00 15 30 16 00	16 30 17 00 18 00	0 00 0 30 1 00	1 30 2 30	3 300 4 3 30 00	6554 00 00 00 00 00

TELESCOPE PARAMETERS

I EQUATIONS

D

Objective: f_0 = focal length
D = diameter
FR = focal ratioEyepiece: f_e = focal length
 d_f = diameter of field stop
 θ_p = apparent angular fieldWhole instrument:M = angular magnification
 d_p = diameter of exit pupil
 θ_c = actual angular field

 $M = f_0/f_e = D/d_p = \theta_p/\theta_c \qquad FR = f_0/D \qquad d_f^* = f_0\theta_c = f_e\theta_p$

*(θ_c and θ_p must be expressed in radians.)

II PERFORMANCE

(Here, D is assumed to be in millimetres)

- *Light Grasp* (LG) is the ratio of the light flux intercepted by a telescope's objective lens or mirror to that intercepted by a human eye having a 7 mm diameter entrance pupil.
- Limiting Visual Magnitude $m_l \approx 2.7 + 5 \log D$, assuming transparent, dark-sky conditions and magnification $\geq 1D$. (See article by R. Sinnott, Sky and Telescope, 45, 401, 1973)
- Smallest Resolvable Angle $\theta \simeq 120/D$ seconds of arc. However, atmospheric conditions seldom permit values less than 0".5.
- Useful Magnification Range $\approx 0.2D$ to 2D. The lower limit may be a little less, but depends upon the maximum diameter of the entrance pupil of the individual observer's eye. (See the next section). The upper limit is determined by the wave nature of light and the optical limitations of the eye, although atmospheric turbulence usually limits the maximum magnification to $400 \times$ or less. For examination of double stars, magnifications up to 4D are sometimes useful. Note that the reciprocal of the coefficient to D is the diameter (in mm) of the telescope's exit pupil.

Values for some common apertures are:

D (mm)	60	75	100	125	150	200	350	440
LG	73	110	200	320	460	820	2500	4000
mı	11.6	12.1	12.7	13.2	13.6	14.2	15.4	15.9
θ (")	2.0	1.6	1.2	1.0	0.80	0.60	0.34	0.27
0.2D	12x	15x	20x	25x	30x	40x	70x	88x
2D	120x	150x	200x	250x	300x	400x	700x	880x

TELESCOPE EXIT PUPILS

The performance of a visual, optical telescope is constrained by Earth's atmosphere, by the laws of geometrical and wave optics, and by the properties of the human eye. The telescope and eye meet at the *exit pupil* of the telescope. When a telescope is pointed at a bright area, such as the daytime sky, its exit pupil appears as a small disk of light hovering in space just behind the eyepiece of the telescope (Insert a small piece of paper in this vicinity to demonstrate that this disk of light really is located behind the eyepiece. Since the exit pupil is the narrowest point in the beam of light emerging from the telescope, it is here that the observer's eye must be located to make optimum use of the light passing through the telescope.

The graph two pages ahead may be used to display the relation between the **diameter of the exit pupil** $(\mathbf{d_p})$ of a telescope and the **focal lengths** $(\mathbf{f_e})$ of various eyepieces. Both d_p and f_e are expressed in millimetres. The numbered index marks around the upper right hand corner of the diagram indicate the **focal ratio** (FR) of the objective lens or mirror of a telescope. (The focal ratio is the focal length of the objective divided by its diameter.) The diagram is a graphical display of the standard relation: $d_p = f_e/FR$.

To prepare the diagram for a particular telescope, locate the focal ratio of the telescope's objective on the FR scale, and draw a straight diagonal line from there to the origin (the lower left-hand corner). To determine, for example, the eyepiece focal length required to give an exit pupil of 3 mm, locate $d_p = 3$ on the ordinate, run horizontally across to the diagonal line and at that point drop vertically downward to the abscissa to find f_e . This procedure may, of course, be reversed: for a given f_e , find the corresponding d_p .

The ranges H, M, L, and RFT (blocked off along the ordinate) break the d_p scale into four sections, starting at 0.5 mm and increasing by factors of two. Although this sectioning is somewhat arbitrary, it does correspond closely to what are usually considered to be the high (H), medium (M), low (L), and "richest-field telescope" (RFT) magnification ranges of any visual telescope (and the d_p values at the boundaries are easy to remember).

The highest useable magnification (which corresponds to $d_p = 0.5$ mm, assuming perfect optics and no atmospheric turbulence) is the point at which blurring due to diffraction (caused by the wave-nature of light) begins to become noticeable. Higher magnifications will not reveal any more detail in the image, and cause reductions in four desirable features: sharpness, brightness, field of view, and eye relief (the space between the eye and eyepiece).

Very low magnifications (the RFT range) are useful because they yield wide fields of view, the brightest images of extended objects, and for common telescope apertures, the most stars visible in one view (hence the term "richest field"). The lowest magnification that still makes use of the full aperture of a telescope is determined by the point at which the diameter of the telescope's exit pupil matches the diameter of the entrance pupil of the observer's eye. For the dark-adapted eye, the entrance pupil diameter seldom coincides with the often-quoted figure of 7 mm, but depends, among other things, upon the age of the observer as indicated by the scale in the upper left portion of the diagram (See: Kadlecová et al., Nature, 182, p. 1520, 1958). Note that this scale indicates average values; the maximum diameter of the entrance pupil of the eye of any one individual may differ by up to a millimetre from these values. A horizontal line should be drawn across the diagram corresponding to the maximum diameter of one's own entrance pupil. This line will be an upper bound on d_p in the same sense that the line at $d_p = 0.5$ mm is a lower bound. Note that in daylight, the entrance pupil of the eye has a diameter in the range of 2 to 4 mm. Thus for daylight use of telescopes, the upper bound on d_p will be correspondingly reduced.

D

If d_p 's larger than the entrance pupil of the eye are used, the iris of the observer's eye will cut off some of the light passing through the telescope to the retina. i.e. The iris will have become the light-limiting aperture of the system rather than the edge of the telescope's objective. In this case, the cornea of the eye together with the lenses of the telescope's eyepiece form an image of the observer's iris at the objective of the telescope: to the incoming starlight, a highly magnified image of the iris hovers as an annular skirt obscuring the outer region of the objective of the telescope of smaller aperture would perform as well. The only advantages of ultra low magnifications are: (1) a wider true field of view (assuming the field stop of the longer f_e eyepiece will permit this); and (2) greater ease of alignment of the entrance pupil of the eye with the exit pupil of the telescope (important when using binoculars during activities involving rapid motion, such as sailing or bird-watching).

Even for RFT use, a value of d_p a millimetre or so smaller than the entrance pupil of the observer's eye has several advantages: (1) Viewing is more comfortable since the observer can move a bit without cutting into the light beam and dimming the image. (2) Light entering near the edge of the pupil of the dark-adapted eye is not as effective in stimulating the rod cells in the retina (This is known as the scotopic Stiles-Crawford effect. e.g. See VanLoo and Enoch, Vision Research, 15, p. 1005, 1975). Thus the smaller d_p will make more efficient use of the light. (3) Aberrations in the cornea and lens of the eye are usually greatest in the peripheral regions and can distort star images. The smaller d_p will avoid the worst of these regions. (4) With the higher magnification and consequently larger image size, structure in dim, extended objects, such as gaseous nebulae and galaxies, will be more easily seen (The ability of the eye to see detail is greatly reduced in dim light as the retina organizes its cells into larger units, thereby sacrificing resolution in order to improve signal-to-noise in the sparse patter of photons). (5) The background sky glow will be a little darker producing views that some observers consider to be aesthetically more pleasing.

Having drawn the diagonal line corresponding to a telescope's focal ratio, and established the upper bound on d_p , the diagram on the next page gives a concise and convenient display of the eyepiece/exit pupil/magnification range relations for a particular telescope and observer. Note that one can see at a glance what range of eyepiece focal lengths is useable. Note also that the reciprocal of d_p equals the magnification per millimetre of objective diameter. For example: Consider the common "8-inch" Schmidt-Cassegrain telescope. These usually have FR = 10 and an aperture D = 200 mm. The graph indicates that eyepieces with focal lengths from 5 mm to more than 55 mm are useable (although older observers should be sure that their eye pupils can open sufficiently wide before purchasing a long focal length eyepiece. Also, the considerations in the preceding paragraph are relevant for any observer). With a 32 mm (f_e) eyepiece, the graph gives $d_p = 3.2$ mm, in the "L" magnification range, and the magnification M = D/d_p = 200/3.2 = 62×.

It is readily apparent from the diagram that certain combinations are not reasonable. Some examples: (1) If an observer wishes to use the full aperture of an FR = 4 telescope, he should not use a 40 mm eyepiece. A 70-year-old observer should probably not use even a 24 mm eyepiece on such a system, and should not bother with " 7×50 " or " 11×80 " (= $M \times D$) binoculars which have exit pupils near 7 mm (unless ease of eye/exit pupil alignment is important). (2) With ordinary eyepieces (55 mm or less in focal length), an FR = 15 telescope cannot be operated as an RFT (unless a "compressor" lens is added to reduce its FR). (3) There is no point in using extremely short focal length eyepieces on telescopes having large FR's (This is a common fault, among others, with camera-store refracting telescopes). (RLB).

TIME

Time has been said to be nature's way of keeping everything from happening at once. For astronomical and physical purposes, time is defined by the means of measuring it (As Hermann Bondi has put it: "Time is that which is manufactured by clocks."). Thus, to deal with time, units and scales must be established and clocks devised.

t

There are three obvious, natural, periodic time intervals on Earth: the seasonal cycle (year); the cycle of lunar phases (month); and the day-night cycle (day). The problem of accurately subdividing these natural intervals to make time locally available at any moment was satisfactorily solved in 1657 by Christiaan Huygens who invented the first practical pendulum clock. Through successive refinements the pendulum clock reigned supreme for nearly three centuries, until it was surpassed in precision by the quartz oscillator in the 1940's. Within another 20 years the quartz clock was, in turn, superseded by the cesium atomic clock which today has a precision near one part in 10^{13} (one second in 300 000 years). The recent technique of "laser cooling" of atomic beams promises further improvements in the precision of atomic clocks.

The cycle of the seasons is called the *tropical year* and contains 365.2422 days. The cycle of lunar phases is known as the *synodic month* and equals 29.53059 days. The average day-night (diurnal) cycle is the *mean solar day* and contains approximately 86 400.001 s. Other types of year, month and day have been defined and are listed along with brief definitions and durations on p. 16.

Today the second is the basic unit of time. For many years a second meant 1/86400 of the mean solar day. However, Earth's rotation on its axis is not perfectly uniform: there are (i) long, (ii) medium, and (iii) short-term accelerations. (i) Over many centuries there is a *secular* slowing due to tidal friction of about 5 parts in 10^{13} per day (i.e. the day becomes one second longer about every 60 000 years). (ii) Over a few decades there are random accelerations (positive and negative), apparently due to core-mantle interactions. These are about ten times larger than the tidal acceleration and thus completely obscure the latter effect over time intervals of less than a century or so. (iii) The largest accelerations in Earth's rotation rate are short-term ones: they are periodic and are associated mainly with lunar-induced tides (over two-week and monthly intervals), and seasonal meteorological factors (over semiannual and annual intervals). They are typically one or two orders of magnitude larger again than the random, decade fluctuations on which they are superimposed. Also, although not actually a variation in Earth's rotation rate, shifts of Earth's crust relative to the axis of rotation (polar wobble) also affect astronomical time determinations through the resulting east-west shift in the meridian at latitudes away from the equator. Like the seasonal accelerations, these are short-term and periodic, but of smaller amplitude. (For more information, see the article by John Wahr in the June 1986 issue of Sky and Telescope, p. 545.)

Atoms display a permanence and stability that planets cannot, thus, since 1967, the second has had an atomic definition: 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium 133 atom. This is known as the SI (for Système International) second (abbreviation s).

Although Earth's axial rotation is not sufficiently predictable to serve as a precise clock, the orbital motions of the planets and of our Moon are predictable to high accuracy. Through the dynamical equations describing these motions, a uniform time scale can be derived. This scale, known as *Ephemeris Time* (ET), was for many years the basis of astronomical ephemerides. Also, the definition of the SI second, mentioned above, was chosen so that it was identical to the ephemeris second to within the precision of measurement. Because atomic clocks are readily available and because of their proven precision, at the beginning of 1984 Ephemeris Time was abandoned in favor of *Terrestrial Dynamical Time* (TDT). The unit of TDT is the SI second and its scale was chosen to agree with the 1984 ET scale.

Other time scales are in use. International Atomic Time (TAI), like TDT, runs at the SI rate but, for historical reasons, lags TDT by exactly 32.184 seconds. Another is Universal Time (UT1, or often simply UT) which is mean solar time at the Greenwich (England) meridian, corrected for polar wobble. In practice UT1 is defined in terms of Greenwich Mean Sidereal Time (GMST), the latter being defined in terms of Earth's rotation relative to the mean vernal equinox of date (see p. 10). The adjective mean is used here to denote that small, periodic variations due to the nutation of Earth's axis have been averaged out, the mean equinox being affected only by the precession of the axis. GMST is the hour angle of this equinox, i.e. GMST equals the right ascension of a star (corrected for nutation) at the Greenwich meridian. In short, UT1 follows Earth's rotation relative to the mean Sun, and includes the associated short-term (periodic), decade (random), and secular (tidal slowing) accelerations.

Early in the 20th century the UT1 and ET scales coincided, but since Earth's rotation rate has been generally slower than the SI (ET) rate, by 1970 UT1 was 40 seconds behind ET and was losing more than one second per year. During the next 15 years, Earth's rotation rate increased (part of the random decade fluctuations) so that UT1 now loses only about half a second per year relative to TDT.

Closely related to UT1 is *Coordinated Universal Time* (UTC). UTC runs at the SI rate and is offset an integral number of seconds from TAI so that it approximates UT1. When required (at the end of June 30 or December 31), "leap seconds" are inserted into (or, if necessary, deleted from) UTC so that the difference UT1 – UTC = Δ UT1 does not exceed ± 0.7 s. UTC now lags TAI, and as of January 1, 1988 (when a leap second was last inserted) TAI – UTC = Δ AT = 24 s. Thus as this edition of the *Observer's Handbook* goes to press (August, 1988), TDT – UTC = 24 s + 32.184 s = 56.184 s exactly). At the average rotational angular speed Earth has had over the past few years, an additional leap second will likely be needed at the end of 1989. (Note the diagram at the top of the next page).

The world system of civil time is based on UTC. To keep clocks at various longitudes reasonably in phase with the day-night cycle and yet to avoid the inconvenience to travellers of a local time that varies continuously with longitude, a century ago Earth was divided into about 24 *standard time* zones, adjacent zones generally differing by one hour and each ideally 15 degrees wide (see the maps on pages 26 and 27). The zero zone is centred on the Greenwich meridian. All clocks within the same time zone read the same time. Some countries observe "daylight saving time" during the summer months. In Canada and the United States, clocks are generally set one hour ahead of standard time on the first Sunday in April and return to standard time on the last Sunday in October ("spring ahead, fall back").

A sundial indicates *apparent solar time* at the observer's meridian. Not only is this, in general, different from standard time, but it is far from uniform because of Earth's elliptical orbit and the inclination of the ecliptic to the celestial equator. If the Sun is replaced by a fictitious mean sun moving uniformly along the equator, this defines *Local Mean (Solar) Time* (LMT). Apparent solar time can differ by up to 16 minutes from LMT depending upon the time of year (see p. 58). Also, depending upon the observer's location within his standard time zone, his standard time may differ by up to an hour or so from LMT (see p. 62).

In the same manner that GMST is defined, a *Local Mean Sidereal Time* (LMST) is defined for each observer's meridian. Because Earth makes one more rotation with respect to the other stars than it does with respect to the Sun during a year, sidereal time gains relative to standard time, LMT, UT1, TAI or TDT by about 3^{m56°} per day or 2^h per month. Also, because of precession, the mean sidereal day is about 8 ms shorter than Earth's period of rotation (see p. 16). LMST may be used to set a telescope on an object of known right ascension. The hour angle of the object equals the sidereal time less the right ascension. LMST may be available from a sidereal clock, or it can be calculated as explained on p. 28. (RLB)

This diagram displays the rate and scale relations between time scales which run at or near the SI rate and which are not longitude dependent.

WORLD MAP OF TIME ZONES

Taken from Astronomical Phenomena for the Year 1989 (Washington: U.S. Government Printing Office, and London: Her Majesty's Stationery Office)

MAP OF STANDARD TIME ZONES

PRODUCED BY THE SURVEYS AND MAPPING BRANCH, DEPARTMENT OF ENERGY, MINES AND RESOURCES, OTTAWA, CANADA, 1973.

MAP OF STANDARD TIME ZONES

The map shows the number of hours by which each time zone is *slower* than Greenwich, that is, the number of hours which must be *added* to the zone's standard time to give Universal Time.

Note: Since the preparation of the above map, the standard time zones have been changed so that all parts of the Yukon Territory now observe Pacific Standard Time. The Yukon, Alaska-Hawaii, and Bering Standard Time Zones have disappeared, and all of Alaska is now on Alaska Standard Time, -9 hours. Also, the part of Texas west of longitude 105° is in the Mountain Time Zone.

National time services distribute Coordinated Universal Time (UTC). UTC is coordinated through the Bureau International de l'Heure in Paris so that most time services are synchronized to a tenth of a millisecond. Radio time signals available in North America include:

CHU Ottawa, Ontario 3.330, 7.335, 14.670 MHz WWV Fort Collins, Colorado 2.5, 5, 10, 15, 20 MHz

The difference $\Delta UT1 = UT1 - UTC$ to the nearest tenth of a second is coded in the signals. If UT1 is ahead of UTC, second markers beginning at the 1 second mark of each minute are doubled, the number of doubled markers indicating the number of tenths of a second UT1 is ahead of UTC. If UT1 is behind UTC, the doubled markers begin at the 9 second point.

Time signals also are available by telephone from the National Research Council in Ottawa. Call 613-745-1576 (English) or 613-745-9426 (French).

MEAN SIDEREAL TIME 1989

The following is the Greenwich Mean Sidereal Time (GMST) on day 0 at 0^{h} UT of each month:

Jan. 0	06.6424 ^h	Apr. 0 12.5563 ^h	July 0 18.5359 ^h	Oct. 0 00.5812 ^h
Feb. 0	08.6794 ^h	May 0 14.5276 ^h	Aug. 0 20.5729 ^h	Nov. 0 02.6182 ^h
Mar. 0	10.5193 ^h	June 0 16.5646 ^h	Sep. 0 22.6099 ^h	Dec. 0 04.5895 ^h

GMST at hour t UT on day d of the month

t

= GMST at 0^hUT on day 0 + 0^h065710d + 1.002738t

Local Mean Sidereal Time (LMST) = GMST - west longitude(or + east longitude)

LMST calculated by this method will be accurate to $\pm 0.2s$ provided t is stated to $\pm 0.1s$ or better and the observer's longitude is known to $\pm 1''$. (Note that t must be expressed in decimal hours UT. Also, to achieve $\pm 0.1s$ accuracy in t, the correction $\Delta UT1$ must be applied to UTC. See the above section on time signals.)

JULIAN DATE, 1989

The Julian date is commonly used by astronomers to refer to the time of astronomical events, because it avoids some of the annoying complexities of the civil calendar. The Julian day corresponding to a given date is the number of days which have elapsed since January 1, 4713 B.C. For an account of the origin of the Julian system see: "The Julian Period", by C. H. Cleminshaw in the *Griffith Observer*, April 1975; "The Origin of the Julian Day System", by G. Moyer in *Sky and Telescope*, April 1981.

The Julian day commences at noon (12^h) UT. To find the Julian date at any time during 1989, determine the day of the month and time at the Greenwich meridian, convert this to a decimal day, and add it to one of the following numbers according to the month. (These numbers are the Julian dates for 0^h UT on the "0th" day of each month.):

Jan.	244 7526.5	Apr.	244 7616.5	July 244 7707.5	Oct. 244 7799.5
Feb.	244 7557.5	May	244 7646.5	Aug. 244 7738.5	Nov. 244 7830.5
Mar.	244 7585.5	June	244 7677.5	Sep. 244 7769.5	Dec. 244 7860.5

e.g. 21:36 EDT on May 18 = 01:36 UT on May 19 = May 19.07 UT = 2447646.5 + 19.07 = JD 2447665.57

The Julian dates for 0 UT January 0 for several previous years are 244 0000.5 plus (for years indicated): 951(1971), 1316(1972), 1682(1973), 2047(1974), 2412(1975), 2777(1976), 3143(1977), 3508(1978), 3873(1979), 4238(1980), 4604(1981), 4969(1982), 5334(1983), 5699(1984), 6065(1985), 6430(1986), 6795 (1987), 7160 (1988).

ASTRONOMICAL TWILIGHT AND SIDEREAL TIME

The diagram gives (i) the local mean time (LMT) of the beginning and end of astronomical twilight (curved lines) at a given latitude on a given date and (ii) the local mean sidereal time (LMST, diagonal lines) at a given LMT on a given date. The LMST is also the right ascension of an object on the observer's celestial meridian. To use the diagram, draw a line downward from the given date; the line cuts the curved lines at the LMT of beginning and end of twilight, and cuts each diagonal line at the LMT corresponding to the LMST marked on the line. See pages 25 and 66 for definitions of LMT, LMST and astronomical twilight. (Diagram prepared by Randall Brooks.)

THE SKY MONTH BY MONTH

BY JOHN R. PERCY

Introduction—In the monthly descriptions of the sky on the following pages, the right ascension (RA), declination (Dec) (both at 0^{h} UT), time of transit at the Greenwich meridian (Tran), and visual magnitude (Mag) have been tabulated for seven planets for the 1st, 11th, and 21st day of each month. Unless noted otherwise, the descriptive comments about the planets apply to the middle of the month, and dates are given in UT. Double dates (e.g. June 4–5), when used for planetary conjunctions, indicate that the event is visible at night in some part of North America. Estimates of altitude are for an observer in latitude 45°N.

The Sun—Data concerning the position, transit, orientation, rotation, activity, rise, and set of the Sun appear in the section beginning on page 56. For detailed information on solar eclipses during the year, see the section beginning on page 84.

The Moon—Its phases, perigee and apogee times and distances, and its conjunctions with the planets are given in the monthly tables. The perigee and apogee distances are taken from Astronomical Tables of the Sun, Moon, and Planets by Jean Meeus (Willmann-Bell, 1983). For times of moonrise and moonset, see p. 70.

Elongation, Age and Phase of the Moon—The elongation is the angular distance of the Moon from the Sun in degrees, counted eastward around the sky. Thus, elongations of 0° , 90° , 180° , and 270° correspond to new, first quarter, full, and last quarter moon. The *age* of the Moon is the time since the new moon phase. Because the Moon's orbital motion is not uniform, the age of the Moon does not accurately specify its phase. The Moon's elongation increases on the average by 12.2° per day, first quarter, full and last quarter phases corresponding approximately to 7.4, 14.8 and 22.1 days respectively.

The Sun's selenographic colongitude is essentially a convenient way of indicating the position of the sunrise terminator as it moves across the face of the Moon. It provides an accurate method of recording the exact conditions of illumination (angle of illumination), and makes it possible to observe the Moon under exactly the same lighting conditions at a later date. The Sun's selenographic colongitude is numerically equal to the selenographic longitude of the sunrise terminator reckoned eastward from the mean centre of the disk. Its value increases at the rate of nearly 12.2° per day or about $\frac{1}{2}^{\circ}$ per hour; it is approximately 270°, 0°, 90° and 180° at New Moon, First Quarter, Full Moon and Last Quarter respectively. Values of the Sun's selenographic colongitude are given on the following pages for the first day of each month.

Sunrise will occur at a given point *east* of the central meridian of the Moon when the Sun's selenographic colongitude is equal to the eastern selenographic longitude of the point; at a point *west* of the central meridian when the Sun's selenographic colongitude is equal to 360° minus the western selenographic longitude of the point. The longitude of the sunset terminator differs by 180° from that of the sunrise terminator.

Libration is the shifting, or rather apparent shifting, of the visible disk of the Moon (See Sky and Telescope, July 1987, p. 60). Sometimes the observer sees features farther around the eastern or the western limb (libration in longitude), or the northern or southern limb (libration in latitude). When the libration in longitude is positive, the mean central point of the disk of the Moon is displaced eastward on the celestial sphere, exposing to view a region on the celestial-west limb; i.e. the lunar-east limb (on the following pages east and west are used in the *celestial* sense). When the libration in latitude is positive, the mean central point of the disk of the Moon is displaced towards the south, and a region on the north limb is exposed to view.

Μ

The dates of the greatest positive and negative values of the libration in longitude and latitude are given in the following pages, as are the dates of greatest positive and negative declination.

The Moon's Orbit. In 1989, the ascending node of the Moon's orbit regresses from longitude 337.8° to 318.5° (Aquarius into Capricornus).

The Planets—Further information in regard to the planets, including Pluto, is found on pp. 113–132. For the configurations of Jupiter's four Galilean satellites, see the monthly tables. In these diagrams, the central vertical band represents the equatorial diameter of the disk of Jupiter. Time is shown by the vertical scale, each horizontal line denoting 0^h Universal Time. (Be sure to convert to U.T. before using these diagrams.) The relative positions of the satellites at any time with respect to the disk of Jupiter are given by the four labelled curves (I, II, III, IV) (see p. 12 for the key to these Roman numerals). In constructing these diagrams, the positions of the satellites in the direction perpendicular to the equator of Jupiter are necessarily neglected. Note that the orientation is for an inverting telescope. Similar diagrams for the four brightest satellites of Saturn appear on pages 146–149. For the various transits, occultations, and eclipses of Jupiter's satellites, see p. 133.

Minima of Algol—The times of mid-eclipse are given in the monthly tables and are calculated from the ephemeris: heliocentric minimum = 2440953.4657 + 2.8673075 E, and are expressed as geocentric times, for comparison with observations. (The first number in the equation is the Julian date corresponding to 1971 Jan. 1.9657, an Algol minimum. The second number is the period of Algol in days, and E is an integer.) We thank Roger W. Sinnott of *Sky and Telescope* for providing these times.

Occultations of Stars and Planets—For information about occultations of stars and planets visible in North America, see pp. 96–110 and 154.

ANNIVERSARIES AND FESTIVALS 1989

New Year's Day Sun.	Jan.	1
M. L. King's Birthday (U.S.) Mon.	Jan.	16
Valentine's Day Tues.	Feb.	14
Good Friday	Mar.	24
Easter Sunday	Mar.	26
First Day of Ramadân Fri.	Apr.	7
First Day of Passover Thur.	Apr.	20
Astronomy Day Sat.	May	13
Mother's Day	May	14
Whit Sunday - Pentecost	May	14
Victoria Day (Canada) Mon.	May	22
Memorial Day (U.S.) Mon.	May	29
Feast of Weeks	June	9
Father's Day Sun.	June	18
Saint-Jean-Baptiste (P.Q.) Sat.	June	24
C.A.S. AM (Univ. Montréal) June	27 -	29

R.A.S.C. GA (Sydney, N.S.). June 30) - July	2
Canada Day Sat.	July	1
Independence Day (U.S.) Tues.	July	4
Islamic New Year	Aug.	4
Civic Holiday (Canada) Mon.	Aug.	7
Labour Day Mon.	Sept.	4
Jewish New Year Sat.	Sept.3	0 0
Day of Atonement Mon.	Oct.	9
Thanksgiving Day (Canada). Mon.	Oct.	9
Columbus Day (U.S.) Mon.	Oct.	9
First Day of Tabernacles Sat.	Oct. 1	4
Halloween	Oct. 3	51
Remembrance Day (Canada)Sat.	Nov. 1	1
Veterans' Day (U.S.) Sat.	Nov. 1	1
Thanksgiving Day (U.S.) Thur.	Nov. 2	23
Christmas Day Mon.	Dec. 2	25

1989 and 1990 calendars are on the inside back cover.

THE SKY FOR JANUARY 1989

		Mercury	Venus	Mars	Jupiter	Saturn	Uranus	Neptune
RA	1	19 ⁵ 9 ^m	17 ^h 07 ^m	1 ^h 14 ^m	3 ^h 39 ^m	18 ^h 24 ^m	18"08"	18 ^h 43 ^m
	11	20 °49 "	18°01	1*33m	3"37"	18°29	18 ^h 10 ^m	18 °4 5™
	21	20 *45 **	1856	1 °54 ‴	3°36"	18 ^h 34 ^m	18°13"	18 °46 "
Dec	1	- 22°34'	- 22°04'	+8°24'	+ 18°33'	-22°36'	-23°39'	- 22°10'
	11	- 18°12'	-23°03'	+10°32'	+18°29'	-22°34'	-23°39'	- 22°09'
	21	- 15°27'	- 22°52'	+12°38'	+18°29'	-22°30'	-23°38'	- 22°07'
Tran	1	13 ^h 18 ^m	10 ^h 25 ^m	18 [°] 30 [°]	20 ⁵² ‴	11 h40 m	11 ^h 23 ^m	11 ⁵⁸
	11	13 ^h 26 ^m	10 °40 "	18 ^h 10 ^m	20 ^h 11 ^m	11 ^h 06 ^m	10 °47 "	11 ^h 21 ^m
	21	12 °4 0"	10"55"	17*51**	19 ⁵ 31 ^m	10"31"	10 ^h 10 ^m	10 ʰ43 ʷ
Mag	1	-0.7	- 3.9	0.0	- 2.7	+0.5	+5.8	+8.0
Ū	11	-0.4	- 3.9	+0.1	-2.6	+0.5	+5.8	+8.0
	21	+2.6	- 3.9	+0.4	-2.5	+0.5	+5.8	+8.0

The Moon – On Jan. 1.0 UT, the age of the Moon is 22.8 d. The Sun's selenographic colongitude is 191.43° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Jan. 19 (5°) and minimum (east limb exposed) on Jan. 4 (6°). The libration in latitude is maximum (north limb exposed) on Jan. 4 (7°) and minimum (south limb exposed) on Jan. 17 (7°). The Moon reaches its greatest northern declination on Jan. 19 (+28°) and its greatest southern declination on Jan. 6 (-28°). This range in declination is close to the maximum possible. There is an occultation of Regulus by the Moon on Jan. 23–24, visible in parts of North America.

Mercury is visible early in the month, very low in the southwest, just after sunset. It is at greatest elongation east (19°) on Jan. 9, but by Jan. 25, it is in inferior conjunction.

Venus, in Sagittarius east of Antares, is visible very low in the southeast, just before sunrise. It passes 0.5° north of Uranus on Jan. 12, 0.6° south of Saturn on Jan. 16, and 0.9° south of Neptune on Jan. 18–19.

Mars moves from Pisces into Aries during the month. It is high in the southern sky at sunset, and sets at about midnight.

Jupiter, in Taurus, is about half-way up in the southeastern sky at sunset, and sets after midnight. It is stationary on Jan. 20, then resumes its direct or eastward motion relative to the stars. Jupiter is well-placed for viewing throughout most of the year, situated amid the prominent constellations of winter. For the next few months, it is situated below the Pleiades.

Saturn, in Sagittarius throughout the year, is too close to the Sun to be easily seen this month. You might want to use its proximity to Venus on Jan. 16 (see above) as a way of locating it at that time.

Uranus and Neptune are in Sagittarius, within 10° of Saturn all year; see also Venus above.

1989	**************************************		JANUARY UNIVERSAL TIME	Min. of Algol	Config. of Jupiter's Satellites
	d	h m		h m	d WEST EAST
Sun.	1	22	Earth at perihelion (147 101 000 km)	16 45	
Mon.	2				
Tue.	3	10	Ouadrantid meteors		2.0
Wed.	4	03	Juno stationary	13 34	3.0
Thu.	5	01	Antares 0.5° N. of Moon: occultation ¹		
Fri.	6	04	Venus 5° N. of Moon		4.0
Sat.	7	19 22	Wew Moon	10 24	5.0
Sun.	8				6.0
Mon.	9	02	Mercury at greatest elong, E. (19°)		
	-	05	Mercury 1.7° N. of Moon		7.0
Tue.	10	23	Moon at perigee (366 382 km)	7 13	8.0
Wed.	11				\mathbb{R}
Thu.	12	17	Venus 0.5° N. of Uranus		
		-	Mercury at ascending node		
Fri.	13			4 02	11.0
Sat.	14	13 58	First Ouarter		
		22	Mars 4° S. of Moon		12.0
Sun.	15	15	Mercury stationary		13.0
Mon.	16	16	Venus 0.6° S. of Saturn	0 51	14.0
Tue.	17	00	Jupiter 6° S. of Moon		
			Mercury at perihelion		15.0
Wed.	18			21 41	16.0
Thu.	19	04	Venus 0.9° S. of Neptune		17.0
Fri.	20	14	Jupiter stationary		
			Venus at descending node		
Sat.	21	21 33	Full Moon	18 30	19.0
Sun.	22				20.0
Mon.	23				
Tue.	24	04	Regulus 0.03° S. of Moon; occultation ²	15 19	21.0
Wed.	25	00	Mercury in inferior conjunction		22.0
Thu.	26				23.0
Fri.	27	00	Moon at apogee (405 100 km)	12 09	
			Mercury at greatest hel. lat. N.		
Sat.	28				25.0
Sun.	29				26.0
Mon.	30	02 02	C Last Quarter	8 58	
Tue.	31				27.0
					28.0
					29.0
					30.0
			· ·		31.0
					32.0()
					1

¹Visible in Madagascar, S. Indian Ocean, Antarctica, New Zealand ²Visible in the E. of North America, E. of Central America, West Indies, W. and S. of Africa

		Mercury	Venus	Mars	Jupiter	Saturn	Uranus	Neptune
RA	1	19 ⁵⁶	19 ⁵⁵ "	2 ^h 18 ^m	3 ^h 37 ^m	18 ^h 39 ^m	18 ^h 15 ^m	18 °4 8"
	11	19 ⁵ 7‴	20 *4 7**	2"41"	3*39 *	18 °44 ‴	18 ^h 17 ^m	18 *49 **
	21	20 ^h 34 ^m	21"37"	3°04‴	3°43"	18 *48 **	18 ^h 19 ^m	18 ⁵⁰
Dec	1	- 17°21'	-21°19'	+1 4°5 3'	+18°35'	- 22°26'	-23°37'	- 22°05'
	11	- 19°05'	- 18°48'	+16°49'	+18°46'	- 22°22'	-23°37'	-22°03'
	21	- 18°57'	-15°23'	+18°37'	+19°00'	-22°18'	-23°36'	- 22°02'
Tran	1	11"08"	11"11"	17°32‴	18 "49 "	9°53‴	9°29"	10"01"
	11	10 ^h 32 ^m	11 ⁵ 24	17"15"	18 ^h 12 ^m	9 ^h 18 ^m	8*52 *	9°24''
	21	10"31"	11 ⁵ 34	17'00"	17*36*	8°43‴	8 ^h 14 ^m	8°45"
Mag	1	+1.7	- 3.9	+0.6	-2.5	+0.6	+5.8	+8.0
•	11	+0.3	- 3.9	+0.7	-2.4	+0.6	+5.7	+8.0
	21	0.0	- 3.9	+0.9	-2.3	+0.6	+5.7	+8.0

Μ

THE SKY FOR FEBRUARY 1989

The Moon – On Feb. 1.0 UT, the age of the Moon is 24.2 d. The Sun's selenographic colongitude is 208.37° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Feb. 14 (6°) and minimum (east limb exposed) on Feb. 1 (7°). The libration in latitude is maximum (north limb exposed) on Feb. 1 (7°) and Feb. 28 (7°) and minimum (south limb exposed) on Feb. 13 (7°). The Moon reaches its greatest northern declination on Feb. 15 (+28°) and its greatest southern declination on Feb. 2 (-28°). There is a total eclipse of the Moon on Feb. 20, visible in parts of North America.

Mercury is at greatest elongation west (26°) on Feb. 18, but this is a rather unfavourable elongation for observers in the Northern Hemisphere; the planet stands barely 12° above the southeastern horizon at sunrise on Feb. 18.

Venus may be seen with great difficulty early in the month, very low in the southeast at sunrise; by the end of the month, it is too close to the Sun to be seen.

Mars, in Aries, is high in the southern sky at sunset, and sets at about midnight. It is west of Jupiter, and much fainter and redder.

Jupiter, in Taurus, is high in the southern sky at sunset, and sets at about midnight; see also Mars above.

Saturn, in Sagittarius, rises about $2 \frac{1}{2}$ h before the Sun, and is very low in the southeast at sunrise.
1989			FEBRUARY UNIVERSAL TIME	Min. of Algol	Config. of Jupiter's Satellites
	d	h m		hm	d WEST EAST
Wed.	1	03	Mercury 4° N. of Venus		(D)
		11	Antares 0.7° N. of Moon; occultation ¹		
Thu.	2			5 47	2.0
Fri.	3	06	Uranus 4° N. of Moon		3.0
		15	Saturn 5° N. of Moon		
		18	Neptune 5° N. of Moon		4.0
Sat.	4	18	Mercury 6° N. of Moon		5.0
Sun.	5	14	Mercury stationary	2 36	
Mon.	6	07 37	New Moon		
Tue.	7	22	Moon at perigee (360 935 km)	23 26	7.0
Wed.	8				8.0
Thu.	9				
Fri.	10			20 15	y.0 / X
Sat.	11				10.0
Sun.	12	07	Mars 4° S. of Moon		
		23 15) First Quarter		
Mon.	13	07	Jupiter 6° S. of Moon	17 04	
Tue.	14		-		13.0
Wed.	15				14.0
Thu.	16			13 54	
Fri.	17				15.0
Sat.	18	16	Mercury at greatest elong. W. (26°)		16.0
Sun.	19		Mercury at descending node	10 43	
Mon.	20	11	Regulus 0.02° S. of Moon; occultation ²		
		12	Pluto stationary	ļ	
		15 32	E Full Moon; Eclipse of Moon, p. 84		19.0
Tue.	21	02	Juno at opposition		
Wed.	22			7 32	
Thu.	23	14	Moon at apogee (405 944 km)		21.0
			Venus at aphelion		22.0
Fri.	24				
Sat.	25	22	Pallas in conjunction with Sun	4 21	
Sun.	26				24.0
Mon.	27				25.0
Tue.	28	19	Antares 0.7° N. of Moon; occultation ³	1 11	/ (P)
		20 08	C Last Quarter		26.0
					27.0
					28.0
					29.0
					30.0
					31.0
					32.0

¹Visible in the S. Pacific, extreme S. of South America, Antarctica
²Visible in Japan, N. Pacific, Hawaii, S.E. Pacific
³Visible in the S. Indian Ocean, Antarctica

		Mercury	Venus	Mars	Jupiter	Saturn	Uranus	Neptune
RA	1	21 ^h 15 ^m	22 ^h 16 ^m	3 ^h 24 ^m	3 *46 **	18 ^h 51 ^m	18 ^h 20 ^m	18"51"
	11	22°13"	23°04"	3 *49 **	3*52**	18 ⁵ 4 ^m	18 ^h 22 ^m	18 ⁵ 2 ^m
	21	23"15"	23°50"	4 *15**	3"58"	18 *56 **	18°23‴	18°53‴
Dec	1	- 17°18'	- 12°07'	+ 19°55'	+ 19°13'	-22°15'	-23°36'	- 22°01'
	11	- 13°17'	-7°34'	+21°22'	+19°33'	-22°11'	- 23°35'	-21°59'
	21	-7°12'	-2°41'	+22°36'	+19°54'	- 22°08'	- 23°35'	-21°58'
Trar	n 1	10 ^h 4 0 ^m	11 *42 **	16 *4 8**	17 ° 09‴	8°14'''	7 *44 *	8°15"
	11	10 ⁵⁹	11 *49 *	16°34	16°35	7 ^h 38 ^m	7°06‴	7 ^h 36 ^m
	21	11"23"	11*56**	16 ^h 20 ^m	16"02"	7°01‴	6 ^h 28 ^m	6 ⁵⁸
Mag	i	0.0	- 3.9	+1.0	- 2.3	+0.6	+5.7	+8.0
•	11	-0.2	- 3.9	+1.1	- 2.2	+0.6	+5.7	+8.0
	21	-0.7	- 3.9	+1.3	- 2.1	+0.5	+5.7	+7.9

THE SKY FOR MARCH 1989

The Moon – On Mar. 1.0 UT, the age of the Moon is 22.7 d. The Sun's selenographic colongitude is 189.05° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Mar. 14 (7°) and minimum (east limb exposed) on Mar. 2 (8°) and Mar. 30 (8°). The libration in latitude is maximum (north limb exposed) on Mar. 27 (7°) and minimum (south limb exposed) on Mar. 13 (7°). The Moon reaches its greatest northern declination on Mar. 14 (+28°) and its greatest southern declination on Mar. 2 (-28°) and Mar. 29 (-28°).

Mercury is not visible this month.

Μ

Venus is not visible this month.

Mars moves from Aries into Taurus this month, passing 7° north of Aldebaran on Mar. 28. Mars passes 2° north of Jupiter on Mar. 11-12 (Mars is much fainter and redder than Jupiter); the Moon is only a few degrees away at the time. Mars and Jupiter are high in the southwestern sky at sunset, near the Pleiades, setting about 6 h later.

Jupiter, in Taurus, is high in the southwestern sky at sunset, and sets about 6 h later; see also Mars above.

Saturn, in Sagittarius, rises about 3 h before the Sun, and is low in the southeast at sunrise. It passes 0.2° south of Neptune on Mar. 2–3. This is the first of three conjunctions of these planets in 1989.

Neptune: see Saturn above.

1989				MARCH UNIVERSAL TIME	Min. of Algol	Config. of Jupiter's Satellites
	d	h	m		h m	0.0 WEST EAST
Wed.	1	17		Uranus 4° N. of Moon	22.00	1.0
Tilu.	2	11		Mercury at aphelion	22 00	2.0
Fri.	3	02		Saturn 0.2° S. of Neptune		3.0
	-	06		Neptune 5° N. of Moon		l. SK
		06		Saturn 5° N. of Moon		
Sat.	4					5.0
Sun.	5				18 49	6.0
Mon.	6	04		Mercury 0.8° S. of Moon; occultation		7.0
Tue.	7	18	19	We New Moon; Eclipse of Sun, p. 85	15 20	
Wed.	8	08		Moon at perigee (357 540 km)	15 39	
Inu. Eri	10					9.0
Sat	11				12 28	10.0
Sun.	12	08		Mars 2° N. of Jupiter	12 20	11.0
Duni		19		Jupiter 6° S. of Moon		120
		19		Mars 4° S. of Moon		
Mon.	13					
Tue.	14	10	11	First Quarter	9 17	14.0
Wed.	15					15.0
Thu.	16				6.00	
Fri.	17			Venus at greatest hel. lat. S.	6.06	
Sat.	10	17		Perulus 0.01° S of Moon: occultation ²		17.0
Mon	20	15	28	Vernal equinox: spring begins	2 56	
Tue	21	15	20	vernar equility, spring begins	2 30	19.0
Wed.	22	09	58	() Full Moon	23 45	20.0
		18		Moon at apogee (406 353 km)		
				Mercury at greatest hel. lat. S.		21.0
Thu.	23					22.0
Fri.	24					23.0
Sat.	25				20 34	24.0
Sun.	26					
Mon.	27			Antonio O 6º N. of Margare completion ³	17 22	
Tue.	28	18		Mars 7° N of Aldebaran	17 23	
Wed	29	10				27.0
Thu.	30	02		Uranus 4° N. of Moon		28.0
		10	21	C Last Quarter		×
		14		Neptune 5° N. of Moon		
		16		Saturn 5° N. of Moon		30.0
Fri.	31				14 13	31.0
						32.0

¹Visible in E. Africa, Asia ²Visible in S. Europe, N. Africa, S. Asia, East Indies, Australia except the eastern part ³Visible in the S. and S.E. of South America, Antarctica, extreme S.W. Australia

		Mercury	Venus	Mars	Jupiter	Saturn	Uranus	Neptune
RA	1	0 ^h 30 ^m	0 ^h 40 ^m	4°44"	4 ^h 06 ^m	18"59"	18"23"	18 ⁵³
	11	1 *44 **	1"25"	5"11"	4 ^h 14 ^m	19 ^h 00 ^m	18 ^h 23 ^m	18 ⁵³
	21	2*58*	2*12m	5 ^h 38 ^m	4 ^h 23 ^m	19 "00"	18°23	18"53"
Dec	1	+ 1° 4 0'	+2°50'	+23°39'	+20°19'	- 22°05'	- 23°35'	-21°57'
	11	+10°54'	+7° 4 6'	+24°20'	+20°41'	- 22°03'	-23°35'	-21°57'
	21	+18°51'	+12°24'	+24°43'	+21°03'	- 22°03'	-23°35'	-21°57'
Trar	n 1	11 "54 "	12°03"	16 ⁵ 06‴	15 "27 "	6 *20 ‴	5 *4 5**	6"15"
	11	12"30"	12"09"	15*53‴	14"56"	5 *42 "	5"06"	5"36"
	21	13'03''	12"16"	15*41**	14"25"	5"03"	4°26"	4 *56‴
Mag	1	- 1.7	- 3.9	+1.4	-2.1	+0.5	+5.7	+7.9
	11	- 1.6	- 3.9	+1.4	- 2.0	+0.5	+5.6	+7.9
	21	- 0.8	- 3.9	+1.5	- 2.0	+0.4	+5.6	+7.9

THE SKY FOR APRIL 1989

The Moon – On. Apr. 1.0 UT, the age of the Moon is 24.2 d. The Sun's selenographic colongitude is 206.68° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Apr. 11 (8°) and minimum (east limb exposed) on Apr. 27 (7°). The libration in latitude is maximum (north limb exposed) on Apr. 23 (7°) and minimum (south limb exposed) on Apr. 9 (7°). The Moon reaches its greatest northern declination on Apr. 10 (+28°) and its greatest southern declination on Apr. 25 (-28°). There is an occultation of Regulus by the Moon on Apr. 15, visible in parts of North America.

Mercury is in superior conjunction on Apr. 4, but by the end of the month, it is approaching a quite favourable greatest elongation east, and is visible low in the western sky, just after sunset.

Venus is not visible this month; it is in superior conjunction on Apr. 4.

Mars, in Taurus, is high in the southwestern sky at sunset, and sets about 5 h later; see also *Jupiter* below.

Jupiter is in Taurus, with Mars to the east and the constellations of winter nearby. It dominates the southwestern sky at sunset, and sets 4 h later. The crescent Moon passes north of the two planets on Apr. 9 and 10.

Saturn, in Sagittarius, rises about $4 \frac{1}{2}$ h before the Sun, and is very low in the southeast at sunrise. It is stationary on Apr. 23, then begins retrograde or westward motion relative to the stars.

Μ

			APRIL	Min. of	Config. of Jupiter's
1989			UNIVERSAL TIME	Algol	Satellites
Sat.	d 1	h m		hm	d WEST EAST
Sun.	2				
Mon.	3			11 02	
Tue.	4	14 23	Mercury in superior conjunction Venus in superior conjunction		4.0
Wed.	5	02 20	Juno stationary Moon at perigee (357 191 km)		5.0
Thu.	6	03 33	Wew Moon	7 51	6.0
Fri.	7				7.0
Sat.	8				
Sun.	9	09	Uranus stationary	4 40	8.0
		12	Jupiter 6° S. of Moon		9.0
Mon.	10	09	Mars 4° S. of Moon Mercury at ascending node		10.0
Tue.	11				
Wed.	12	23 13	First Quarter	1 29	12.0
Thu.	13	22	Neptune stationary		
Fri.	14			22 18	
Sat.	15	23	Regulus 0.1° N. of Moon; occultation ¹ Mercury at perihelion		14.0
Sun.	16				/X
Mon.	17			19 08	
Tue.	18	21	Moon at apogee (406 166 km)		17.0
Wed.	19				18.0
Thu.	20			15 57	
Fri.	21	03 13	E S Full Moon		
Sat.	22	09	Lyrid meteors		20.0
Sun.	23	00	Saturn stationary	12 46	21.0
Mon.	24	07	Antares 0.5° N. of Moon; occultation ²		
Tue.	25		Mercury at greatest hel. lat. N.	0.25	
Wed.	26	08	Uranus 4° N. of Moon	9 35	23.0
		20	Saturn 5° N. of Moon		24.0
Thu.	27				25.0
Fri.	28	06 20 46	Ceres in conjunction with Sun Clast Quarter		26.0
Sat.	29			6 24	127.0 III III IV
Sun.	30				28.0
					29.0
					30.0
					32.0
					1

¹Visible in the S. of North America, Central America, West Indies, N. of South America, S.W. Africa

²Visible in the S. Pacific, S. of South America, Antarctica, extreme S. of Africa

THE SKY FOR MAY 1989

		Mercury	Venus	Mars	Jupiter	Saturn	Uranus	Neptune
RA	1	3 ^h 54 ^m	3 ^h 00 ^m	6 ^h 05 ^m	4 ^h 32 ^m	19"00"	18 ^h 22 ^m	18 ⁵ 3 ^m
	11	4 ^h 18 ^m	3°50"	6h32m	4 ^h 41 ^m	18 ⁵⁹ "	18°22	18 ⁵³
	21	4 ^h 10 ^m	4 ^h 42 ^m	6 ⁵⁹	4 °51 ^m	18 *58 **	18°20"	18 ⁵ 2 ^m
Dec	1	+23°02'	+16°33'	+24°48'	+21°25'	-22°03'	-23°36'	-21°57'
	11	+23°16'	+19°59'	+2 4° 36'	+21°45'	- 22°05'	-23°37'	-21°57'
	21	+20°23'	+22°32'	+2 4° 06'	+22°03'	- 22°07'	-23°37'	-21°58'
Trar	n 1	13 ^h 18 ^m	12 ° 25‴	15 ⁵ 29"	13 ⁵ 4 ^m	4 *2 4 **	3 *46 **	4 *17*
	11	13 ^h 01 ^m	12h36m	15 ^h 16 ^m	13 ^h 25 ^m	3 *43 **	3h06m	3*37*
	21	12"12"	12 °48 ‴	15°0 4 °	12 * 55 *	3*03*	2*25 ^m	2°57"
Mag	1	+0.4	- 3.9	+ 1.6	- 2.0	+0.4	+5.6	+7.9
-	11	+2.0	- 3.9	+1.7	-2.0	+0.3	+5.6	+7.9
	21	+5.0	- 3.9	+1.7	- 2.0	+0.3	+5.6	+7.9

The Moon – On May 1.0 UT, the age of the Moon is 24.9 d. The Sun's selenographic colongitude is 212.62° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on May 10 (7°) and minimum (east limb exposed) on May 24 (6°). The libration in latitude is maximum (north limb exposed) on May 20 (7°) and minimum (south limb exposed) on May 6 (7°). The Moon reaches its greatest northern declination on May 8 (+28°) and its greatest southern declination on May 22 (-28°).

Mercury is visible early in the month, low in the western sky, just after sunset. It is at greatest elongation east (21°) on May 1, and this is a favourable elongation. It passes 0.6° north of Venus on May 15–16, but the planets are too close to the Sun to be easily seen; Mercury is in inferior conjunction on May 23. The crescent Moon passes Mercury, Jupiter and Mars between May 6 and May 9.

Venus is visible at the end of the month, very low in the western sky, just after sunset. In Taurus amid the setting constellations of winter, it passes 6° north of Aldebaran on May 19, and 0.8° north of Jupiter on May 22–23; see also Mercury above.

Mars moves from Taurus into Gemini this month. It is well up in the western sky at sunset, and sets about 3 h later. Watch the motion of Mars relative to Castor and Pollux in the next few weeks.

Jupiter is visible early in the month, low in the western sky, just after sunset. By the end of the month, however, it is too close to the Sun to be seen. In Taurus, it passes 5° north of Aldebaran on May 4. See also *Mercury* and *Venus* above.

Saturn, in Sagittarius, rises before midnight, and is low in the southern sky, past the meridian by sunrise.

Pluto is at opposition on May 4.

Μ

1989			MAY UNIVERSAL TIME	Min. of Algol	Config. of Jupiter's Satellites	
Mon. Tue. Wed.	d 1 2 3	h 03	m	Mercury at greatest elong. E. (21°)	h m 313	d 0.0 WEST EAST 1.0
Thu.	4	05 07 12 17		Moon at perigee (359 785 km) Pluto at opposition (28.688 AU, +13.6 ^m) Eta Aquarid meteors Jupiter 5° N. of Aldebaran		3.0 4.0 5.0
Fri.	5	11	46	New Moon	0 02	6.0
Sat.	6	22		Mercury 3° S. of Moon		7.0
Sun.	7	07		Jupiter 5° S. of Moon	20 51	
MOII.	0	01		Mars 2° S. of Moon		AN AN
Wed.	10	01			17 40	9.0
Thu.	11					10.0
Fri.	12	14	19	First Ouarter		11.0R
		23		Mercury stationary		
Sat.	13	03		Juno 0.4° S. of Moon; occultation	14 29	$ \mathbb{A}\rangle$
		06		Regulus 0.4° N. of Moon; occultation ¹		
				Venus at ascending node		14.0
Sun.	14	17		Vesta stationary		
Mon.	15					
Tue.	16	07		Mercury 0.6° N. of Venus	11 18	16.0
		09		Moon at apogee (405 365 km)		17.0
Wed.	17					
Thu.	18			Mercury at descending node		
Fri.	19	19		Venus 6° N. of Aldebaran	8 07	19.0
Sat.	20	18	16	S Full Moon		20.0
Sun.	21	13		Antares 0.4° N. of Moon; occultation ²		
Mon.	22				4 56	
Tue.	23	04		Venus 0.8° N. of Jupiter		22.0
		12		Uranus 4° N. of Moon		23.0
W7. 1	~	22		Mercury in inferior conjunction		24.0
wea.	24			Saturn 4° N of Moon		25.0
Thu	25	07			1 44	
Fri	26				• • •	26.0
Sat.	27				22 33	27.0
Sun.	28	04	01	C Last Ouarter		28.0
Mon.	29			Mercury at aphelion		
Tue.	30	06		Pallas 0.7° S. of Moon; occultation	19 22	29.0
Wed.	31					30.0
						32.0M

¹Visible in New Guinea, the S. Pacific ²Visible in Indonesia, Australia except the N., New Zealand, South Pacific

THE SKY FOR JUNE 1989

		Mercury	Venus	Mars	Jupiter	Saturn	Uranus	Neptune
RA	1	3 ^h 49 ^m	5 °40 ‴	7 ^h 29 ^m	5°02‴	18 ⁵⁵ "	18"19"	18"51"
	11	3"52"	6 ^h 34 ^m	7*55*	5°12"	18 ⁵³ "	18 ^h 17 ^m	18"50"
	21	4 ^h 23 ^m	7°27‴	8°21‴	5°22‴	18"50"	18"15"	18 °49 "
Dec	1	+16°35'	+2 4° 07'	+23°13'	+22°21'	-22°11'	-23°38'	-21°59'
	11	+16°02'	+2 4° 19'	+22°08'	+22°35'	-22°15'	-23°39'	-22°00'
	21	+18°24'	+23°20'	+20°47'	+22° 4 6'	-22°19'	-23°40'	-22°02'
Trar	1 1	11 ⁵ 09 ^m	13h03m	14 ⁵⁰	12 ^h 22 ^m	2°17"	1 *4 1‴	2 ^h 13 ^m
	11	10 ^h 34 ^m	13 ^h 17 ^m	1 4 *37*	11"53"	1*35m	1 ^h 00 ^m	1 ^h 32 ^m
	21	10"27"	13 ^h 31 ^m	14 ^h 24 ^m	11 ^h 24 ^m	0*53m	0°19"	0 ⁵²
Mag	1	+3.3	- 3.9	+1.8	- 1.9	+0.2	+5.6	+7.9
-	11	+1.4	- 3.9	+1.8	- 1.9	+0.1	+5.6	+7.9
	21	+0.3	- 3.9	+1.8	- 1.9	+0.1	+5.6	+7.9

The Moon – On June 1.0 UT, the age of the Moon is 26.5 d. The Sun's selenographic colongitude is 231.22° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on June 6 (6°) and minimum (east limb exposed) on June 20 (5°). The libration in latitude is maximum (north limb exposed) on June 16 (7°) and minimum (south limb exposed) on June 2 (7°) and June 30 (7°). The Moon reaches its greatest northern declination on June 4 (+28°) and its greatest southern declination on June 19 (-28°).

Mercury is at greatest elongation west (23°) on June 18, but it is also several degrees south of the ecliptic; at best, it stands barely 10° above the eastern horizon at sunrise. It passes 3° north of Aldebaran on June 22–23.

Venus moves from Taurus into Gemini during the month, passing 5° south of Pollux on June 23–24. It may be seen with difficulty, very low in the western sky below Castor and Pollux, just after sunset. The crescent Moon passes Venus and Mars on June 4–5 and 5–6.

Mars moves from Gemini into Cancer during the month, passing 5° south of Pollux on June 6–7, and through the Praesepe star cluster late in the month. It is low in the western sky at sunset, and sets about 3 h later. See also *Venus* above.

Jupiter is not visible this month; it is in conjunction on June 9.

Saturn, in Sagittarius, rises shortly after sunset, and is low in the southwestern sky at sunrise. It passes 0.3° south of Neptune on June 24, providing a good opportunity to look for the fainter planet.

Uranus is at opposition on June 24.

			II INTE	Min.	Config. of
1989			UNIVERSAL TIME	Algol	Satellites
	d	hm		hm	0.0 WEST EAST
Thu.	1	05	Moon at perigee (364 388 km)		1.0X
Fri.	2			16 11	
Sat.	3	19 53	New Moon		
Sun.	4				3.0
Mon.	5	01	Venus 3° S. of Moon	13 00	
		02	Mercury stationary		
Tue.	6	18	Mars 1.6° S. of Moon		5.0
Wed.	7	00	Mars 5° S. of Pollux		6.0
Thu.	8			9 49	$ \dots / \mathbb{R}$
Fri.	9	09	Jupiter in conjunction with Sun		
		14	Regulus 0.7° N. of Moon; occultation ¹		8.0
Sat.	10				2.0
Sun.	11	06 59	» First Quarter	6 37	
Mon.	12				10.0
Tue.	13	02	Moon at apogee (404 461 km)		
Wed.	14		Mars at greatest hel. lat. N.	3 26	
Thu.	15	1			
Fri.	16		Venus at perihelion		13.0
Sat.	17	21	Antares 0.4° N. of Moon: occultation ²	0 15	14.0
Sun.	18	12	Mercury at greatest elong, W. (23°)		
			Mercury at greatest hel. lat. S.		
Mon.	19	06 57	(Full Moon	21 04	16.0
		17	Uranus 4° N. of Moon		17.0
Tue.	20	07	Neptune 5° N. of Moon		
		07	Saturn 4° N. of Moon		18.0
Wed.	21	09 53	Summer solstice; summer begins		19.0
Thu.	22			17 52	20.0
Fri.	23	13	Mercury 3° N. of Aldebaran		
Sat.	24	09	Venus 5° S. of Pollux		21.0
		16	Saturn 0.3° S. of Neptune		22.0X
		22	Uranus at opposition $(18.330 \text{ AU}, +5.6^{\text{m}})$		23.0
Sun.	25			14 41	
Mon.	26	04	Vesta at opposition		24.0
		09 09	C Last Quarter		25.0
Tue.	27				26.0
Wed.	28	04	Moon at perigee (368 959 km)	11 30	
Thu.	29				27.0
Fri.	30				28.0X
					XR
					30.0
					31.0
					52.0

¹Visible in S. Africa, Madagascar, Antarctica ²Visible in the E. of South America, S. Atlantic, extreme S. Africa, Antarctica, extreme S.W. Australia 43

		Mercury	Venus	Mars	Jupiter	Saturn	Uranus	Neptune
RA	1	5 ^h 21 ^m	8 ^h 19 ^m	8 ^h 47 ^m	5 ⁺ 32 ^m	18 *46 **	18 ^h 14 ^m	18 ^h 48 ^m
	11	6 °44 ‴	9°09"	9°12"	5 *41 "	18 °4 3"	18 ^h 12 ^m	18 h47 m
	21	8°16"	9 ° 56"	9°37"	5*51**	18 *4 0**	18 ^h 10 ^m	18*45*
Dec	1	+21°50'	+21°13'	+19°13'	+22°54'	- 22°23'	-23°41'	- 22°03'
	11	+23°42'	+18°08'	+17°25'	+23°01'	- 22°28'	-23°41'	- 22°04'
	21	+21°32'	+1 4°15 '	+ 15°27'	+23°05'	- 22°32'	-23°42'	- 22°06'
Trar	n 1	10 °46 "	13 *4 3**	1 4 ^h 10 ^m	10 ⁵⁴	0 ^h 10 ^m	23 ⁵ 33 ^m	0°12"
	11	11 ^h 31 ^m	13 °54 "	13 * 56**	10^25	23 °24 "	22 ⁵ 2‴	23 ^h 27 ^m
	21	12 ^h 23 ^m	1 4 ^h 02 ^m	13 °4 1‴	9 °55‴	22 *4 1**	22 ^h 11 ^m	22 ʰ4 7ʷ
Mag	1	-0.6	- 3.9	+1.8	- 1.9	0.0	+5.6	+7.9
Ŭ	11	-1.5	- 3.9	+1.8	- 2.0	+0.1	+5.6	+7.9
	21	- 1.8	- 3.9	+1.8	~ 2.0	+0.1	+5.6	+7.9

THE SKY FOR JULY 1989

The Moon – On July 1.0 UT, the age of the Moon is 27.2 d. The Sun's selenographic colongitude is 237.85° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on July 4 (5°) and July 31 (5°) and minimum (east limb exposed) on July 16 (5°). The libration in latitude is maximum (north limb exposed) on July 14 (7°) and minimum (south limb exposed) on July 27 (7°). The Moon reaches its greatest northern declination on July 2 (+28°) and July 29 (+28°) and its greatest southern declination on July 16 (-28°).

Mercury is not visible this month; it is in superior conjunction on July 18.

Venus may be seen with difficulty, very low in the western sky, just after sunset. It passes 0.5° north of Mars on July 11–12, and 1.2° north of Regulus on July 22–23.

Mars moves from Cancer into Leo, approaching Regulus, during the month. Early in the month, it may be seen with difficulty, very low in the west, just after sunset. Its eastern elongation is rapidly becoming smaller and less favourable, however, and by the end of the month, it is no longer visible.

Jupiter moves from Taurus into Gemini during the month. Its visibility is rapidly improving. By the end of the month, it rises about 3 h before the Sun, and is low in the east at sunrise.

Saturn, in Sagittarius, rises at about sunset, and sets at about sunrise. It is at opposition on July 2

Neptune is at opposition on July 2.

1989			JULY UNIVERSAL TIME	Min. of Algol	Config. of Jupiter's Satellites
Sat.	d 1	h m 21 23	Mercury 6° S. of Moon	h m 8 18	d <u>WEST</u> EAST
Sun.	2	13 17 23	Saturn at opposition (9.021 AU, 0.0 ^m) Mercury 0.6° S. of Jupiter Neptune at opposition (29.198 AU, +7.9 ^m)		2.0
Mon.	3	04 59	New Moon		5.0
Tue.	4	12	Earth at aphelion (152 100 000 km)	5 07	6.0 II / IV
Wed.	5	04	Venus 0, 1° S, of Moon: occultation ¹		
	Ũ	12	Mars 0.09° S of Moon		7.0
Thu	6	22	Percent 0.0° N of Moon: occultation ²		8.0
Thu.	7	25	Mercury et essending node	1.56	
гп.			Versus et avectert hel let N	1.50	9.0
a .	~		venus at greatest nel. lat. N.		10.0
Sat.	8				
Sun.	9			22 44	
Mon.	10	21	Moon at apogee (404 150 km)		12.0
Tue.	11	00 19) First Quarter		
Wed.	12	12	Venus 0.5° N. of Mars Mercury at perihelion	19 33	
Thu.	13				
Fri.	14				
Sat.	15	05	Antares 0.5° N. of Moon: occultation ³	16 22	
Sun	16	23	Uranus 4° N. of Moon		17.0
Mon.	17	12	Saturn 4° N. of Moon		
	• •	14	Neptune 5° N of Moon		
Tue	18	08	Mercury in superior conjunction	13 10	19.0
	10	17 42	Full Moon		
wed.	19			1	21.0
Thu.	20				(qk /
Fri.	21			9 59	22.0
Sat.	22		Mercury at greatest hel. lat. N.		23.0
			Mars at aphelion		24.0
Sun.	23	07	Moon at perigee (368 431 km)		
		11	Venus 1.2° N. of Regulus		25.0
Mon.	24			6 47	26.0
Tue.	25	13 31	C Last Quarter		
Wed.	26				27.0
Thu.	27			3 36	28.0
Fri.	28	11	Pluto stationary		
		15	S. Delta Aquarid meteors		
Sat.	29	16	Jupiter 5° S. of Moon		
Sun.	30		A	0 24	31.0
Mon	31				
	~.			1	32.0

¹Visible in E. Asia, Japan, W. and S. Pacific
²Visible in S. Pacific, extreme N. of New Zealand, Antarctica
³Visible in E. Australia, New Zealand, S. Pacific, Antarctica, S. of South America

		Mercury	Venus	Mars	Jupiter	Saturn	Uranus	Neptune
RA	1	9 "4 3"	10 °4 7"	10 ^h 04 ^m	6 ^h 01 ^m	18 ^h 37 ^m	18"09"	18 ^h 44 ^m
	11	10"46"	11"31"	10 ^h 28 ^m	6 ^h 09 ^m	18"35"	18 ⁶ 07	18 ^h 43 ^m
	21	11"36"	12 ʰ14 ʷ	10"52"	6°17"	18°33‴	18°07"	18 °4 3"
Dec	1	+15°20'	+9°16'	+13°05'	+23°06'	- 22°36'	- 23°42'	- 22°07'
	11	+8°25'	+ 4° 20'	+ 10°47'	+23°06'	- 22°39'	-23°42'	- 22°09'
	21	+1°36'	-0°48'	+8°22'	+23°04'	-22°41'	-23° 4 2'	-22°10'
Tran	1	13"06"	1 4 h09m	13 °2 5‴	9"21"	21"55"	21 ⁵ 27‴	22 ^h 02 ^m
	11	13°29"	14 ^h 13 ^m	13*09**	8°51‴	21°1 4 ‴	20 *46 "	21*22**
	21	13 ^h 39 ^m	14 ^h 17 ^m	12 ⁵⁴	8°19"	20*33 *	20'06"	20 °4 2"
Mag	1	-0.6	- 3.9	+1.8	- 2.0	+0.2	+5.6	+7.9
0	11	-0.2	- 3.9	+1.8	-2.0	+0.2	+5.6	+7.9
	21	+0.1	- 4.0	+1.8	-2.1	+0.3	+5.6	+7.9

М

THE SKY FOR AUGUST 1989

The Moon – On Aug. 1.0 UT, the age of the Moon is 28.8 d. The Sun's selenographic colongitude is 256.77° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Aug. 26 (6°) and minimum (east limb exposed) on Aug. 13 (6°). The libration in latitude is maximum (north limb exposed) on Aug. 10 (7°) and minimum (south limb exposed) on Aug. 23 (7°). The Moon reaches its greatest northern declination on Aug. 25 (+28°) and its greatest southern declination on Aug. 12 (-28°). There is a total eclipse of the Moon on Aug. 17, visible in most parts of North America.

Mercury is at greatest elongation east (27°) on August 29 but, although the elongation is large, it is unfavourable for northern observers; the planet stands barely 13° above the western horizon at sunset. Mercury passes 0.8° north of Regulus on Aug. 4, and only 0.01° north of Mars on Aug. 5, but it is close to the Sun at the time, and the event occurs in daylight for observers in North America. The Moon passes just south of Mercury, Regulus and Mars on Aug. 2–3, and just south of Venus on the following night.

Venus may be seen with difficulty, very low in the western sky at sunset. See also Mercury above.

Mars, in Leo, is too faint, low and close to the Sun to be seen. It passes 0.7° north of Regulus on Aug. 2 and 0.01° south of Mercury on Aug. 5. See also *Mercury* above.

Jupiter, now in Gemini, is rapidly becoming prominent in the morning sky. By the end of the month, it rises shortly before midnight and is high in the southeastern sky at sunrise.

Saturn, in Sagittarius, is low in the southeastern sky at sunset, and sets after midnight.

1989			AUGUST UNIVERSAL TIME	Min. of Algol	Config. of Jupiter's Satellites
Tue. Wed. Thu.	d 1 2 3	h m 16 06 16 02 07	New Moon Mars 0.7° N. of Regulus Mercury 1.6° N of Moon Regulus 0.9° N. of Moon; occultation ¹	h m 21 13	d 0.0 WEST EAST 1.0
Fri.	4	08 13 16	Mars 1.6° N. of Moon Venus 3° N. of Moon Mercury 0.8° N. of Regulus	18 02	
Sat. Sun. Mon	5 6 7	22	Mercury 0.01° N. of Mars	14 50	6.0
Tue.	7 8	19	Vesta stationary	14 50	9.0
Wed. Thu.	9 10	17 28) First Quarter	11 39	10.0
Sat. Sun.	11 12 13	14 06 07 18 22	Perseid meteors Uranus 4° N. of Moon Saturn 4° N. of Moon Nentune 5° N. of Moon	8 27	
Mon. Tue. Wed. Thu.	14 15 16 17	03 07	 Provide the second of the second of	5 16	15.0
Fri. Sat. Sun	18 19 20	03 12	Pallas stationary Moon at perigee (363 570 km)	2 04	18.0
Mon. Tue.	21 22			22 53	20.0
Wed. Thu. Fri.	23 24 25	18 40	C Last QuarterMercury at aphelion	19 41	22.0 <u><u><u>u</u></u><u>1</u><u>1</u><u>111</u><u>1v</u> 23.0 <u><u></u></u></u>
Sat. Sun. Mon.	26 27 28	07	Jupiter 4° S. of Moon	16 30	24.0
Tue. Wed. Thu	29 30 31	10	Mercury at greatest elong. E. (27°)	13 19	26.0
mu.	51		e rew moon, coupse of our, p. 00		28.0

¹Visible in S.E. Africa, Madagascar, S. Indian Ocean, Antarctica ²Visible in S. Africa, Antarctica, Tasmania, New Zealand, S.E. Australia

		Mercury	Venus	Mars	Jupiter	Saturn	Uranus	Neptune
RA	1	12 ^h 16 ^m	13"01"	11 ^h 18 ^m	6 ^h 26 ^m	18 ^h 32 ^m	18 ^h 06 ^m	18 h42 m
	11	12"32"	13 h44 m	11 ^h 41 ^m	6*32*	18 ^h 32 ^m	18 ^h 06 ^m	18 °42 "
	21	12 ^h 16 ^m	1 4 *28*	12 ⁶ 05 ^m	6°37"	18 ^h 32 ^m	18 ^h 06 ^m	18 °42 "
Dec	1	- 4°40 '	-6°26'	+5°37'	+23°00'	-22°44'	- 23°42'	-22°11'
	11	-7°47'	-11°22'	+ 3°02'	+22°57'	-22°45'	-23°42'	-22°11'
	21	- 5° 4 3'	- 15°55'	+0°25'	+22°53'	- 22°46'	-23° 4 2'	-22°12'
Tran	1	13 ^h 35 ^m	1 4 °21‴	12"36"	7 °44 ‴	19 ^h 48 ^m	19 ^h 22 ^m	19 ⁵⁸
	11	13 ^h 10 ^m	14 ^h 24 ^m	12 ^h 20 ^m	7°11'''	19 ^h 09 ^m	18 ^h 4 3 ^m	19 ^h 18 ^m
	21	12 ^h 13 ^m	14 ^h 29 ^m	12 ^h 04 ^m	6 ^h 37 ^m	18 ^h 30 ^m	18 ^h 04 ^m	18 ^h 39 ^m
Mag	1	+0.3	- 4 .0	+1.8	-2.1	+0.3	+5.6	+7.9
	11	+0.9	- 4.0	+1.7	-2.2	+0.4	+5.7	+7.9
	21	+3.4	- 4.1	+1.7	- 2.2	+0.4	+5.7	+7.9

THE SKY FOR SEPTEMBER 1989

The Moon – On Sept. 1.0 UT, the age of the Moon is 0.8 d. The Sun's selenographic colongitude is 275.47° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Sept. 23 (7°) and minimum (east limb exposed) on Sept. 10 (7°). The libration in latitude is maximum (north limb exposed) on Sept. 6 (7°) and minimum (south limb exposed) on Sept. 19 (7°). The Moon reaches its greatest northern declination on Sept. 21 (+28°) and its greatest southern declination on Sept. 9 (-28°).

Mercury is not visible this month; it is in inferior conjunction on Sept. 24.

Venus may be seen with difficulty, very low in the southwestern sky, just after sunset. It passes 1.9° north of Spica on Sept. 6.

Mars is not visible this month; it is in conjunction on Sept. 29.

Jupiter, in Gemini, rises at about midnight, and is high in the southern sky at sunrise.

Saturn, in Sagittarius, is low in the southern sky at sunset, and sets about 5 h later. It is stationary on Sept. 11, after which it resumes direct or eastward motion relative to the stars.

Pluto is at perihelion on Sept. 5. This is the first perihelion since Pluto's discovery, and the next one will be in the year 2236.

Μ

1989			SEPTEMBER UNIVERSAL TIME	Min. of Algol	Config. of Jupiter's Satellites
Fri.	d 1	h m	Venus at descending node	hm	d west EAST
			Uranus at extreme S. Dec. (since \sim 1905)		
Sat.	2	16	Mercury 0.6° N. of Moon; occultation	10 07	2.0
Sun.	3	21	Venus 5° N. of Moon		3.0
Mon.	4	08	Moon at apogee (405 /33 km)		
Tue.	5	1.2	Pluto at perihelion (29.656 AU)	6 56	
Wed.	6	13	Venus 1.9° N. of Spica		
Thur.	7	22	Antares 0.6° N. of Moon; occultation	244	6.0
Fri.	8	09 49	D First Quarter	3 44	7.0
Sat.	10	10	Uranus 4 ⁻ N. of Moon		(N)
Sun.	10		Uranus stationary		•
		02	Saturn 4 ⁻ N. of Moon		9.0
1.	11	07	Neptune 5 [°] N. of Moon	0.22	10.0
Mon.	11	14	Saturn stationary	0.55	
T	10	14	Mercury stationary		
Tue.	12			21 21	12.0
Weu.	13		Maroury at greatest hal lat S		13.0
Fri	14	11 51	Provide Structure Structur		IAO R
Sat	16	15	Moon at perigee (359.045 km)	18 10	
Sun	17	15	Without at perigee (559 045 km)	10 10	15.0
Mon	18				16.0
Tue	10			14 59	
Wed	20			1.57	
Thu	$\tilde{21}$	05	Neptune stationary		18.0
Fri.	22	02 10	C Last Quarter	11 47	19.0
		19	Jupiter 4° S. of Moon		
Sat.	23	01 20	Autumnal equinox: autumn begins		
Sun.	24	22	Mercury in inferior conjunction		21.0
Mon.	25			8 36	22.0
Tue.	26	21	Regulus 1.0° N. of Moon; occultation ³		23.0
Wed.	27				
Thu.	28			5 24	24.0
Fri.	29	19	Mars in conjunction with Sun		25.0
		21 47	New Moon		26.0
Sat.	30	13	Pallas at opposition		27.0
					28.0
					29.0
					30.0
					31.0
					32.0 (11 \

¹Visible in South America except the N., Antarctica ²Visible in S. Pacific, extreme S. of South America, Antarctica, S. Atlantic, extreme S. of Africa ³Visible from E. Australia, New Zealand, S. Pacific, Antarctica

		Mercury	Venus	Mars	Jupiter	Saturn	Uranus	Neptune
RA	1	11"46"	15 ^h 14 ^m	12 ^h 28 ^m	6 ^h 42 ^m	18 ^h 33 ^m	18°07‴	18 *4 2"
	11	12"02"	16"00"	12"52"	6 *4 5*	18 ^h 35 ^m	18 ^h 08 ^m	18 *42 "
	21	12"55"	16 °48 ™	13 ^h 17 ^m	6 °4 7"	18°37"	18°09"	18 °4 3‴
Dec	1	+0° 4 1'	- 19°53'	-2°13'	+22°49'	- 22° 4 7'	- 23°42'	-22°12'
	11	+1°36'	-23°06'	- 4° 51'	+22°47'	- 22°47'	-23°42'	-22°12'
	21	- 3°43'	-25°24'	-7°26'	+22°45'	-22°46'	-23°42'	-22°12'
Tran	n 1	11"05"	1 4 *35**	11 *49 **	6 ^h 02 ^m	17 ⁵¹ ‴	17°25"	18°00"
	11	10 °4 3‴	14"42"	11 ^h 33 ^m	5°26"	17 °14 ‴	16 °47 "	17"21"
	21	10"58"	14 50	11'18"	4 ⁴ 48 ^m	16 ^h 37 ^m	16'09"	16 °4 2"
Mag	1	+2.1	- 4.1	+1.7	-2.3	+0.5	+5.7	+7.9
Ū	11	-0.5	- 4.2	+1.7	-2.3	+0.5	+5.7	+7.9
	21	- 1.0	- 4 .3	+1.7	-2.4	+0.5	+5.7	+8.0

THE SKY FOR OCTOBER 1989

The Moon – On Oct. 1.0 UT, the age of the Moon is 1.1 d. The Sun's selenographic colongitude is 281.52° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Oct. 21 (8°) and minimum (east limb exposed) on Oct. 9 (7°). The libration in latitude is maximum (north limb exposed) on Oct. 3 (7°) and Oct. 31 (7°) and minimum (south limb exposed) on Oct. 16 (7°). The Moon reaches its greatest northern declination on Oct. 19 (+28°) and its greatest southern declination on Oct. 6 (-28°).

Mercury is at greatest elongation west (18°) on Oct. 10 and, although the elongation is relatively small, it is favourable for northern observers. The planet rises shortly before the Sun, and stands about 16° above the southeastern horizon at sunrise.

Venus may be seen with difficulty, very low in the southwestern sky, just after sunset. It passes 1.8° north of Antares on Oct. 16-17.

Mars is not visible this month.

Jupiter, in Gemini, rises before midnight, and is high in the southern sky by sunrise. On Oct. 29, it is stationary, and then begins retrograde or westward motion relative to the stars.

Saturn, in Sagittarius, is low in the southern sky at sunset, and sets about 4 h later.

1989			OCTOBER UNIVERSAL TIME	Min. of Algol	Config. of Jupiter's Satellites
1989 Sun. Mon. Tue. Wed. Thu. Fri. Sat. Sun. Mon. Tue. Wed. Thu. Fri. Sat. Sun. Mon. Tue. Wed. Thu. Fri. Sat. Sun. Mon. Tue.	d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	h m 20 06 01 05 00 11 15 16 00 52 13 12 20 32 01 01	OCTOBER UNIVERSAL TIME Moon at apogee (406 528 km) Saturn at extreme S. Dec. (since 1959) Mercury stationary Mercury at ascending node Venus 3° N. of Moon Antares 0.4° N. of Moon; occultation ¹ Venus at aphelion Uranus 4° N. of Moon Saturn 4° N. of Moon Neptune 5° N. of Moon Vesta 0.5° N. of Moon; occultation D First Quarter Mercury at perihelion Juno in conjunction with Sun Mercury at greatest elong. W. (18°) ⁽²⁾ Full Moon; Hunters' Moon Moon at perigee (356 713 km) Venus 1.8° N. of Antares Mercury at greatest hel. lat. N.	Min. of Algol h m 2 13 23 02 19 50 16 39 13 28 10 16 7 05	Config. of Jupiter's Satellites
Fri. Sat. Sun.	20 21 22 22	05 10 13 19	Jupiter 4° S. of Moon Orionid meteors © Last Quarter	3 54	
Mon. Tue. Wed.	23 24 25	02 23	Regulus 1.1° N. of Moon; occultation ² Mercury 4° N. of Spica	0 43	22.0
Thu. Fri. Sat.	26 27 28	22	Moon at apogee (406 638 km)	21 32	24.0
Sun.	29	01 15 27	Venus at greatest hel. lat. S. Jupiter stationary Wew Moon	18 20	26.0
Mon. Tue.	30 31				28.0 III III III IIII IIII IIII IIIII IIIIII

¹Visible in W. Java, W. and S. Australia, New Zealand, part of Antarctica ²Visible in S.E. Africa, Antarctica

	Τŀ	ΗE	SKY	FOR	NOVEMBER	1989
--	----	----	-----	-----	----------	------

		Mercury	Venus	Mars	Jupiter	Saturn	Uranus	Neptune
RA	1	1 4 ^h 02 ^m	17 *40 **	13 h44 m	6 *4 7"	18 h40 m	18 ^h 11 ^m	18 *4 3**
	11	15"05"	18 ^h 25 ^m	1 4 10 m	6 *4 6*	18 *44 **	18 ^h 13 ^m	18 h45 m
	21	16 ^h 09 ^m	19"07"	1 4 *36*	6 *4 3**	18 °48 ‴	18"15"	18"46"
Dec	1	- 11°17'	-26°45'	- 10°12'	+22°46'	- 22° 44 '	-23°41'	-22°12'
	11	- 17°25'	-26°52'	- 12°36'	+22°48'	-22°41'	-23°41'	-22°11′
	21	-22°07'	-25°59'	- 1 4°52 '	+22°52'	- 22°38'	-23° 4 0'	- 22°10'
Tran	n 1	11 ^h 22 ^m	14 ⁵⁹	11 ^h 03 ^m	4 ^h 05 ^m	15°57"	15°27"	16 ^h 00 ^m
	11	11 *46 **	15 ⁶ 05	10 °49 "	3°25"	15"21"	1 4 °50"	15"22"
	21	12"11"	15"07"	10 °36 "	2 ^h 43 ^m	14 ⁴ 46	14°13"	14 ^h 44 ^m
Mag	1	- 1.1	- 4.4	+1.7	- 2.5	+0.5	+5.7	+8.0
Ŭ	11	-1.3	- 4.4	+1.7	- 2.5	+0.6	+5.8	+8.0
	21	- 0.9	- 4.5	+1.7	- 2.6	+0.6	+5.8	+8.0

The Moon – On Nov. 1.0 UT, the age of the Moon is 2.4 d. The Sun's selenographic colongitude is 299.28° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Nov. 18 (8°) and minimum (east limb exposed) on Nov. 6 (7°). The libration in latitude is maximum (north limb exposed) on Nov. 27 (7°) and minimum (south limb exposed) on Nov. 13 (7°). The Moon reaches its greatest northern declination on Nov. 15 (+27°) and its greatest southern declination on Nov. 29 (-27°).

Mercury is not visible this month; it is in superior conjunction on Nov. 10.

Venus is at greatest elongation east (47°) on Nov. 8, but this is not a very favourable elongation. The planet stands only about 15° above the southwestern horizon at sunset, and sets about 3 h later. It passes 3° south of Uranus on Nov. 7–8 and 4° south of Neptune and Saturn on Nov. 15, thus providing a motivation to look for both Uranus and Neptune this month. Note that the Moon passes Antares, Venus, Uranus, Saturn, Neptune and Vesta in the first four days of the month.

Mars moves from Virgo into Libra and, by the end of the month, is visible (faintly) in the morning sky, very low in southeastern sky, just before sunrise.

Jupiter, in Gemini below Castor and Pollux, rises in the early evening and is still well up in the western sky at sunrise.

Saturn, in Sagittarius, is very low in the southwestern sky at sunset, and sets about 3 h later. It passes 0.5° south of Neptune on Nov. 12 and is 4° north of Venus on Nov. 15.

Uranus and Neptune: see Venus and Saturn above. Pluto is in conjunction on Nov. 7.

Μ

1989			NOVEMBER UNIVERSAL TIME	Min. of Algol	Config. of Jupiter's Satellites
	d	h m		hm	d WEST EAST
Wed.	1	11	Antares 0.2° N. of Moon; occultation ¹	15 09	
Thu.	2	11	S. Taurid meteors		
		22	Venus 0.7° N. of Moon; occultation ²		2.0
Fri.	3	00	Ceres stationary		3.0
		08	Uranus 4° N. of Moon		
		21	Saturn 4° N. of Moon		
		22	Neptune 4° N. of Moon		5.0
Sat.	4	20	Vesta 1.0° S. of Moon; occultation	11 58	6.0
Sun.	5				
Mon.	6	14 11	First Quarter		
Tue.	7	13	Pluto in conjunction with Sun	8 47	8.0
Wed.	8	02	Venus 3° S. of Uranus		9.0
-	-	17	Venus at greatest elong. E. (47°)		
Thu.	9	10		5.00	
Fri.	10	19	Mercury in superior conjunction	5 36	11.0
G	11		Mercury at descending node		12.0
Sat.	11	12	Maan at maniana (257 468 hm)		13.0
Sun.	12	13	Soture 0.5° S. of Nontune		
Mon	12	21	Bull Moon	2.24	14.0
MOII.	13	05 51		2 24	15.0
Wed	15	15	Venus 4° S. of Nentune	23 13	16.0
weu.	15	19	Venus 4° S. of Saturn	25 15	
Thu	16	14	India 1 St of Balan		
Fri.	17	16	Leonid meteors		18.0
Sat.	18			20 02	19.0
Sun.	19				20.0
Mon.	20	04 44	C Last Quarter		
Tue.	21		Mercury at aphelion	16 51	21.0
Wed.	22				22.0
Thu.	23	23	Pallas stationary		23.0
Fri.	24			13 40	
Sat.	25	04	Moon at apogee (406 135 km)		AN AN
Sun.	26	19	Mars 6° N. of Moon		25.0
Mon.	27			10 29	26.0
Tue.	28	09 41	Wew Moon		
Wed.	29			- 10	
Thu.	30	16	Uranus 3° N. of Moon	7 18	28.0
					29.0
					30.0
					1 A
					32.0

¹Visible in S. Africa, S. Madagascar, S. Indian Ocean, E. Java, W. Australia ²Visible in New Zealand, Antarctica, extreme S. of South America

		Mercury	Venus	Mars	Jupiter	Saturn	Uranus	Neptune
RA	1	17'16'''	19 *44 **	15 ^h 03 ^m	6 ^h 40 ^m	18 ^h 52 ^m	18'17"	18 ^h 47 ^m
	11	18"23"	20 ^h 13 ^m	15"31"	6"35"	18°57"	18 ^h 20 ^m	18*49*
	21	19 ⁵ 23 ^m	20 ^h 30 ^m	15"59"	6°29"	19"02"	18"22"	18*50"
Dec	1	- 2 4°59 '	-24°18'	- 16°57'	+22°57'	-22°34'	- 23°39'	- 22°09'
	11	-25°39'	- 22°02'	- 18°50'	+23°02'	- 22°28'	- 23°38'	- 22°07'
	21	-23°56'	- 19°33'	- 20°28'	+23°08'	- 22°22'	- 23°37'	- 22°05'
Trar	n 1	12 ^h 38 ^m	15 ⁶ 04‴	10*23"	2"00"	14 ^h 11 ^m	13 *36 **	1 4 °06™
	11	13 ^h 05 ^m	14 ^h 53 ^m	10"12"	1*16"	13"36"	12 ⁵⁹	13 "28 "
	21	13 ^h 25 ^m	14 ^h 30 ^m	10"01"	0"31"	13"02"	12 ^h 22 ^m	12"50"
Mag	1	-0.6	- 4.6	+1.6	-2.7	+0.5	+5.8	+8.0
-	11	-0.6	- 4.7	+1.6	- 2.7	+0.5	+5.8	+8.0
	21	-0.5	- 4.7	+1.6	-2.7	+0.5	+5.8	+8.0

THE SKY FOR DECEMBER 1989

The Moon – On Dec. 1.0 UT, the age of the Moon is 2.6 d. The Sun's selenographic colongitude is 304.36° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Dec. 16 (7°) and minimum (east limb exposed) on Dec. 4 (6°) and Dec. 31 (5°). The libration in latitude is maximum (north limb exposed) on Dec. 24 (7°) and minimum (south limb exposed) on Dec. 10 (7°). The Moon reaches its greatest northern declination on Dec. 12 (+27°) and its greatest southern declination on Dec. 27 (-27°).

Mercury is at greatest elongation east (20°) on Dec. 23; it then stands about 14° above the southwestern horizon at sunset, and sets shortly afterward. It passes 2° south of Uranus on Dec. 10, 3° south of Neptune on Dec. 14–15, and 2° south of Saturn on Dec. 16–17. Mercury is the brighter of the two.

Venus is low in the southwestern sky at sunset, and sets about 3 h later. It is at greatest brilliancy (-4.7^{m}) on Dec. 14.

Mars moves from Libra through Scorpius (passing 5° north of Antares on Dec. 30-31) into Ophiuchus during the month. It rises about 2 h before the Sun, and is very low in the southeastern sky at sunrise.

Jupiter, in Gemini, rises shortly after sunset, and is setting by sunrise; it is at opposition on Dec. 27.

Saturn, in Sagittarius, is rapidly approaching conjunction by the end of the month, and is no longer visible. See also *Mercury* above.

Uranus and Neptune: see Mercury above; Uranus is in conjunction on Dec. 27.

1989			DECEMBER UNIVERSAL TIME	Min. of Algol	Config. of Jupiter's Satellites
	d	hm	_	hm	
Fri.	1	05	Neptune 4° N. of Moon Saturn 3° N. of Moon		1.0
Sat.	2	08	Venus 0.8° S. of Moon: occultation ¹		2.0
Sun.	3			4 07	3.0
Mon.	4				
Tue.	5				4.0
Wed.	6	01 26) First Quarter	0 56	5.0
Thu.	7				6.0
Fri.	8			21 45	
Sat.	9				1.0 - CD/
Sun.	10	13	Mercury 2° S. of Uranus		8.0
		23	Moon at perigee (361 309 km)		9.0
Mon.	11		Mercury at greatest hel. lat. S.	18 34	
Tue.	12	16 30	③ Full Moon		
Wed.	13	20	Jupiter 3° S. of Moon		11.0 \ \
Thu.	14	06	Geminid meteors	15 23	12.0
		09	Venus at greatest brilliancy (-4.7 ^m)		
Fri.	15	04	Mercury 3° S. of Neptune		13.0
Sat.	16	22	Mercury 2° S. of Saturn		14.0
Sun.	17			12 13	15.0
Mon.	18				$ A \rangle$
Tue.	19	23 54	C Last Quarter		16.0
Wed.	20	07	Ceres at opposition	9 02	17.0
Thu.	21	21 22	Winter solstice; winter beings		
Fri.	22	12	Ursid meteors		
	•••	19	Moon at apogee (405 219 km)		
Sat.	23	08	Mercury at greatest elong. E. (20°)	5 51	20.0
	~		Venus at ascending node		21.0
Sun.	24	17	14		
Mon.	25	1/	Mars 5° N. of Moon	2.40	21.0
Tue.	20		Antares 0.2° N. of Moon; occultation	2 40	23.0
weu.	21	14	Uranus in conjunction with Sun Jupiter et eppecition $(4, 166, AU, -2, 7^m)$		24.0
		14	Venue stationary		
Thu	20	23	Now Moon	22.20	25.0
Fri.	20	15	Mercury 1 7° N of Moon	25 29	26.0
гн.	29	15	Mars at descending node		27.0
Sat	30	10	Venus 2° N of Moon		
out.	50	16	Mercury stationary		
		23	Mars 5° N. of Antares		29.0
			Mercury at ascending node		30.0
Sun.	31			20 18	31.0
		1	1	1	د_د_

¹Visible in Asia except extreme W., Japan ²Visible in East Indies, Australasia, S. Pacific

Date	Appa	rent	UT Transit at	Orientation			
0" UT	α (198	89)δ	Greenwich	Р	Bo	L,	
		009041					
jan. I	18"45.9"	-23'01	12"03""38"	+2.0°	- 3.0*	10/.6	
6	19"07.9"	-22-32	12"05"55"	+0.4*	- 3.6	41.8	
11	19"29./"	-21'51	12"08"00"	- 2.8	-4.Z*	335.9	
16	19"51.3"	-20*59	12"09""50°	- 5.2	- 4 ./°	2/0.1	
21	20"12.6"	- 19°57'	12"11""23°	-7.5*	-5.1*	204.2	
26	20"33.5"	- 18° 4 6'	12"12"36s	-9.7°	- 5.6°	138.4°	
31	20"54.2"	- 17°27'	12°13°29°	-11.8°	-6.0°	72.6°	
Feb. 5	21°14.5"	- 16°00'	12°14°03°	- 13.8°	-6.3°	6.7°	
10	21°34.5"	-14°26'	12 ^h 14 ^m 16 ^s	- 15.7°	-6.6°	300.9°	
15	21 ⁵ 4.1	- 12°45'	12 ^h 14 ^m 10 ^s	- 17. 4°	-6.8°	235.1°	
20	22 ^h 13.4 ^m	-11°00'	12h13m45s	- 19.0°	-7.0°	169.2°	
25	22 ^h 32.5 ^m	-9°11'	12h13m04s	- 20.5°	-7.1°	103. 4 °	
Mar. 2	22 ^h 51.3 ^m	-7°18'	12 ^h 12 ^m 09 ^s	-21.8°	-7.2°	37.5°	
7	23°09.9"	-5°22'	12 ^h 11 ^m 02 ^s	-23.0°	-7.2°	331.6°	
12	23 ^h 28.4 ^m	- 3°25'	12h09m46s	-23.9°	-7.2°	265.8°	
17	23 ^h 46 7 ^m	- 1°26'	12h08m22s	-24.8°	-71°	199.9°	
22	0 ^h 04 9 ^m	+0°32'	1200 22	- 25 4°	-70°	133.9°	
27	0 ^h 23.1 ^m	+2°30'	12°00° 93°	-25.9°	-6.8°	68.0°	
Apr. 1	0 ^h 41.3 ^m	+ 4° 27'	12h03m51s	-26.2°	-6.5°	2.0°	
6	0 ^h 59.6 ^m	+6°22'	12h02m24s	-26.3°	-6.2°	296.1°	
11	1 ^h 17.9 ^m	+8°14'	12 ^h 01 ^m 02 ^s	-26.2°	- 5.9°	230.1°	
16	1 ^h 36.4 ^m	+ 10°02'	11 ^h 59 ^m 47 ^s	- 26.0°	-5.5°	164.1°	
21	1 ^h 55.0 ^m	+11°47'	11 ^h 58 ^m 40 ^s	-25.6°	-5.1°	98.0°	
26	2 ^h 13.7 ^m	+13°26'	11 ^h 57 ^m 45 ^s	- 25.0°	- 4 .6°	32.0°	
May 1	2°32 7"	+ 15°00'	11 ⁵ 7"03	-24.2°	- 4 2º	325 9°	
	2 ^h 51.9 ^m	+ 16°28'	11 56 343	-23.2°	- 3.6°	259.8°	
11	3 ^h 11 4 ^m	+ 17°49'	11 ^h 56 ^m 19 ^s	- 22 0°	-31°	193.7°	
16	3h31.0m	+ 19°03'	11 ^h 56 ^m 19 ^s	- 20 7º	-25°	127.6°	
21	3 ^h 51 0 ^m	+ 20°08'	11 ^h 56 ^m 32 ^s	- 19.2°	_2.) _2.0°	61 4°	
26	J J1.0 ∡ ^h 11 1 ^m	+21°05'	11 56 52	- 17.6	- 1 4 ⁰	255.20	
31	4 ^h 31.4 ^m	+21°53'	11°57°37°	- 15.8°	-0.8°	289.1°	
lune 5	4h51 0m	+ 226211	114500743	- 12 00	- 0 2 ⁰	222 Nº	
June 5	ユ 〕1.7″ 5h1つチm	722 JI	11 20 20	-13.7	-0.2	156 80	
10) 12.0" Eh22.2m	+23 00	11 77 23	-11.7	+U.4	10.0	
17	5°33.5°°	+2) 10	12"00"23"	- 7.5	+1.0	90.0°	
20)")4.1" (http:/	+25 20	12"01""50"	-/.0*	+1.0	24.4	
25	6"14.9"	+25 24	12"U2""34"	-5.4*	+2.2	518.2	
30	6"35.7"	+23°11'	12"03""36 ³	- 3.2°	+2.8°	252.1°	

SUN
EPHEMERIS

 \odot

Date	Арра	irent	UT Transit at	0	rientatio	on
0" UT	a (19	89)δ	Greenwich	Р	Bo	L _o
				0	0	
July 5	6"56.3"	+22°49	12"04""32"	-0.9	+3.3°	185.9°
10	7"16.8"	+22°16	12"05""19 ^s	+1.4°	+ 3.8°	119.7°
15	7"37.2"	+21°34'	12"05"55°	+ 3.6°	+ 4 .3°	53.5°
20	7"57.3"	+20°43'	12"06""19 ^s	+5.8°	+4.8°	347.4°
25	8 ^h 17.2 ^m	+19°43'	12°06°28°	+8.0°	+5.2°	281.2°
30	8 ^h 36.8 ^m	+18°34'	12°06°23°	+10.0°	+5.6°	215.1°
Aug. 4	8°56.3	+ 17°18'	12h06m03s	+12.0°	+6.0°	1 4 9.0°
7 9	9 ^h 15.4 ^m	+15°55'	12h05m28s	+13.9°	+6.3°	82.8°
14	9h34.3m	+14°26'	12h04m38s	+15.7°	+6.6°	16.8°
19	9°53.0"	+12°51'	12"03""34"	+17.3°	+6.8°	310.7°
24	10 ^h 11.5 ^m	+11°11'	12 ^h 02 ^m 19 ^s	+ 18 9°	+7.0°	244 6°
29	10 ^h 29.8 ^m	+9°27'	12 ^h 00 ^m 54 ^s	+20.3°	+7.1°	178.5°
Sent 3	10 ⁴ 7 9 ^m	+7°38'	11 ⁵ 59 ^m 20 ^s	+21.6°	+7.2°	112 5°
8	1106.0	+5°47'	11 ^h 57 ^m 39 ^s	+22.7	+7.2	46 4°
13	11 ^h 23.9 ^m	+ 3°53'	11 ^h 55 ^m 54 ^s	+23.7°	±7.2°	340 4º
18	11 23.7 11ha1 Qm	+ 1°58'	11 JJ J1 11 ^h 54m073	+24.6°	+7.10	274 4º
23	11 41.7 11 ^h 50 8 ^m	+1)0 ₊0⁰01'	11 52 07	+2-1.0	+7.1 +7.0°	2/ 1.1
25	12 JJ.0	- 1°56'	11 52 20	+2J.2	+/.0	142 40
20	12 17.0	-1)0	11 JU JO	+2).0	+0.0	192.9
Oct. 3	12 * 35.9**	- 3°52'	11 *49* 01*	+26.1°	+6.6°	76. 4 °
8	12 ^h 54.1 ^m	-5°47'	11 *47 *33*	+26.3°	+6.3°	10.5°
13	13°12.5"	-7°41'	11 h46 m1 4 s	+26.3°	+6.0°	304.5°
18	13 ^h 31.1 ^m	-9°32'	11 °45°09 °	+26.1°	+5.6°	238.6°
23	13°50.0°	-11°19'	11 *44**20 *	+25.7°	+5.2°	172.6°
28	1 4 h09.1m	- 13°02'	11 ^h 43 ^m 48 ^s	+25.1°	+4.8°	106.7°
Nov 2	14 ^h 28.6 ^m	- 14°40'	11 ^h 43 ^m 35 ^s	+24 3°	+ 4 3 ⁰	4 0 7º
7	14h48 4m	- 16°12'	11hd3md2s	+23 4°	+3.7°	334 8º
12	150.1	- 17º38'	11 13 12 11haam10s	+23.1 +22.2°	+3.20	268 Q ⁰
17	15 ^h 20 0 ^m	- 18°56'	11 ^h 44 ^m 50 ^s	+ 20 8°	+2.6°	200.7
22	15 29.0	- 10 J0	11 TT 37 11h46m005	+ 10.20	+2.0	127 10
22	15 47.7 16 ^h 11.0 ^m	-20 0) -21°05'	11 40 07 11 hA7m2Qs	+17.5 +17.6°	+2.0	13/.1 71.2º
27	10 11.0	-21 0)	11 4/ 37	+17.0	71.7	/1.2
Dec. 2	16 ^h 32.5 ^m	-21°55'	11 *49**27 *	+15.7°	+0.7°	5.3°
7	16 ^h 54.3 ^m	-22°35'	11 ⁵ 1 ³⁰ 30	+13.7°	+0.1°	299. 4 °
12	17°16.2°	-23°04'	11 ⁵³ 45	+11.6°	-0.5°	233.5°
17	17°38.3	-23°21'	11 ⁵⁶ 08 5	+ 9.3°	-1.2°	167.6°
22	18°00.5	-23°27'	11"58"37"	+ 7.0°	- 1.8°	101.8°
27	18 ^h 22.7 ^m	-23°20'	12h01m06s	+ 4 .6°	-2.4°	35.9°
32	18 ^h 44.8 ^m	-23°03'	12"03""32s	+ 2.1°	- 3.0°	330.0°

SUNDIAL CORRECTION

The "Transit at Greenwich" time on the previous two pages may be used to calculate the sundial correction at the observer's position. e.g. To find the correction at Winnipeg on August 16, 1989: At Greenwich the Sun transits at $12^{h}04^{m}38^{\circ}$ on August 14 and at $12^{h}03^{m}34^{\circ}$ on August 19. Thus, to the nearest minute, on August 16 at both Greenwich and Winnipeg the Sun will transit at $12^{h}04^{m}$ mean solar time, or $12^{h}33^{m}$ CST, since Winnipeg has a longitude correction of $+29^{m}$ (see page 62). Thus a 4^{m} correction must be added to the reading of a simple sundial to obtain mean solar time.

A figure accurate to a second or two can be obtained by interpolating for longitude. The interpolated transit time at Greenwich for August 16 is $12^{h}04^{m}12^{s}$, the daily change in the time being $-12^{s}8$. Adjusting this for the longitude of Winnipeg: $12^{h}04^{m}12^{s} - (12^{s}8 \times 6^{h}29^{m} \div 24^{h}) = 12^{h}04^{m}09^{s}$. Thus the sundial correction is $4^{m}09^{s}$. To find the standard time of the Sun's transit to the nearest second or two, the observer's longitude must be known to 10'' or better. e.g. Suppose an observer in Winnipeg is at longitude $97^{\circ}13'50''$ W, or $6^{h}28^{m}55^{s}$ W of Greenwich. The time of transit will be $12^{h}04^{m}09^{s} + 28^{m}55^{s} = 12^{h}33^{m}04^{s}$ CST ($13^{h}33^{m}04^{s}$ CDT).

ORIENTATION OF THE SUN

The tables on the previous two pages give three angles which specify the orientation of the Sun. P is the position angle of the axis of rotation, measured eastward from the north point on the disk. B_0 is the heliographic latitude of the centre of the disk, and L_0 is the heliographic longitude of the centre of the disk, from Carrington's solar meridian. measured in the direction of rotation (see diagram, and also note the table below). The rotation period of the Sun depends on latitude. The sidereal period of rotation at the equator is 25.38d.

 (\cdot)

SOLAR ROTATION (SYNODIC)

DATES OF COMMENCEMENT (UT, $L_0 = 0$) OF NUMBERED SYNODIC ROTATIONS

No Comn	nences	No Commences	No Commences		
1810 ('88) Dec.	12.84	1815 Apr. 28.42	1820Sept.11.52		
1811 ('89) Jan.	9.17	1816 May 25.64	1821Oct. 8.79		
1812Feb.	5.51	1817 June 21.85	1822Nov. 5.09		
1813Mar.	4.85	1818 July 19.05	1823Dec. 2.40		
1814Apr.	1.16	1819 Aug. 15.27	1824Dec. 29.73		

SOLAR ACTIVITY

By V. GAIZAUSKAS AND J. W. DEAN

The graph below depicts the pulse-beat of solar activity throughout cycle 21. At each rotation of the Sun, a vertical bar joins the maximum and minimum values of daily solar microwave flux measured for that rotation at a wavelength of 10.7 cm. This display emphasizes the sporadic nature of solar activity. The length of each bar and its height above the background ("quiet-Sun") level are both highly variable from one rotation to the next. The full curve through the vertical bars traces the mean microwave flux for each rotation. Microwave and sunspot variability are compared in the same display. The stippled overlay outlines the area between maximum and minimum values per rotation of the daily International Sunspot Number. The vertical scales of 10.7 cm flux (right) and of sunspot number (left) are adjusted so that zero sunspot number corresponds to the microwave flux density at sunspot minimum (66 solar flux units*).

The microwave flux and sunspot number follow the same trends but they do not correspond exactly because their physical origins, while related, are different. The microwave flux at times of very high sunspot activity can drop down to a low level which is almost the same for several rotations in succession (e.g. around rotation 1700 in mid-1980). The quasi-oscillatory behavior in the mean microwave emission results from the uneven distribution of active regions with solar longitude. Large active regions which are rich in microwave emission tend to be rejuvenated near one or just a few longitudes while intermediate zones tend to be free of activity for many rotations of the Sun.

* 1 solar flux unit = 10^{-22} W m⁻² Hz⁻¹

The minimum between cycles 21 and 22, determined from averages of microwave flux or sunspot number smoothed over many rotations of the Sun, occurred in September 1986 (rotation 1779). Activity has been rising substantially faster in Cycle 22 than in Cycle 21 and has led to speculation that the new cycle may compete with Cycle 19 (maximum at 1957.9) for reaching the highest peak of solar activity in this century.

High levels of solar activity in mid-March and mid-April 1988 were accompanied by strong auroral displays which will become increasingly frequent during 1988–89. Aurorae ("Northern Lights") are caused by the precipitation into the ionosphere of energetic charged particles from a vast reservoir enveloping Earth, the *magnetosphere*. Seen from above (e.g. from the Canadian ISIS satellites) aurorae are concentrated in elliptical bands called *auroral ovals* that ring Earth's magnetic poles. When the Sun is calm, the ovals shrink to nearly circular rings centred close to the geomagnetic poles. As the Sun grows more active, the ovals advance toward lower latitudes (e.g. in Canada to Churchill, Man. and to Yellowknife, N.W.T.) and become more eccentric with respect to the geomagnetic poles. During periods of very intense solar activity, the ovals shift closer still towards the Equator (e.g. down to the southern United States for the northern oval). For an observer at the ground, the shifting patterns of the aurora over the night sky reflect the changes in the magnetic and electric fields along the paths of electrons streaming toward Earth.

The magnetospheric reservoir of particles is created by a complicated interaction between Earth's magnetic field and the *solar wind*, a magnetized plasma that flows continuously from the Sun even in the absence of solar activity. The solar wind has considerable structure; the highest speed streams originate in *coronal holes*, extended regions of low density and temperature in the solar corona. Near sunspot maximum, coronal holes are nearly absent except in small areas near the Sun's poles. But during the declining phase of the cycle, holes form rapidly and live longer (e.g. up to 10 solar rotations). They are firmly associated with recurrent 27-day geomagnetic disturbances. The normal balance between the solar wind and the magnetosphere can be suddenly upset (e.g. by changes in the magnitude and direction of the magnetic field 'blown' towards Earth by the solar wind, by changes in the wind's speed, or by a major solar flare) and can lead to an *auroral sub-storm*. But universal agreement is still lacking on the exact mechanism which triggers sub-storms.

 (\cdot)

The atoms and molecules, mostly those of oxygen and nitrogen, that radiate the shimmering light of the aurora are terrestrial in origin. They become luminous at heights between 100 and 400 km through collisions with energetic particles that have leaked out of the magnetosphere during a sub-storm. A faint auroral display may not exceed the brightness threshold of colour perception for vision; it will be sensed as white. Most aurorae appear green or blue-green with occasional faint patches of pink or red. The green colour is due to excited atoms of oxygen radiating at a wavelength of 558 nm; the blue is produced by ionized nitrogen molecules radiating in a group of spectral bands between 391 and 470 nm. The green and blue emissions are concentrated near an altitude of 110 km. Rare, all-red aurorae have been measured to occur between 200 and 400 km; the red colour is due to the 630 and 636 nm lines of atomic oxygen, and is normally faint (because of the low concentration of oxygen at that altitude) unless the influx of particles is very great. Red emission also occurs at lower altitudes, near 90 km, where the spectrum can be dominated by emission in a series of bands between 650 and 680 nm.

Editor's Note: The above sketches illustrate standard auroral forms. This simplified classification was devised for visual observers during the International Geophysical Year (IGY) three decades ago (1957–58). Although there is great variety in auroral patterns, the sketches emphasize fundamental features and minimize variations which depend on the location of the observer. The light of the aurora is emitted by the upper fringes of Earth's atmosphere (heights of 100 to 400 km) as it is bombarded by electrons of the solar wind (solar wind protons contribute a smaller amount of energy). The modification of the trajectories of these particles by Earth's magnetic field restricts activity to high latitudes, producing the "aurora borealis" (in the Northern Hemisphere) and the "aurora australis" (in the Southern Hemisphere). The wavelengths of four, atmospheric, molecular and atomic emission lines which can contribute strongly to auroral light are included in the list on p. 18. Whether aurorae appear coloured depends on their luminance (light which is too faint will not activate colour vision and appears white). When the luminance is sufficiently great, the relative contributions of blue, green, and red emission lines can result in a variety of auroral hues. For a reference book on the aurora, Majestic Lights, by R. H. Eather (American Geophysical Union, Washington, 1980) is highly recommended. A beautiful, unique, half-hour video tape of the aurora is available from: The Aurora Color Television Project, Geophysical Institute, University of Alaska, Fairbanks, AK 99775-0800, USA, for \$32.95 US (specify 1/2" VHS or 1/2" beta).

TIMES OF SUNRISE AND SUNSET

The tables on the next three pages give the times of sunrise and sunset at four day intervals for places ranging from 20° to 60° north latitude. "Rise" and "set" correspond to the upper limb of the Sun appearing at the horizon for an observer at sea level. The times are local mean time (LMT) for the Greenwich meridian (i.e. UT at 0° longitude), although for North American observers the stated values may be read directly as LMT at the observer's position without significant error. The values may be interpolated linearly for both non-tabular latitudes and dates. Also, it is possible to extrapolate the table beyond the 20° and 60° latitude limits a few degrees without significant loss of accuracy.

The standard time of an event at a particular location must take account of the observer's longitude relative to his or her standard meridian. The table below lists the latitude and the longitude correction (in minutes of time) for a number of cities and towns. e.g. To find the time of sunrise at Toronto on February 17, 1989: The latitude is 44°, and from the table the time of sunrise at 0° longitude is 06:56 UT. Thus at Toronto the time of sunrise will be approximately 06:56 LMT. Toronto is in the Eastern time zone (E) and is 18 minutes of time west of the standard meridian for this zone (75°W). Thus the sunrise time of 06:56 LMT is equivalent to 07:14 EST. Corrections for places not listed below may be found by converting the difference between the longitude of the place and that of its standard meridian to time (15° = 1 h), the correction being positive if the place is west of its standard meridian, negative if east. Finally, *it should be emphasized* that the observed time will often difference in height between the observer and the actual horizon.

CANADIAN CITIES AND TOWNS					AMERICA	N CITI	IES	
	Lat.	Corr.		Lat.	Corr.		Lat.	Согт.
Baker Lake	64°	+24C	Peterborough	44°	+13E	Atlanta	34°	+37E
Brandon	50	+40C	Prince Albert	53	+63C	Baltimore	39	+06E
Calgary	51	+36M	Prince George	54	+11P	Birmingham	33	-13C
Charlottetown	46	+12A	Prince Rupert	54	+41P	Boston	42	-16E
Chicoutimi	48	-16E	Quebec	47	-15E	Buffalo	43	+15E
Churchill	59	+17C	Regina	50	+58C	Chicago	42	-10C
Corner Brook	49	+22N	Resolute	75	+20C	Cincinnati	39	+38E
Cornwall	45	-01E	Rimouski	48	-26E	Cleveland	42	+26E
Edmonton	54	+34M	St. Catharines	43	+17E	Dallas	33	+27C
Fredericton	46	+27A	St. Hyacinthe	46	-08E	Denver	40	00M
Gander	49	+08N	Saint John, N.B.	45	+24A	Fairbanks	65	-10A
Goose Bay	53	+02A	St. John's, Nfld.	48	+01N	Flagstaff	35	+27M
Granby	45	-09E	Sarnia	43	+29E	Indianapolis	40	-15C
Halifax	45	+14A	Saskatoon	52	+67C	Juneau	58	+58P
Hamilton	43	+20E	Sault Ste. Marie	47	+37E	Kansas City	39	+18C
Kapuskasing	49	+30E	Sept Iles	50	-35E	Los Angeles	34	-07 P
Kenora	50	+18C	Sherbrooke	45	-12E	Louisville	38	-17C
Kingston	44	+06E	Sudbury	47	+24E	Memphis	35	00C
Kitchener	43	+22E	Sydney	46	+01A	Miami	26	+21E
Lethbridge	50	+31M	The Pas	54	+45C	Milwaukee	43	-09C
London	43	+25E	Thunder Bay	48	+57E	Minneapolis	45	+13C
Medicine Hat	50	+23M	Timmins	48	+26E	New Orleans	30	00C
Moncton	46	+19A	Toronto	44	+18E	New York	41	-04E
Montreal	46	-06E	Trail	49	-09P	Omaha	41	+24C
Moosonee	51	+23E	Trois Rivieres	46	-10E	Philadelphia	40	+01E
Moose Jaw	50	+62C	Vancouver	49	+12P	Phoenix	33	+28M
Niagara Falls	43	+16E	Victoria	48	+13P	Pittsburgh	40	+20E
North Bay	46	+18E	Whitehorse	61	00Y	St. Louis	39	+01C
Ottawa	45	+03E	Windsor, Ont.	42	+32E	San Francisco	38	+10P
Owen Sound	45	+24E	Winnipeg	50	+29C	Seattle	48	+09P
Pangnirtung	66	+23A	Yarmouth	44	+24A	Tucson	32	+24M
Penticton	49	-02P	Yellowknife	62	+38M	Washington	39	+08E

 \odot

+54° +60°	RISE SET RISE SET		h m m h m h m h m h m h m h m h m h m h m	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	ISE SET RISE	m h m h m 59 16 06 8 19	53 16 10 8 17 56 16 24 8 17 56 16 26 8 17 57 16 27 8 12 56 16 21 8 13 50 16 31 8 08 44 16 37 8 08 37 16 44 7 7 37 16 51 7 57	58 10 10 8 17 56 16 28 16 8 17 57 16 26 31 8 8 58 16 26 8 12 8 50 16 31 8 03 37 16 51 7 7 31 16 51 7 7 31 16 51 7 7 31 16 51 7 7 31 16 51 7 7 31 16 51 7 7 31 16 54 7 36 31 16 54 7 36 31 16 54 7 36 31 16 7 7 36 31 16 7 7 36 32 17 28 7 12 33 17 28 7 12 34 17 36 54 7 48 17 39 6 54	58 16 10 8 17 56 16 26 8 17 57 16 51 8 18 46 16 31 8 88 37 16 51 7 8 37 16 51 7 8 37 16 51 7 8 31 16 51 7 8 31 16 58 7 44 13 16 58 7 44 13 16 58 7 44 13 17 58 7 44 13 17 58 7 20 56 17 23 7 7 57 17 18 17 7 58 17 26 54 57 17 57 7 58 17 57 7 20 58 17 57 6 35 58 17 56 54 56 58 36 56 57 56 58 36 58 56 55
ET RISE SI	ų m ų m	30 7 59 10 33 7 59 16 37 7 58 16 42 7 56 16 46 7 54 16	51 7 50 16 57 7 46 16 02 7 42 16 07 7 37 16	51 7 50 16 57 7 50 16 57 7 46 16 007 7 37 16 13 7 31 16 13 7 31 16 13 7 31 16 23 7 13 13 23 7 13 16 23 7 13 17 33 16 5 17 34 6 56 17 35 7 13 17 36 6 56 17 46 6 56 17	53 7 51 7 50 15 57 7 50 16 16 16 57 7 37 16 16 16 57 7 37 16 13 7 16 13 7 37 16 13 7 31 16 23 7 11 13 7 31 16 17 23 7 11 11 13 13 13 13 23 7 11 11 13 13 13 246 6 56 13 13 13 25 6 34 17 18 17 26 5 5 13 17 13 26 5 5 13 17 26 5 5 13 17 27 5 39 18 18 26 5 5 13 17 26 5 5 13 13 27 5 13 14 14 28 13 14 14 14 28 13 14
RISE SE		7 335 16 7 335 16 7 332 16 7 32 16 7 1 30 16 6	7 24 17 (7 2 7 2 7 2 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 6 5 6 41 17 1 6 41 17 1 6 41 17 1 6 41 17 1 17 1 17 1 17 1	7 7
UISE SET		ап п h п 7 21 16 43 7 22 16 46 7 22 16 50 7 21 16 53 7 21 16 53 7 17 17 07 7 17 07 7 07	7 14 17 12 7 11 17 17	7 14 17 12 7 11 17 17 7 07 17 21 7 07 17 21 6 53 17 26 6 42 17 45 6 42 17 45 6 37 17 49	7 14 17 12 7 17 17 17 6 58 17 21 6 653 17 26 6 53 17 26 6 53 17 31 6 6 31 17 49 6 31 17 54 6 31 17 54 6 31 17 54 6 31 17 54 6 31 17 55 6 31 17 54 6 31 17 54 6 31 17 55 6 31 17 55 7 55 7 55 7 55 7 55 7 55 7 55 7
E SET F		b 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 17 27	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 7 2
T RISF		арана 3252228 225222 22522 22522 22522 22522 22522 22522 22522 225222 2252 225 2252 2552 2552 2552 2552 2552 2552 2552 2552 2552 2552 2	35 7 00	33 52 66 66 67 66 67 66 70 70 71 72 73 74 75	35 36 35 36 35 36<
_	SE SE	555 557 117 555 557 117 557 557 117 557 557 117 557 557 557 557 557 557 557 557 557 55	. 11 20	22 24 24 24 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25	5 5 5 5 5 5 1 5 5 1 5
	SET RI	Image: 100 min	, , ,	7 53 7 53 7 55 7 55 8 01 6 6 8 03 6 6 8 03 6 6 8 03 6 6 8 03 6 6 8 03 6 6 8 03 7 55 6 6 7 55 7 55 6 6 7 55 7 55 8 03 8 03 8 03 8 03 8 03 8 03 8 03 8 03	3 3
RISE		h h m 6 34 1 6 33 1 6 33 1 6 33 1 6 38 1 6 38 1 7 6 38 1 6 38 1 7 6 38 1 6 38 1 7 6 38 1 7 6 5 8 6 38 1 7 6 5 8 6 38 1 7 6 6 1 8 6 7 7 6 7 8		6 33 17 6 33 17 6 29 17 6 29 17 6 29 17 6 29 17 6 21 17 7 17 7 17 7 17 7 17 7 17 7 17 7 1	Signal Signal<
EVENT		Jan. –2 6 10 11 14 13 13 25 26 30		Feb. 3 11 15 19 23 23	Feb. 3 11 11 11 11 12 13 13 13 13 13 13

 \odot

		Σ	≓ 64	Ч.	V
LAT.	EVENT	ay 2 6 114 128 30 30 30	ne 3 11 19 23 23	ly 252113951 2822113951	ug. 106 2 2021 302 302 302 302 302 302 302 302 302 302
÷	RISE	ћ 555555 5223 555555 5223 50223 50223 50223 50223 50223 50223 50223 50223 50223 50223 50223 50223 50223 50223 50223 50223 50223 50223 50255 505555 505555 505555 505555 505555 505555 5055555 5055555 505555 5055555 5055555 5055555 50555555	5555555 23210 23210 23210 23210 23210 23210 23210 23210 23210 23210 23210 23210 23210 23210 23210 23210 23210 2320 232	\$25 \$25 \$33 \$33 \$33 \$33 \$33 \$33 \$33 \$33 \$33 \$3	8888944 88894 88944 8944 8944 8944 8944
20°	SET	h m 18 24 18 25 18 25 18 27 18 28 18 33 18 33	18 36 18 38 18 39 18 41 18 41 18 42 18 42 18 42 18 42	18 43 18 43 18 43 18 43 18 43 18 42 18 42 18 42 18 42 18 41 18 41 18 41 18 41 18 43 18 43	18 37 18 34 18 34 18 32 18 23 18 20 18 20 18 20 18 17
÷	RISE	h II 5 16 5 13 5 07 5 03 5 03 5 00 5 00	5 5 4 4 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	× 222 × 232 × 232 × 232 × 24 × 22 × 22 × 23 × 23 × 23 × 23 × 23 × 23
30°	SET	h m 18 38 18 40 18 43 18 44 18 44 18 53 18 53	18 57 18 59 19 01 19 04 19 04 19 05	19 05 19 05 19 03 19 02 19 03 19 03 10 03 10 03 10 03 10 03 10 03 10 03 10 00 10 00 100 1	18 53 18 49 18 46 18 46 18 46 18 38 18 33 18 33 18 33
+	RISE	h II 5 08 5 08 5 08 5 04 5 7 4 8 57 4 8 52 4 8 52 4 8 52	44444444444444444444444444444444444444	4 4 4 4 50 4 4 5 4 5 5 5 5 5 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0	5 5 5 5 5 10 5 5 5 5 5 10 5 31 5 31 5 31 5 31 5 31 5 31 5 31 5 31
35°	SET	h II 18 46 18 49 18 53 18 55 18 56 19 02 19 05 19 07	19 10 19 12 19 14 19 15 19 17 19 18 19 18	19 18 19 17 19 15 19 13 19 13 19 09 19 09	19 02 18 58 18 54 18 50 18 50 18 45 18 45 18 35 18 35 18 35
+	RISE	h H 59 4 54 4 54 4 50 4 46 4 42 4 33 4 33 4 33 4 33 4 33 4 33 4 33	4 4 33 4 4 33 4 4 33 4 33 33 33	4 4 4 4 4 4 33 4 4 4 4 4 4 3 33 5 5 2 8 4 5 4 8 5 5 2 8 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
40°	SET	h m 18 56 19 00 19 03 19 03 19 11 19 15 19 18 19 18	19 24 19 24 19 29 19 30 19 33 19 33 19 33	19 33 19 32 19 31 19 29 19 27 19 27 19 21 19 17	19 13 19 08 19 08 19 03 18 53 18 41 18 41 18 35
+	RISE	h m 4 4 50 4 4 45 4 4 40 4 21 4 21 4 21 4 21 4 21 4 21 4 21 4 21	4 19 4 14 4 14 7 14 7 19 19 19 19	4 4 21 4 4 25 4 4 4 29 4 4 40 4 50 4 50 4 50 4 50 4 50 4 50 4	5 5 5 5 4 4 5 5 5 5 5 5 5 5 2 1 5 5 5 2 1 5 5 2 1 5 5 2 1 5 5 2 1 5 5 5 2 1 5 5 5 5
4°	SET	ћ 19 04 19 04 19 14 19 22 19 22 19 30 19 34	19 37 19 40 19 43 19 45 19 45 19 47 19 47	19 44 19 46 19 42 19 33 19 33 19 33 19 33 19 33 19 33	19 23 19 18 19 18 19 06 19 06 18 53 18 53 18 53 18 53
ļ Ŧ	RISE	ъ 37 37 37 37 37 37 37 37 37 37 37 37 37	× 22 × 22 × 20 × 20	3 55 3 55 4 01 4 10 4 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 8 5 5 5 5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
50°	SET	h 1920 1926 1933 1938 1949 1949 1954 1954 1954	20 02 20 06 20 09 20 13 20 10 20 100	20 12 20 12 20 09 20 06 19 53 19 53 19 53	19 41 19 35 19 28 19 28 19 28 19 28 19 28 19 28 19 28 19 28 19 28 19 28 19 28 19 28 19 28 19 28
+	RISE	н 444 3333 414 414 314 414 314 314 314 31	333 3328 3328 3333 3333 3333 3333 3333	082550 80250 802550 80250 800 80050 800 80050 800 80050 8000 80050 80050 80050 80050 80050 8000 800500 80050 8000	5 5 5 0 4 4 4 4 4 4 4 5 0 4 7
14°	SET	h II 19 33 19 44 19 48 19 48 20 01 20 03 20 14 20 14 20 14 20 14	20 28 20 28 20 33 20 36 20 36 20 36 20 36 20 36 20 36 20 36 20 36 20 37 20 36 20 28 20 28 20 20 28 20 28 20 20 28 20 28 20 20 28 20 20 28 20 20 20 20 20 20 20 20 20 20 20 20 20	20 33 20 33 20 30 20 26 20 16 20 16 20 16 20 16 20 16 20 16 20 16 20 16 20 16 20 26 20 26 20 37 20 26 20 37 20 26 20 26 20 20 26 20 20 20 20 20 20 20 20 20 20 20 20 20	19 57 19 49 19 24 19 25 18 56
Ŧ	RISE	ъ 2 2 3 3 3 3 3 3 5 5 B 2 2 3 3 3 3 3 5 5 B 2 2 3 3 3 3 5 5 B 2 2 3 3 3 3 5 5 B 2 3 3 3 3 5 5 B 2 3 3 3 3 3 3 5 5 B 2 3 3 3 3 3 3 3 3 5 5 B 2 3 3 3 3 3 3 3 5 5 B 2 3 3 3 3 3 3 3 3 3 5 5 B 2 3 3 3 3 3 3 3 3 3 3 5 5 B 2 3 3 3 3 3 3 3 3 3 3 5 5 F 2 3 3 3 3 3 3 3 3 3 3 3 5 F 2 3 3 3 3 3 3 3 3 5 F 2 3 3 3 3 3 3 3 5 F 2 3 3 3 3 3 3 3 5 F 2 3 3 3 3 3 3 5 F 2 3 3 3 3 3 5 F 2 3 3 3 5 F 2 3 3 3 5 F 2 3 3 5 F 2 3 3 5 F 2 3 5 F 2 3 5 F 2 5 5	22222222222 33333332222222223333333333	3345533 3345533 3345533 3345533 33455 34555 34555 34555 34555 34555 34555 34555 34555 34555 34555 34555 345555 345555 345555 345555 345555 3455555 3455555 3455555 3455555555	86032112249 56032112249 56032112249
60°	SET	h 20 20 20 20 20 20 20 20 48 20 20 20 20 20 20 10 48 20 20 20 20 20 20 20 20 20 20 20 20 20	21 11 21 22 21 22 21 22 21 22 21 23 21 23	21 25 21 25 21 21 21 17 21 17 20 47 20 38 20 38	20 28 20 18 20 18 19 56 19 33 19 33 19 22 19 22 19 10

SUN

6	SET	h m 18 58 18 58 18 46 18 34 18 22 18 09 17 57 17 57	17 33 17 21 17 21 16 57 16 57 16 34 16 34 16 23	16 02 15 52 15 42 15 33 15 33 15 17 15 17 15 10 15 04	14 59 14 56 14 56 14 54 14 54 15 00 15 00
9+	RISE	н 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	7 7 6 6 5 15 7 7 6 6 24 7 7 6 4 4 4 4 4 5 7 6 7 4 4 4 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 7 24 7 35 8 15 8 24 8 33	9 00 9 00 9 00 9 00 9 00 9 00 8 5 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4
\$	SET	h m 18 46 18 36 18 26 18 26 18 16 17 57 17 57	17 37 17 27 17 17 17 17 17 08 16 58 16 49 16 41 16 32	16 24 16 16 16 09 16 03 15 57 15 51 15 47 15 43	15 40 15 33 15 33 15 33 15 41 15 44 15 44
+ Y	RISE	н 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 02 6 16 6 31 6 33 7 5 7 7 7 6 7 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7	7 7 7 7 7 7 7 02 18 7 4 40 84 7 4 40 84 7 4 40 84 7 4 40 84 7 4 40 84 7 4 40 84 7 40 84 7 40 84 7 40 84 7 40 84 84 84 84 84 84 84 84 84 84 84 84 84	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 0 0 0 0
0	SET	h m 118 40 118 23 118 23 117 56 117 56 117 56	17 39 17 30 17 22 17 13 17 05 16 57 16 57 16 57	16 35 16 29 16 29 16 23 16 17 16 17 16 08 16 08 16 05	16 02 16 00 16 000 16 00 16 00 10000000000
+5	RISE	н ^н 5 5 5 5 5 5 5 5 5 30 8 4 2 6 5 5 5 3 30 8 4 2 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6 00 6 12 6 33 7 33 7 4 7 4 7 6 7 3 7 7 7 0 6 0 6 0 6 0 6 0 7 0 6 0 7 0 6 0 7 0 6 0 7 0 6 0 7 0 6 0 6 0 6 0 7 0 6 0 7 0 7 0 6	6 51 6 58 6 58 7 11 7 24 7 33 7 33 7 33	7 7 7 7 7 7 7 4 4 6 7 7 7 7 7 4 9 5 3 3 3 4 9 5 7 7 7 7 5 3 3 9 6 7 7 7 7 7 7 7 9 6 7 7 7 7 9 7 9 7 9
°4	SET	h m 18 33 18 25 18 18 18 11 17 80 17 49	17 41 17 34 17 27 17 20 17 13 17 07 16 55	16 49 16 49 16 33 16 33 16 31 16 28 16 28 16 28	16 22 16 22 16 22 16 23 16 24 16 29 16 29
+	RISE	н 7 2 2 2 2 2 2 1 7 2 2 2 2 2 2 2 1 7 2 2 2 2 2 2 2 2 1 7 2 2 2 2 2 2 2 2 1 7 2 2 2 2 2 2 2 2 2 1 7 2 2 2 2 2 2 2 2 2 1 7 2 2 2 2 2 2 2 2 2 1 7 2 2 2 2 2 2 2 2 2 1 7 2 2 2 2 2 2 2 2 2 1 7 2 2 2 2 2 2 2 2 2 1 7 2 2 2 2 2 2 2 2 2 2 1 7 2 2 2 2 2 2 2 2 2 2 1 7 2 2 2 2 2 2 2 2 2 2 1 7 2 2 2 2 2 2 2 2 2 2 2 2 1 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 222 6 222 6 222 6 222 6 222 6 222 6 222 6 222 6 222 7 2 6 222 7 2 6 222 7 2 6 2 7	7 7 7 6 5 3 3 8 6 5 3 3 8 7 7 9 6 5 3 3 8 1 3 9	7 22 7 25 7 33 7 33 7 35
.0	SET	h H 18 29 18 20 18 16 18 09 18 09 17 56 17 56	17 43 17 36 17 30 17 30 17 24 17 18 17 12 17 07 17 01	16 57 16 57 16 58 16 48 16 45 16 33 16 33 16 33	16 35 16 35 16 35 16 35 16 36 16 40 16 42 16 45
+	RISE	н 855555555 841 728 842 852 852 852 852 852 852 852 852 852 85	<pre>5 56 6 00 6 02 6 12 6 21 7 25 6 22 7 25 6 22 7 25 7 25 6 22 7 25 6 22 7 25 6 20 6 22 7 25 6 20 6 20 6 20 7 25 6 20 6 20 6 20 6 20 6 20 6 20 6 20 6 20</pre>	6 33 6 33 6 34 6 33 6 33 7 01 7 01	7 220 22 22 22 22 22
5°	SET	h H 118 19 118 19 118 13 118 01 117 56 117 56	17 44 17 33 17 33 17 28 17 28 17 13 17 13 17 09	17 05 16 58 16 58 16 53 16 53 16 53 16 49 16 49	16 48 16 48 16 48 16 50 16 50 16 55 16 56
+	RISE	н 8 8 8 8 8 8 8 8 8 4 8 8 8 8 8 8 8 8 8 8	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 01 1 6 6 01 1 1 1 1 1 1 1 1 1 1 1 1 1	6 22 6 22 6 23 6 33 6 41 7 6 45 6 45 6 45 6 45 6 45 6 45 7 6 7 6 7 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7	7 2 2 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
0	SET	h m 18 15 18 15 18 11 18 11 18 06 18 01 17 51 17 51	17 46 17 46 17 36 17 36 17 32 17 27 17 23 17 23 17 19	17 00 17 00 10 00000000	17 00 17 00 10 00 100 1
+	RISE	п 855555555 744 744 75 75 75 75 75 75 75 75 75 75 75 75 75	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 15 6 18 6 21 6 21 6 31 6 33 6 33 7	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
00	SET	h m 18 14 18 10 18 06 18 03 17 59 17 55 17 55	17 48 17 45 17 45 17 38 17 38 17 33 17 32 17 32 17 27	17 25 17 25 17 23 17 22 17 20 17 19 19	17 20 17 21 17 22 17 22 17 22 17 23 17 33
+	RISE	h 84 84 84 84 84 84 85 84 84 85 84 84 85 84 84 84 84 84 84 84 84 84 84 84 84 84	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6 02 6 06 6 06 6 11 6 11 6 13 6 13 6 13 7 10 7 10 7 10 7 10 7 10 7 10 7 10 7 10	6 2 2 3 2 8 8 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AT.	VENT	11 15 19 23 23	2951113 2951212 295122	10 30 30 30 30 30 30 30 30 30 30 30 30 30	
	ш	Sep	Oct	Nov	Dec

SUN

This table gives the beginning of morning and ending of evening astronomical twilight (Sun 18° below the horizon) in UT at the Greenwich meridian. For observers in North America, the times may be treated in the same way as those of sunrise and sunset (see p. 62).

TWILIGHT

-									
	E.	848 18 18 37 18	1241341	05 29 29	:::::	::: ::: 27	84848	85 59 40 40 40	843
	E	478888	52825	33	:::::	5: : : :	128895	118 118 117 118	111
99			80000	0.4 · · ·			80800	*****	0.00
	N N	-00000	042000	84 · · ·		· · · · ·	N8%84	42848	222
	ž								
	ш	E8=24%	11 11 11 11 11	32688	:::::	: :488	4 7468	%≈\$%%	52 26 27
<u>.</u>	EV	- <u>~ 2 2 2 2 2 2</u>	66688	: 3355	:::::	5555: :	86968	118 118 117 118	17 18
+54	7	- 9 9 9 F O	m01500	C-1 00 4 ·		090	800440	0.840-	000
	OR	-0004m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	· 0.425			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	40000	000 999
	Σ	-		· · · · · ·					
ŀ	Ë	E27258	<u>~</u> 8482	48%84	89 : : : :	88222	21822	£2882	58 11 03
ŝ	ш	4 22 22 22 22 22	55522	82288	: : : : 53	82228	86668	12881	181
Ŧ	ż	E88248	82 E F F F F F F F F F F F F F F F F F F	51225 1422 1222 1222 1222 1222 1222 1222	:::::	84448	31 21 25 32 05	52225	880
	MOH	⁴ 00000	v 4 4 4 w	600	• : : : :	446	ωω 4 44	4 vv vv vv	\$ \$ \$
		E 2 2 8 5 8	1222321	34882	84198	\$E=88	85285	22288	8128
	EVE	4 2 2 2 2 2 2 2	55558	88855	222222	88555	0266668	<u>8888888</u>	<u>8888</u>
4		-0-00	D 01 # 10 #		1010-100	200000	0.01/0 77		+0-
	ORN	- 200000 E200449		40840	88888	24818	48544	88788 88	442
	ž								
	Ë.	E28488	=28 4 8	82328	61 8 8 8 8 B	2002	5 88 19 88 19 88 88 88 88 88 88 88 88 88 88 88 88 88	33 13 13 13 13	14 18 26
ő	E	488886	61 66 61	28882	52222	88855	91 91 91 91 91 91 91 91 91 91 91 91 91 9	18 8 8 8 8 8 8 8 8 8 8 8	18 18 18 18
+	z	E44468	128882	55 118 128 128 128	3312338	48 33 52 52 52 52 52 52 52 52 52 52 52 52 52	59 11 22 23 23 23 23 24	321222	438
	MOR	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ww 444	~~~~~	~~~~	~~~~~	w 4 4 4 4	4 v v v v	s s s s s s s s s s s s s s s s s s s
	<u> </u>	-00040	0.080	9080-	-044-	44-0-	N0401	00010000	- 90 F
	EVE	- x x x x x 0	00000 -0064	00000 00-04	00111	00000 04 <i>w</i> -0	00008 40-04	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-35°				-0000	00000	00000			
+	RN.	E%%%%%	23%296 23%296	52 37 13 23 52	\$8 %28	28 18 28 39 28 28 18	10 19 19 19 19	59 59 24 25 25 25 25 25 25 25 25 25 25 25 25 25	38,30
	MC	⁴ ~~~~	NN444	40000	~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	44444	44000	ູ່
	mi	E%25%2	3325812	422 222	8%44%	<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	58033	85828	888
0	EVI	488886	66666	55888	88888	88889	000888	<u>∞</u> ∞∞∞∞∞	<u>20</u> 20 20
+30									
	ORN	E%8882	≂2%4%	28248	22222	84 <u>8</u> 2 <u></u>	6122.564	260355	282
	Ň	Terenerate	4/4/444	440000			44444	44404040	
	щ	E8%26I	28 22 28 15 28 27 28	5°8448	83858	288254	24886	£6,8,8,8	54 53
°	EV	4886666	61 61 61 61 61 61 61	61 66 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 6	28888	19 19 19 19 19 19 19 19 19 19 19 19 19 1	01 01 88 81 01 01 01 01 01 01 01 01 01 01 01 01 01	81 88 88 88 88 88 88 88 88 88 88 88 88 88	18 18 18
+2(ż	- <u>vo</u> - o «	- 0.0 m	00465	89594	040400	-4000	က်တိုယ် & 4	0.4 x
	10R	1-0001	NN444 -0NN4	44444 1000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	44444	44444 ~~~~44	4444N 44NNO	520
_	2								
E.	Ë	93250	19 11 31 31	28828	9 29 30 9 29 30	29 29 29 29 28 28 28 28 28 28 28 28 28 28 28 28 28	71 17 17	27 6 16 26 26	5 5 5
F	2	Jan. Feb.	Mar.	Apr. May	June July	Aug.	Sep. Oct.	Nov. Dec.	Jan.

E

MOON

KEY TO THE MAP OF THE MOON

CRATERS 21—Albategnius (356°) 22—Alphonsus (3°) 23—Arago (338°) 24—Archimedes (4°) 25—Aristarchus (47°) 26—Aristillus (358°) 27—Aristoteles (342°) 28—Arzachel (2°) 29-Atlas (315°) 31—Autolycus (358°) 32—Bessel (342°) 33—Bullialdus (22°) 34—Cassini (355°) 35—Catharina (336°) 36—Clavius (15°) 37—Cleomedes (304°) 38—Cook (311°) 39—Copernicus (20°) 41—Cyrillus (336°) 42-Delambre (342° 43—Endymion (305°) 44—Eratosthenes (11°) 45-Eudoxus (343°) 46—Fracastorius (326°) 47—Furnerius (299°) 48—Gassendi (40°) 49—Grimaldi (68°) 51—Halley (354°) 52—Hercules (321°) 53—Herschel (2°) 54—Hevelius (66°) 55-Hipparchus (354°) 56—Julius Caesar (345°) 57—Kepler (38°) 58-Langrenus (299°) 59—Lansberg (27°) 61—Longomontanus (21°) 62—Macrobius (314°) 63—Maginus (6° 64-Manilius (351°) 65—Maskelyne (330°) 66—Maurolycus (345°) 67—Mersenius (49°) 68—Newcomb (316°)

69—Petavius (298°)

- MOUNTAINS 71—Piccolomini (327°) A — Alpine Valley (356°) 72-Plato (10°) B — Alps Mts. (359°) 73-Plinius (336°) E — Altai Mts. (336°) 74-Posidonius (330°) F — Apennine Mts. (2°) G — Carpathian Mts. (24°) 75—Ptolemaeus (2°) 76—Reinhold (23°) H — Caucasus Mts. (352°) 77-Ross (338°) K — Haemus Mts. (349°) 78-—Schickard (55°) M—Jura Mts. (34°) 79-Schiller (40°) N — Pyrenees Mts. (319°) 81—Snellius (304°) R — Rheita Valley (312°) 82-Stevinus (305°) S — Riphaeus Mts. (27°) 83-Taruntius (313°) V — Spitzbergen (5°) W—Straight Range (20°) 84—Theophilus (333°) 85—Timocharis (13°) X — Straight Wall (8°)
- 86—Tycho (11°) Y Taurus Mts. (319°) 87—Wilhelm (20°) Z — Teneriffe Mts. (13°)

MARIA

- LS —Lacus Somniorum (Lake of Dreams) (330°)
- MC Mare Crisium (Sea of Crises) (300°)
- MFe Mare Fecunditatis (Sea of Fertility) (310°)
- MFr Mare Frigoris (Sea of Cold) (0°)
- MH Mare Humorum (Sea of Moisture) (40°)
- MI Mare Imbrium (Sea of Rains) (20°)
- MNe-Mare Nectaris (Sea of Nectar) (325°)
- MNu—Mare Nubium (Sea of Clouds) (15°)
- MS Mare Serenitatis (Sea of Serenity) (340°)
- MT Mare Tranquillitatis (Sea of Tranquillity) (330°)
- MV Mare Vaporum (Sea of Vapors) (355°)
- OP —Oceanus Procellarum (Ocean of Storms) (50°)
- SA Sinus Aestuum (Seething Bay) (8°)
- SI Sinus Iridum (Bay of Rainbows) (32°)
- SM Sinus Medii (Central Bay) (0°)
- SR Sinus Roris (Bay of Dew) (60°)

LUNAR PROBES

- 2—Luna 2, First to reach Moon (1959.9.13) (0°)
- 7-Ranger 7, First close pictures (1964.7.31) (21°)
- 9-Luna 9, First soft landing (1966.2.3) (64°)
- 11—Apollo 11, First men on Moon (1969.7.20) (337°)
- 12—Apollo 12 (1969·11·19) (23°)
- 14—Apollo 14 (1971·2·5) (17°)
- 15—Apollo 15 (1971·7·30) (356°)
- 16—Apollo 16 (1972·4·21) (344°)
- 17—Apollo 17 (1972·12·11) (329°)

Angles in parentheses are the selenographic longitudes of the centre of each feature. 0° marks the mean centre of the lunar disk and the angles increase toward the observer's east (i.e. westward on the Moon). These angles will facilitate locating the feature on the accompanying map, and may be correlated with the Sun's selenographic colongitude (see The Sky Month By Month section) to determine the optimum times for viewing these areas on the Moon.

map of

TTIE MOON

		()	UI)	
	198	39	199	0
Jan. Fab	7.8	July 3.2	Jan. 26.8 Feb. 25.4	July 22.1
Mar.	0.3 7.8	Aug. 31.2	Mar. 26.8	Aug. 20.3 Sept.19.0
Apr. May	6.1 5.5	Sept.29.9 Oct. 29.6	Apr. 25.2 May 24.5	Oct. 18.7 Nov. 17.4
June	3.8	Nov. 28.4 Dec. 28.1	June 22.8	Dec. 17.2

NEW MOON DATES

The new moon dates in the above table will be useful for planning future observing sessions (e.g. trips to southern latitudes), for determining favorable dates for observing very thin lunar crescents, and for setting moon dials on clocks.

TIMES OF MOONRISE AND MOONSET

The tables on pages 72 to 83 give the times of moonrise and moonset for each day of the year for places ranging from 20° to 60° north latitude. The tables may be interpolated linearly for non-tabular latitudes, and can be extrapolated beyond the 20° and 60° latitude limits a few degrees without significant loss of accuracy. "Rise" and "set" correspond to the upper limb of the Moon appearing at the horizon for an observer at sea level. The times are local mean time (LMT) for the Greenwich meridian (i.e. UT at 0° longitude). Because of the relatively rapid eastward motion of the Moon, unlike the sunrise and sunset tables, the times *cannot* be read directly as LMT for observers in North America. The table must be interpolated according to the observer's longitude. Also, to convert from the observer's LMT to standard time, the observer's longitude correction relative to his standard meridian must, of course, be applied (see p. 62). The graph on the opposite page enables the sum of these two corrections to be determined easily in one step. However, the graph must be set for your longitude.

To prepare the Moon Rise/Set Correction graph, first locate your longitude on the longitude scale. Using a straight-edge, draw a line from the origin (0,0 point) to your position on the longitude scale (a red pen is recommended to make this line stand out). Next, the CORRECTION axis must be labeled. As a guide, the first three divisions have been tentatively labeled 0, 1, 2; but, to these numbers must be added your longitude correction relative to your standard meridian (p. 62). e.g. For Toronto the correction is +18 minutes, thus an observer in Toronto would label this axis: 18, 19, 20, 21, ... 62, 63. An observer in Rimouski (longitude correction: -26) would label the axis: -26, -25, -24, ... 18, 19.

The graph is now ready for use on any day from your position. From the table obtain tomorrow's time and today's time for the event (moonrise, or moonset), enter the difference on the ordinate, and run horizontally across to meet the diagonal line. The correction, to the nearest minute, can then be read directly below off the abscissa. This correction is applied to "today's time" in the table and results in the standard time of the event for your position. (Note that, due to a difference in height between the observer and the actual horizon, the observed time may differ by up to several minutes from the predicted time.)

E

LATITUD	+ +2	0.0	"	°0	÷	ر ا	+	°		0	+	°	÷	°4	99	
EVENT:	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET
	ء ء 	Ē	E 		E		E	E	E	E 2	6 2	-	-	- - -	-	-
Jan. 1	0 41	12 23	0 20	12 11	0 26	12 05	1 03	11 57	60 1	11 50	61 1	11 37	1 28	11 26	1 46	11 05
. 2	1 31	12 59	1 46	12 42	1 22	12 32	2 05	12 21	2 14	12 11	2 31	11 52	2 45	11 37	3 14	8
3	2 25	13 39	2 45	13 18	2 56	13 05	3 10	12 51	3 22	12 38	3 45	12 13	4 5	11 52	4 47	11 08
4	3 22	14 25	3 46	14 00	4 00	13 45	4 17	13 28	4 32	13 12	5 01	12 41	5 27	12 15	6 27	11 14
5	4 22	15 18	4	14 50	5 05	14 34	5 24	14 15	5 41	13 57	6 15	13 22	647	12 51	808	11 31
		:	:	; ;			ļ									
о г (22	16 18	2	5 49	6 07	15 33	6 27	15 13	6 8	14 55	7 21	14 19	7 54	13 46	9 22	12 19
•	6 21	17 22	9 9 9 9	16 55	7 04	16 40	7 23	16 22	7 41	16 05	8 14	15 32	8 4	15 03	9 57	13 51
æ	7 16	18 27	4	18 05	- 5	17 52	8 10	17 37	8 25	17 23	8 52	16 57	9 17	16 34	60 OI	15 43
6	8 06	19 32	8 24	19 16	8 35	19 06	8 48	18 55	8 59	18 44	9 20	18 25	9 38	18 09	10 14	17 36
0	8	20 35	9 03	20 24	11 6	20 18	616	20 11	9 27	20 05	9 41	19 53	9 53	19 44	10 15	19 24
П	9 31	21 35		21 31	6	1 20 10	9	21 26 1	0 51	1 22 10	0 58	1 10	20	21 15	91 UI	
1	2	2 22	1 1	22 25	. =) 2			2	 3	2 2			 		3 9
1		5 5 5		3 7	10 10	9 7 7 7 7	10 17	5 5 5	10	2 1 F	3 5	C 2	FI 0	5	5	- 7 2 7
	- 7¢	3 :	2 1			2	R 2	2	2 2	2	/7 SI		7 7 01			:: (
					s = :	::	10 11		2	:: ::	10 43	800	10 33	0 14	10 15	67 0
15	12 07	0 33	20	0 47	9 =	0 55	11 30	1 05	11 19	1 14	11 01	1 30	10 46	1 43	10 16	2 11
;	2			:	, ,		5		:		:					
<u>e</u> !	72 71	5	12 30	2	12 17	2 02	12 03	2 18	20	2 31	11 25	2 54	11 04	3 14	10 19	3 57
11	13 42	2 36	13 16	8	13 01	3 14	12 43	3 31	12 27	347	11 56	4 16	11 29	4 43	10 27	5 44
18	14 36	338	14 08	4 05	13 52	4 21	13 32	4	13 14	4 58	12 40	5 32	12 08	6 03	10 49	7 22
6	15 34	4 37	15 06	5 05	14 49	5 22	14 30	5 41	14 12	900	13 37	6 35	13 05	2 07	11 41	8 31
20	16 33	5 32	16 07	5 59	15 52	6 15	15 34	6 33	15 17	6 50	14 45	7 23	14 16	7 52	13 07	9 02
© 21	17 31	6 21	17 09	6 45	16 56	6 59	16 40	7 15	16 26	7 20	16 00	7 57	15 27	- ic a	77 77	
22	18 26	7 05	18 09	7 24	17 58	7 35	17 47	7 48	17 36	808	17 15	8 22	5 91 91	4	16 23	810
23	61 61	7 43	19 06	7 58	18 59	8 06	18 51	8 16	18 43	8 25	18 29	8 40	18 17	8 54	17 54	9 20
24	20 09	8 17	20 02	8 27	19 57	8 33	19 52	8 39	19 48	8 45	19 40	8 55 1	19 33	9 04	19 20	9 20
22	20 57	8 49	20 55	8 54	20 54	8 57	20 52	00 6	20 51	9 03	20 48	6 07	20 46	9 12	20 42	616
ì	؛ ج		: : 		:											_
ę		2	77 4 8	22	21 49	61 6	21 51	61 6	21 53	61 6	21 56	616	21 59	616	22 04	9 18
12	22 33	9.20	22 41	9 45	22 45	9 42	22 51	9 39	22 55	9 36	23 04	9 30	23 11	9 26	23 25	9 17
78	23 22	10 22	23 35	10 11	23 43	10 06	23 51	65 6	23 59	9 53	:: ::	9 42	:: ::	9 33	:: ::	9 16
53	::	10 55	::	10 40	::	10 32	:: ::	10 22	::	10 13	0 14	9 56	0 26	9 43	0 50	9 16
đ 30	0 14	11 33	0 31	11 13	0 42	10 11	0 54	10 48	1 05	10 36	1 26	10 14	1 43	9 55 1	2 20	9 17
31	1 08	12 15	1 30	11 51	1 43	11 37	1 59	11 21	2 13	11 06	2 40	10 38	3 03	10 14	3 55	9 20

MOON

LATITUDE	+	20°	+3	0°	+3	5°	¥ +	°	+ +	٩.	<u>ج</u> ۲	°°	+ 2 +	۴.)9+	٩
EVENT:	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET
	8 -	# £	1 4 	:	6 		8 4	6 -	6 4	6	8 .e	8 £	8 _	E _	1 _	6 _
Feb. 1	2 05	13 04	2 31	12 37	2 47	12 21	3 05	12 02	3 22	11 45	3 54	11 12	4 23	10 42	5 34	9 30
2	3 05	13 59	3 33	13 31	3 49	13 14	4 09	12 54	4 28	12 35	5 03	12 00	5 36	11 27	7 04	9 58
	4	15 00	4 32	14 33	4 49	14 17	5 08	13 57	5 26	13 39	6 02	13 05	6 34	12 33	7 57	11 10
-	5 01	16 06	5 26	15 41	5 42	15 27	5 59	15 10	6 16	14 54	6 47	14 24	7 14	13 58	8 17	12 56
2	5 53	17 12	6 15	16 53	6 27	16 41	6 41	16 28	6 55	16 16	7 19	15 53	7 40	15 33	8 24	14 52
		!	, ,		1		1		2	 !	9	 ;	1	 : !	;	
•	6 41	18 17	6 57	18 04	7 86	17 56	7 16	17 47	7 26	17 39	7 43	17 24	7 58	17 11	8 27	16 45
7	7 24	19 21	1 7 34	19 14	7 4	19 10	7 \$	19 05	7 52	10 61	8 02	18 53	8 11	18 47	8 27	18 35
*	8 05	20 22	8 08	20 22	8 10	20 22	8 13	20 22	8 15	20 21	8 18	20 21	8 21	20 21	8 27	20 20
6	8 4	21 23	8 41	21 30	8 40	21 33	8 38	21 37	8 36	21 41	8 33	21 48	8 31	21 53	8 26	22 04
10	9 24	22 25	9 15	22 37	9 10	22 44	9 04	22 53	8 58	23 00	8 49	23 14	8 41	23 26	8 26	23 49
Ξ	10 05	23 27	9.50	23 45	9 42	23 56	9 32	::	9 23	::	9 07	::	8 53	::	8 27	::
● 12	10 50	::	10 29	::	10 18	::	10 04	0 08	9 51	0 20	9 29	0 41	60 6	0 59	8 29	1 37
13	11 38	0 29	11 14	0 53	10 59	1 07	10 42	1 22	10 27	1 37	9 58	2 05	9 32	2 30	8 35	3 26
14	12 31	1 32	112 04	1 59	11 48	2.15	11 29	2 33	II II	2 50	10 37	3 24	10 06	3 54	8 50	5 09
15	13 28	2 32	13 00	3 00	12 43	3 17	12 23	3 36	12 05	3 55	11 29	4 31	10 57	5 03	9 31	6 29
								_						_		
16	14 26	3 28	13 59	3 55	13 43	4 12	13 25	4 30	13 07	4 48	12 34	5 22	12 04	5 53	10 48	2 09
12	15 24	418	15 00	4 43	14 8	4 58	14 30	5 15	14 15	5 30	13 46	6 00	13 21	6 26	12 24	7 24
8	16 15	5 03	16 00	5 24	15 49	5 36	15 36	5.2	15 24	6 03	15 01	6 27	14 42	647	14 01	7 30
61	17 13	5 42	16 58	5 59	16 50	6 08	16 40	6 19	16 31	6 29	16 15	647	16 01	7 02	15 34	7 32
& 20	18 03	6 17	17 54	6 29	17 49	6 36	17 42	6 43	17 37	6 50	17 26	7 02	17 18	7 13	17 01	7 32
21	18 53	6 50	18 48	6 57	18 45	9	18 42	20.7	18 40	1 90 2	18 26	- ŭ	18 27	1 2 6	18 25	7 27
5 6		2			- 	3 8	2 !			88	2 :		1 2	1	3	2
2	19 4	1 7 21	19 41	7 22	19 41	7 23	19 42	7 24	19 43	2	19 44	1 27	19 45	7 28	19 46	7 31
23	20 25	3 7 51	20 34	7 48	20 37	78	20 41	7 44	20 45	742	20 51	7 38	20 57	7 35	21 08	7 30
24	21 16	8 22	21 27	8 14	21 34	8 09	21 41	8 03	21 48	7 59	22 00	7 50	22 11	7 42	22 31	7 29
25	22 06	8 55	22 22	8 41	22 32	8 34	22 42	8 25	22 52	8 17	23 11	8 03	23 26	7 51	23 58	7 28
			_													
26	22	0.6	23 19	9 12	23 32	9 02	23 46	8 50	23 59	8 39	::	8 19	::	8 02	::	7 28
27	23 5	10 10	::	9 47	::	9 34	:: ::	9 19	:: ::	9 05	0 23	8 40	0 44	8 18	1 30	7 30
§ 28	::	: 10 55	0 19	10 29	0 33	10 14	0 50	9 56	1 06	9 39	1 36	9 08	2 03	8 40	3 07	7 36

_ __ __ __

ATITUD	÷ ظ	°°	Ę.	°°	Ē,	°.		+	•€	+40° +4	+40° +44°	+40° +44° +5	+40° +44° +50°	ج€ +40° +44° +50° +5	رتجاً +40° +44° +50° +54°	↔ +40° +44° +50° +54° +6
/ENT:	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET		RISE	RISE SET	RISE SET RISE	RISE SET RISE SET	RISE SET RISE SET RISE
	E 	F £	۴ ۲	E	F E	E Æ	E Æ		E E	Е 		E	E 4 E	6 	E	E E E E E E E E E E E E E
ar. 1	0 51	11 46	1 18	11 18	1 35	11 01	1 54	10 42	2 12	10 23	0	\$	4 6 9 4 8	46 9 48 3 18	46 9 48 3 18 9 16	46 9 48 3 18 9 16 4 40
2	- 49	12 43	2 17	12 14	2 34	11 58	2 54	11 38	3 12	1 19	ŝ	÷	48 10 44	48 10 44 4 22	48 10 44 4 22 10 10	48 10 44 4 22 10 10 5 51
ŝ	2 45	13 45	3 12	13 18	3 28	13 03	347	12 45	4 05	12 27	4	~	3 11 55	3 11 55 5 08	3 11 55 5 08 11 25	3 11 55 5 08 11 25 6 22
4.	3 39	14 49	4 02	14 27	4 16	14 14	4 33	13 59	4 48	13 44	5 16		13 18	13 18 5 40	13 18 5 40 12 54	13 18 5 40 12 54 6 33
ŝ	4 28	15 54	44	15 37	4 58	15 28	5 10	15 16	2 23	15 06	5 43		14 47	14 47 6 01	14 47 6 01 14 30	14 47 6 01 14 30 6 37
9	5 13	16 58	5 26	16 48	5 34	16 42	5 42	16 35	5 50	16 29	6 04		16 17	16 17 6 16	16 17 6 16 16 07	16 17 6 16 16 07 6 39
• 1	5 55	18 02	6 02	17 58	96 9	17 56	6 11	17 53	6 15	17 51	6 22		17 47	17 47 6 28	17 47 6 28 17 44	17 47 6 28 17 44 6 39
æ	6 36	19 05	636	19 08	6 37	19 10	637	11 61	6 37	19 13	6 38		19 16	1916 638	19 16 6 38 19 19	1916 638 1919 639
6	1 7 17	20 08	7 10	20 18	7 07	20 23	7 03	20 30	6 59	20 36	6 53		20 46	2046 648	20 46 6 48 20 55	20 46 6 48 20 55 6 38
2	2 29	21 12	*	21 28	2 39	21 38	7 31	21 48	7 24	21 58	7 10	••	22 16	22 16 7 00	22 16 7 00 22 32	22 16 7 00 22 32 6 39
=	8 43	22 17	8 25	22 39	8 15	22 52	8 03	23 06	7 51	23 20	7 31		3 45	345 7 14	2345 714 :: ::	2345 714 :: :: 640
12	9 32	23 22	60 6	23 48	8 55	::	8 40	::	8 25		7 58			7 35		
13	10 26	:: ::	9 59	::	9 43	0 03	9 25	0 21	6 07	0 38	8 35		1 10	1 10 8 06	1 10 8 06 1 38	110 8 06 1 38 6 56
9 14	11 22	0 25	10 54	0 53	10 37	1 10	10 18	1 29	9 59	147	9 24		2 23	2 23 8 51	2 23 8 51 2 55	2 23 8 51 2 55 7 27
5	12 21	1 23	11 53	1 51	11 37	2 08	11 18	2 27	11 00	2 45	10 26		3 20	3 20 9 54	3 20 9 54 3 52	3 20 9 54 3 52 8 34
16	13 19	2 16	12 54	2 42	12 39	2 57	12 22	3 14	12 06	3 31	11 36		4 02	4 02 11 09	4 02 11 09 4 30	4 02 11 09 4 30 10 07
17	14 15	3 02	13 54	3 24	13 42	3 37	13 28	3 52	13 15	4 06	12 50	•	4 32	4 32 12 29	4 32 12 29 4 54	4 32 12 29 4 54 11 44
18	15 08	3 43	14 52	4 01	14 43	4 11	14 32	4 23	14 22	4 34	14 04	•	2	454 13 49	454 13 49 5 10	4 54 13 49 5 10 13 17
61	16 00	4 19	15 48	4 32	15 42	4	15 35	4 48	15 28	4 56	15 16	•	2	5 10 15 06	5 10 15 06 5 22	5 10 15 06 5 22 14 46
8	- 15 - 49	4 52	16 43	8	16 39	5 05	16 35	5 10	16 32	5 15	16 25	•	5 24	5 24 16 20	5 24 16 20 5 31	5 24 16 20 5 31 16 10
21	17 36	5 23	17 36	5 26	17 35	5 28	17 35	5 30	17 34	5 32	17 33		38	36 17 33	36 17 33 5 38	36 17 33 5 38 17 31
® 22	18 24	5 2	18 28	5 52	18 31	5 51	18 34	5 50	18 36	5 49	18 41		4	547 1845	547 1845 545	547 1845 545 1852
ន	19 12	6 24	19 22	6 17	19 27	6 14	19 33	9 09	19 39	6 05	19 49		5 58	5 58 19 58	558 1958 553	5 58 19 58 5 53 20 15
24	20 02	6 56	20 16	645	20 25	6 38	20 34	6 30	20 43	6 23	20 59		6 11	6 11 21 13	6 11 21 13 6 01	6 11 21 13 6 01 21 41
52	50 53	7 31	21 13	7 14	21 24	7 05	21 37	6 54	21 49	641	22 11		6 26	6 26 22 30	6 26 22 30 6 11	6 26 22 30 6 11 23 11
26	21 47	8 08	22 11	7 48	22 25	7 36	22 40	7 22	22 55	2 09	23 24		645	645 2349	645 2349 625	645 23 49 6 25 :: ::
12	22 43	8 51	23 10	8 27	23 25	8 12	23 44	7 55 1	:: ::	7 40	:: ::		7 11	7 11 1 :: ::	711 1 :: : : 645	711 1 :: : : 6 45 0 45
78	23 40	9 39	:: ::	9 12	::	8 56	:: ::	8 37	0 01	8 19	0 34		7 \$6	7 46 1 04	7 46 1 04 7 15	746 104 715 219
62	::	10 33	0 08	10 05	0 25	9 48	0 44	9 28	1 03	9 10	1 38		8 34	8 34 2 11	8 34 2 11 8 01	8 34 2 11 8 01 3 39
§ 30	0 35	11 31	1 03	10	1 19	10 48	1 39	10 29	1 57	10 11	2 31		9 37	937 303	937 303 906	937 303 906 423
31	1 28	12 33	1 53	12 09	2 08	11 54	2 26	11 38	242	11 22	3 12		10 53	10 53 3 39	10 53 3 39 10 27	10 53 1 3 39 10 27 1 4 40

74

1 4 T I T I U				00		0		2		2	, u					2
		2	-	2			F						Ê	_	P	
EVENT:	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET
	•	1	6 	1	•	8	8 _	E _	e £	6 £	e £		5 _		e £	8 4
Apr. 1	2 17	13 35	2 39	13 16	2 51	13 05	3 05	12 51	3 18	12 39	3 43	12 17	4 03	11 57	4 47	11 16
2	3 03	14 38	3 19	14 24	3 28	14 16	3 39	14 07	3 48	13 59	4 06	13 44	4 20	13 31	4 49	13 05
ŝ	3 45	15 40	3 55	15 33	4 01	15 29	4 08	15 24	4 14	15 19	4 24	15 11	4 33	15 05	4 50	14 52
4	4 26	16 42	4 30	16 42	4 32	16 41	4 34	16 41	4 37	16 40	4 41	16 40	4 44	16 39	4 50	16 38
5	1 5 06	17 45	5 04	17 51	5 02	17 55	5 00	12 59	4 59	18 03	4 56	18 09	4 54	18 15	4 50	18 25
9		18 50	29 29	19.03	5 23	01 01	5 28	10 10	5 22	1 76 01	5	97	50,2	10 53	5	31 UC
•		2 2		2 1	2 2	2 7 7	3 3		3 9	3 2			5 9	2 2 2	R 8	
~ •	2 2	2 2 2	> { 0 \ 	2 2	9 (0 \	8 8	R 8	20 39 1 40 39	9 9 0 \	22	3 5	1 2 2	~ i 2 i	17 27	7 I 7	77 11
×	2	5	62 9	21 28	647	21 42	6 33	21 58	9 20	51 14	2 57	22 43	5 37	23 08	4 55	:: ::
6	8 14	22 10	7 48	22 38	7 33	22 54	7 16	23 12	8	23 30	6 30	::	6 04	::	~ 2	0 07
9	11 6	23 13	8 43	23 41	8 27	23 58	8 08	:: ::	7 50	::	7 15	0 04	644	0 35	5 26	1 53
Ξ		:	0 77	:	0 77	:	0 07	1.1	9 70	22	7 I 8	9	<i>c</i> , <i>c</i>		UC 7	3 05
: :	2:	: ;	2	: :	1	: ;	5		P 7	5	-	2		2	0 20	5
12		60 0	10 45	98	10 30	0 52	10 12	0	6 6	1 27	9 24	1 59	8 8	2 28	7 48	38
13	12 09	0 59	11 47	12	11 34	1 36	11 19	1 52	11 05	2 07	10 39	2 34	10 16	2 58	9 26	3 50
14	13 04	1 42	12 46	2 01	12 36	2 12	12 24	2 25	12 13	2 37	11 53	2 59	11 36	3 17	10 11	3 54
15	13 56	2 20	13 43	2 34	13 36	2 43	13 28	2 52	13 20	3 01	13 06	3 17	12 54	3 30	12 31	3 56
:	י : 					1										
9I 10		5.54	14 38		14 33	399	14 28	3 15	14 24	3 21	14 16	3 32	14 09	~ ₽	13 56	3 56
17	15 33	3 25	15 31	330	15 29	3 33	15 28	3 36	15 26	3 39	15 24	3 44	15 22		15 18	3 56
18	16 21	3 56	16 23	3 56	16 25	3 56	16 27	3 56	16 28	3 56	16 31	3 55	16 34	3 55	16 38	3 55
61	12 09	4 26	17 16	4 21	17 21	4 18	17 26	4 15	17 31	4 12	17 39	4 07	17 46	4 03	18 00	3 54
8	11 58	4 58	18 1	4	18 18	4	18 26	4 36	18 34	4 30	18 49	4 19	10 61	4 =	19 24	3 54
@ 21	18 49	5 32	19 07	5 17	19 17	5 08	19 29	4	19 40	4	20 00	4 34	20 17	4 20	20 53	3 54
22	19 43	60 9	20 05	5 49	20 18	5 38	20 32	5 25	20 47	5 13	21 13	4 52	21 36	* *	22 26	
23	20 38	6 50	21 04	6 27	21 19	6 13	21 36	5 57	21 53	5 43	22 24	5 15	22 53	4 51		3 59
24	21 34	7 37	22 02	7 10	22 18	6 55	22 38	6 37	22 56	6 20	23 31	5 47	::	5 19	80	4 10
22	22 30	8 29	22 58	8 01	23 14	7 44	23 34	7 25	23 52	7 07	:: ::	6 32	0 02	5 59	1 25	4 36
:												-				
56	23 23	9 25	53 49	8 58	::	8 41	::	8 22	:: ::	8 04	0 27	2 30	0 59	6 58	2 21	5 36
17	::	10 24	::	. 9 59	0 04	9 45	0 22	12 6	0 39	9 11 6	=	8 40	1 39	8 13	2 45	7 08
§ 28	0 12	11 25	0 35	11 04	0 48	10 52	1 03	10 37	1 17	10 24	+	65 6	2 06	9 38	2 55	8 51
6 3	0 58	12 25	1 15	12 10	1 26	12 01	1 38	11 50	1 49	11 40	2 08	11 22	2 25	11 07	2 59	10 36
99	1 40	13 26	1 1 52	13 16	1 59	13 10	2 07	13 03	2 15	12 57	2 28	12 46	2 39	12 37	3 00	12 19

E

LATITUDE	7	°	Ŷ	å	÷	°.	₹ +	•	1	ۍ ا	ĭ, ţ	•	τţ	Q.	2 Ž	°
EVENT:	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET
	: -	1 _	•	# £	1 £	•	: -	6 4	E	6 £	e Æ	E £	е 4	£	۹ م	e Æ
May 1	2 19	14 25	2 26	14 22	2 30	14 20	2 34	14 17	2 38	14 15	245	14 11	2 50	14 08	3 01	14 01
2	2 58	15 26	2 59	15 29	2 59	15 30	2 59	15 32	2 59	15 34	3 00	15 37	3 00	15 39	3 01	15 44
3	3 38	16 28	3 32	16 38	3 29	16 43	3 25	16 49	3 22	16 55	3 16	17 05	3 11	17 13	3 01	17 30
4	4 20	17 33	4 08	17 49	4 01	17 58	3 53	18 08	3 46	18 18	3 33	18 36	3 23	18 51	3 02	19 21
•	5 8	18 40	4 48	19 02	4 38	19 14	4 26	19 29	4 15	19 42	3 55	20 08	3 39	20 30	3 05	21 17
	1	5			; ;		;		i				2		:	
0	2	64 61	5	50 14	5 21	20 30	5 05	20 42	4 51	ZI 04	4 24	21 35	4 01	5	3 11	23 11
2	27 9	20 23	6 27	21 23	6 12	21 39	5.54	21 58	5 36	22 16	2 2	22	4 35	23 23	3 27	:: ::
*0	7 55	21 56	1 27	22 23	7 10	22 40	6 51	22 58	6 33	23 16	58	23 50	5 26	::	4 05	0 4
6	8 57	22 50	8 30	23 15	8 15	23 29	7 56	23 46	7 39	::	7 06	:: ::	636	0 20	5 22	1 34
10	9 58	23 37	934	23 58	9 20	::	9 04	::	8 49	0 02	8 21	0 31	7 56	0 57	7 00	1 55
=	10 55	:	¥ 1	:	2		10 13	1 24	00	1 22 0	9.28	8	0 0	- 00	8 30	2 02
2	2		2 2	0.24	; ;		; ;			5 2	2	3 7	20) : ; :	5 2
21	4 1 1	2 2		5.5	5 Z	2:	2 8 2 9		5 2	5 5	2 2		2	<u>я</u> с	71 7	9 2
2	₽ 2	5 7	17 31	5	97 71	=	12 20	6 I	12 14	2	12 04	8	ጽ =	1 4/	₹	70.2
14	13 29	1 26	13 25	1 33	13 23	1 36	13 20	4	13 17	14	13 13	1 51	13 09	22	13 03	2 07
15	14 17	1 57	14 18	1 59	14 18	2 00	14 19	2 00	14 19	2 01	14 21	2 03	14 22	2 04	14 23	2 06
16	15 04	2 28	15 10	2 24	15 14	2 22	15 18	2 20	15 21	2 18	15 28	2 14	15 34	2 11	15 44	2 06 2
17	15 53	2 59	16 04	2 51	16 10	2 &	16 18	2 40	16 25	2 35	16 37	2 27	16 47	2 19	17 07	2 05
18	16 43	3 32	16 59	3 19	17 09	3 11	17 20	3 02	17 29	2 55	17 48	2 40	18 03	2 29	18 35	2 06
61	17 37	4 08	17 57	3 20	18 09	3 40	18 23	3 28	18 36	3 17	19 00	2 57	19 21	2 41	20 06	2 07
& 20	18 32	4 48	18 56	4 26	11 61	4 13	19 27	3 58	19 43	3 45	20 13	3 19	20 39	2 57	21 41	2 10
3	10 20	5 24	10	2	3	1 53	02 QC	72.7	av (c	101 7	56 FC	- 07 2	21 52	, ,,		01 0
3 5		5.2	2 2	3 5	3 2	2:	3 3	38	2 2		38		3 2	3 2	3	2 4
38	33	58	33		5 5		67 67 17	3 !	₽ 5 5	5 8		2	5 8	2		P 2
2	61 17	2	₽ 7	5	70 77	8	72 20	0	15 21	5	77 IO	5 24	23 39	4 72	9	5.50
24	22 10	8 19	23	7 53	22 47	7 38	23 03	7 20	23 18	7 04	23 46	6 32	:: ::	6 03	0 49	4 54
22	22 22	9 19	23 15	8 57	23 26	8 44	23 39	8 29	23 51	8 15	::	7 49	0 10	7 26	1 02	6 35
	:	:									:		:	1		
92	23 38	10 19	23 22	10 02	::	9 52	:: ::	9 41	::	9 30	0 12	01 6	0 30	8 53	8	8 19
Z7	:: ::	11 19	::	11 07	8	00 11	0 10	10 52	0 18	10 45	0 33	10 32	0 8	10 22	≘ -	10 00
§ 28	0 18	12 17	0 26	12 11	0 31	12 08	0 36	12 04	0 41	12 01	020	11 54	0 57	11 49		11 39
59	0 56	13 15	0 58	13 15	8	13 16	1 01	13 16	1 03	13 16	1 05	13 17	1 07	13 17	1111	13 18
30	1 34	14 14	1 30	14 21	1 28	14 25	1 26	14 29	1 24	14 33	1 20	14 41	1 17	14 47	1 1 12	14 59
31	2 13	15 16	2 04	15 29	1 58	15 36	1 52	15 45	4	15 53	1 36	16 08	1 28	16 20	1 13	16 44

LATITUD	E: +2	°°	÷	30°	+3	5°	+	•	+	f,	+£	°	τ <u>+</u>	°.	19 +	°
EVENT:	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET
	# 	8 4	8 £	f £	£	F £	e £	: :	E #	e £	5 .c	E 2	6 4		E 4	•
June 1	2 56	16 20	2 41	16 39	2 32	16 50	2 22	17 03	2 12	17 15	1 56	17 37	1 42	17 55	1 15	18 35
2	3 44	17 27	3 23	12 21	3 11	18 05	2 57	18 21	2 44	18 37	2 21	19 05	2 01	16 31	1 16	20 28
•	4 38	18 34	4 12	10 61	3 58	19 17	3 41	19 36	3 25	19 53	2 55	20 27	2 29	20 57	1 29	22 13
4	5 37	19 38	5 09	20 06	4 53	20 23	4 34	20 42	4 16	21 00	342	21 34	3 11	23 05	1 55	23 24
5	6 39	20 37	6 12	21 03	5 55	21 18	5 36	21 36	5 19	21 52	44	22 24	4 13	22 52	2 55	23 56
•	؛ ،		;		; ;		ļ		5				à		5	
9	7 42	21 28	1 2 12	21 50	1 7 02	22 03	6 45	161 22	6 29	22 33	28	22 29	5 31	23 21	4 28	:: ::
2	8 42	22 12	8 21	22 30	8	22 40	7 55	22 52	7 41	23 03	7 17	23 23	6 55	23 40	8 9	80
••	939	22 50	9 23	23 04	9 13	23 11	9 03	23 20	8 53	23 28	8 34	23 42	8 19	23 53	747	0 14
6	10 32	23 25	10 21	23 33	10 15	23 38	10 07	23 43	10 01	23 48	9 48	23 56	9 38	::	9 18	0 16
9	11 22	23 57	11 16	::	11 13	::	11 09	::	11 06	::	10 59	::	10 54	0 03	10 44	0 17
=	12 10	::	12 10	80	12 09	0 02	12 09	0 04	12 08	80	12 08	60 0	12 07	0 12	12 06	0 17
12	12 58	0 28	13 03	0 26	13 05	0 25	13 08	0 24	13 11	0 23	13 15	0 21	13 19	61 0	13 27	0 16
13	13 46	0 59	13 56	0 52	14 01	0 48	14 07	0 44	14 13	0 40	14 23	0 33	14 32	0 27	14 49	0 16
14	14 36	1 31	14 50	61 1	14 59	1 13	15 08	1 05	15 17	0 58	15 33	0 46	15 47	0 36	16 14	0 16
15	15 28	2 06	15 47	1 49	15 58	140	16 11	1 29	16 23	1 19	16 45	1 02	17 04	0 47	17 44	0 17
16	16 23	2 44	15 8	2 24	17 00	2 12	17 15	1 58	17 30	- 45	17 58	1 22	18 23	1 02	19 18	0 20
12	17 20	3 28	17 8	3 03	18 01	2 49	18 19	2 33	18 37	2 17	19 09	1 48	19 39	1 23	20 51	0 26
18	18 17	4 17	18 45	3.50	10 61	3 34	19 20	3 16	19 39	2 58	20 13	2 25	20 4 5	1 55	22 08	0 42
6 19	19 13	5 12	1940	4 4	19 56	4 28	20 15	4 09	20 33	3 50	21 06	3 15	21 37	2 44	22 51	1 21
20	50 02	6 11	20 30	5 45	20 45	5 29	21 01	5 11	21 17	4 53	21 46	4 20	22 12	3 50	23 09	2 36
į	2		: ; ;		; ; ;		9 2		1		2		20		ļ	
71	5 7	71 /	5	0 49	97 17	55 0	71 4 0	9 19	21 23	5	9I 77	\$	8 7	21 4	23 1/	4 16
23	21 38	8 14	21 53	1 55	22 02	74	22 12	7 31	22 23	7 20	22 39	6 58	22 53	6 39	23 20	6 00 6
ន	22 18	9 13	22 28	00 6 1	22 34	8 53	22 40	8 44	23 48	8 36	22 56	8 21	23 05	8 09	23 22	744
24	22 56	10 12	23 00	0 10 05	23 03	10 01	23 05	9.56	23 08	9 51	23 12	9 43	23 16	9 37	23 22	9 24
25	23 34	11 10	23 32	60 11 3	23 31	11 08	23 30	11 07	23 29	11 06	23 27	11 05	23 25	11 04	23 22	11 02
£ 26	::	12 08	::	: 12 13	::	12 16	23 55	12 19	23 50	12 22	23 42	12 27	23 36	12 31	23 23	12 40
27	0 12	13 07	0.04	1 13 18	8	13 25	:: ::	13 32	::	13 39	:: ::	13 51	23 48	14 01	23 24	14 21
28	0 52	14 09	0 39	14 26	0 31	14 36	0 22	14 47	0 14	14 57	00 0	15 17	::	15 33	23 27	16 07
53	1 37	15 13	1 18	1 15 35	1 07	15 48	0 54	16 03	0 43	16 17	0 22	16 43	0 04	17 06	23 35	17 57
30	2 27	16 19	2 03	3 16 44	1 49	12 00	1 33	17 18	1 18	17 34	0 51	18 06	0 27	18 35	23 52	19 44

E

LATITUDI	-+2	°0°	+3	0°	+3	5°	+4	°C	4 +	۴,) { +	٥°	+2+	f°	+ ((°
EVENT:	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET
	•	1	•	1	6 £	•	e e	: -	1 2		1 2	:	i £	•	1 -	•
July 1	3 22	17 23	2 56	17 51	2	18 07	2 21	18 26	2 04	18 44	1 32	19 19	1 02	19 50	:: ::	21 10
2	43	18 23	3 55	18 50	3 39	19 06	3 19	19 25	3 01	19 42	2 27	20 15	1 55	20 45	0 35	21 57
•	5 25	19 17	4 59	19 41	4 43	19 55	4 25	20 12	4 08	20 27	3 36	20 56	3 07	21 20	22	22 15
4	6 27	20 04	6 04	20 24	5 51	20 36	5 35	20 49	5 21	21 02	4 53	21 24	4 29	21 43	3 36	22 23
5	7 26	20 45	7 08	21 01	6 57	21 09	645	21 19	6 33	21 29	6 12	21 45	5 54	21 59	5 17	22 26
				:			1	 1 2	; ,		1		ļ		1	
٥	8 21	21 22	80 88	21 32	8	21 38	7 52	21 45	7 44	21 51	7 29	22 01	7 17	22 10	6 52	22 22
2	9 13	21 55	9 05	28	0 01	22 03	8 55	22 07	8 51	22 10	8	23 15	8 35	22 19	8 21	22 27
80	10 03	22 27	00 01	22 27	9 58	22 27	9 57	22 27	9 55	22 27	9 52	22 27	9 50	22 27	ہ	22 27
6	10 51	28	10 53	22 53	10 55	22 50	10 56	22 47	10 58	23 44	11 01	22 39	11 03	22 35	11 07	22 27
0	11 39	23 29	11 47	23 19	11 51	23 14	11 56	23 08	12 00	23 02	12 09	22 51	12 15	22 43	12 29	22 27
	12 28	:	12	23.4R	12 48	23.40	17 56	23 20	13.04	1 22 22	13 18	23.06	13 20	20 53	13 53	22 27
: 2	3 2	0 03	2 2	3 :	2 4	3 :	2 2	3 2		2 2	80 14	20.24		22	2 <u>1</u> 2 2	1 R
1 2	2 2	3	82	: 6		: 2	2 5	3	5 2	5 : 5		3 6		3 2		3 2 2
<u>ว</u> :	2 2 2	5	5 5 1	8	₽ : ₽ :	5	5	:: (с; с;				3 8 9 9	212	2 1	2 :
1	15 08	1 21	15 33	0 28	15 48	4	16 05	0 29	16 22	0 14	16 53	::	17 20	23 51	18 Z7	22 44
5	16 05	2 07	16 32	141	16 49	1 26	17 08	1 08	17 26	0 51	18 00	0 19	18 32	::	19 53	23 11
16	1 17 02	8	17 30	2 32	17 46	2 16	18 05	1 57	18 23	1 39	18 58	1 04	19 30	0 32	20 20	::
12	17 57	3.58	18 23	3 31	18 38	3 15	18 56	2 56	19 12	2 38	19 43	2 03	20 11	1 32	21 16	0 12
® 18	18 48	5	19 10	4 35	19 23	4 20	19 38	4 03	19 52	347	20 17	3 17	20 39	2 49	21 27	- \$
19	19 34	6 02	19 51	542	20 01	5 30	20 13	5 16	20 23	5 03	20 1 3	4 38	20 59	4 17	21 31	3 32
2	20 16	7 04	20 28	6 49	20 35	6 40	20 43	6 30	20 50	6 21	21 02	6 03	21 13	5 49	21 33	5 19
21	20 20 	8 05	21 02	7 55	21 05	7 50	21 09	7 44	21 13	7 38	21 19	7 28	21 24	7 20	21 34	7 03
22	21 34	9 04	21 34	9 01	21 34	8 59	21 34	8 57	21 34	8 55	21 34	8 52	21.34	8 49	21 34	8 44
53	22 12	10 03	22 06	10 06	22 03	10 08	21 59	10 10	21 55	10 12	21 49	10 15	21 44	10 18	21 34	10 23
24	22 52	11 02	22 40	11 11	22 33	11 17	22 25	11 23	22 18	11 29	22 06	11 39	21 55	11 47	21 35	12 04
§ 25	23 35	12 03	23 17	12 18	23 07	12 27	22 56	12 37	22 45	12 47	22 26	13 04	22 10	13 18	21 37	13 48
7		5		; ;	ן ק ק		5	2			5		ę,		;	5
Ŗ	:: ::	5	::: :::	8	5 4	200	5 22	7 7	2	14 00 11	72 73	N 1	₹ 7	14 21	21 43	5 8
27	0 22	14 10	8	14 34	::	14 49	:: ::	15 06	23 59	15 23	23 28	15 53	23 00 73	16 20	21 55	17 24
28	1 15	15 13	0 49	15 41	0.34	15 57	0 16	16 16	::	16 34	:: ::	17 08	23 45	17 39	2 2 26	18 58
53	2 13	16 14	1 45	16 41	1 28	16 58	1 09	17 17	0 51	17 34	0 17	18 09	:: ::	18 40	23 32	19 57
8	3 13	17 09	2 46	17 35	2 30	17 50	2 12	18 07	1 54	18 23	1 20	18 54	049	19 21	:: ::	20 23
31	i 4 15	17 58	20	18 20	336	18 33	3 19	18 47	3 04	19 01	2 34	19 26	2 08	19 47	1 07	20 33

LATITUD	:=	°o	Ŷ	°0	+3	5 °	+	•	ţ ţ	وب	1 <u>7</u>	•	Ţ,	ۍ	¥,	•
EVENT:	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET
	£	1 2	9 - 2	1 4	1 4		•	•	6 4		8 £		6 £	6 £	6 -	E
Aug. 1	5 14	18 41	4 54	18 58	4 42	19 08	4 28	19 20	4 16	19 30	3 52	19 49	3 32	20 05	2 48	20 37
7	6 11	19 19	5 55	16 31	- 5 8	19 39	5 36	19 46	5 27	19 54	5 10	20 07	4 55	20 18	4 26	20 39
ŝ	7 04	19 54	6 54	20 01	6 48	20 05	6 41	20 10	6 35	20 14	6 24	20 21	6 15	20 27	5 57	20 39
4	1 7 55	20 26	7 50	20 28	747	20 29	7 44	20 30	7 41	20 32	7 36	20 34	7 32	20 36	7 23	20 39
5	8 4	20 57	8 14	20 54	8 4	20 52	8 45	20 50	8 45	20 49	8 45	20 46	846	20 43	8 46	20 38
	, , ,	5		5	;				9				2	 2 8	2	, , ,
וס	22	87 17	<u>, </u>	R 17	4	01 17	2 4 1		₹ 7	9	א א ג ג	2	ע קי	2	80 C	8
~	10 20	22 01	10 31	21 48	10 37	21 41	10	21 33	10 51	21 25	11 02	21 11	11 12	21 00	11 31	20 38
* 0	1 10	22 36	11 26	22 19	11 35	22 09	11 45	21 57	11 55	21 47	12 12	21 27	12 27	21 11	12 57	20 39
6	12 02	23 15	12 22	22 53	12 34	22 41	12 47	22 26	13 00	22 13	13 23	21 48	13 43	21 27	14 27	20 42
2	12 56	23 58	13 20	23 33	13 34	23 19	13 50	23 02	14 06	22 46	14 35	22 16	15 01	21 49	16 00	20 49
Ξ	13 53	:	14 10	:	14 24	:	14 53	23 4 5	15 10	23.28	15 44	22 54	16 14	77 22	17 30	21.06
: :	22				5 8		2 2	3		3		; ;		3 2	3 9	3 4
2	4	₽ ₽	9 6	20		0.04	2	:: ::	91		₽ 2	₽ ?	1/ 18	23 I4	18 42	21 4 7
13	154	1 43	16 11	1 15	16 27	0 58	16 45	0 39	17 03	0 21	17 36	:: ::	18 06	::	19 20	23 10
T	16 36	242	12 01	2 16	17 15	2 01	17 31	145	17 46	1 25	18 15	0 53	18 40	0 23	19 35	::
15	17 25	3 45	17 45	3 22	17 56	3 09	18 10	2 53	18 22	2 39	18 44	2 11	19 03	147	19 42	0 53
3																1
16	18 10	4	18 24	4 30	18 33	4 20	18 42	4 88	18 51	3 57	19 06	3 36	6I 6I	3 19	19 1	5 7
@ 12	18 51	5	19 00	5 38	19 05	5 31	19 10	5 23	19 15	5 16	19 24	5 03	19 31	4 52	19 45	4 30
18	19 31	6 51	19 33	6 8	19 35	6 43	19 36	6 39	19 38	6 35	19 40	6 29	19 42	6 24	19 46	6 14
6	20 10	7 52	88	7 53	20 04	7 53	20 02	7 54	19 59	7 54	19 55	7 55	19 52	7 56	19 46	7 57
8	20 50	8 53	50 50	9 6 6	2035	9 04	20 28	60 6	20 22	9 13	20 12	9 21	20 03	9 28	19 47	9 41
16	21 33	0 55	21 17	10.08		10 16	20 5.R	- x x	20 48	10 23	15 00	10 48	20 17	3	07 01	96 11
: 2		10	2 2	81 11	3 6		2 S 2 S		2 C	3 3	2 2	12 16	2 K	13 35	2 C 2	3 5
6 23	1 23 11	12 03	57 74 74	12 27	22 31	12 41	14	12.51	21 58	13 13	21 28	13 41	21 02	14 07	20 02	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
24		13 07	23 40	13 34	23 24	13 50	23 05	14 08	22 47	14 26	22 13	15 00	21 42	15 30	20 25	16 46
ι κ	0 0	14 08	: : :	14 26	; :	11 53	3 : } :	15 15	24 46	15 20	ן ב ו ג	16.04	- C	2 2	2 2	17 51
3		3	:	8	: : 	*	:	1	2 3	 3 2	-	5	\$ 1	 2 2	3	
56	1 07	15 05	0 39	15 31	0 23	15 47	0 04	16 05	:: ::	16 22	:: ::	16 54	23 53	17 22	22 47	18 30
27	2 07	15 55	42	16 18	1 27	16 32	1 09	16 47	0 53	17 02	0 21	17 29	:: ::	17 52	:: ::	18 43
78	3 06	16 39	2 45	16 58	2 32	12 09 1	2 17	17 22	2 03	17 33	1 37	17 54	1 15	18 12	0 26	18 49
62	4 03	17 18		17 32	336	17 40	3 25	17 50	3 14	17 58	2 54	18 13	2 38	18 26	2 04	18 51
8	4 57	17 53	4 45	18 03	4 38	18 08	4 30	18 14	4 23	18 19	4 09	18 29	3 58	18 36	3 36	18 52
• 31	5 48	18 26	5 41	18 30	5 37	18 32	5 33	18 35	5 29	18 37	5 22	18 42	5 15	18 45	5 04	18 51

Œ

. .

LATITUDE	¥	30°	7	°0,	÷	5°	 +	°C	4	Q.,	Υ [±]	°.	÷	Q.,	¥ ¥	•
EVENT:	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET
	E	E	E 	E	-		•	F	£	:	•	E	E Æ	: :	: -	Е
Sept. 1	6 37	18 57	6 36	18 56	6 35	18 56	6 34	18 55	6 33	18 55	6 31	18 54	6 30	18 53	6 27	18 51
2	7 26	19 29	7 29	19 23	7 32	19 19	7 34	19 15	7 36	19 12	7 40	19 06	7 43	19 00	7 50	18 51
3	8 14	20 01	8 23	19 50	8 28	19 44	8 34	19 36	8 39	19 30	8 48	19 18	8 56	19 09	9 12	18 50
4.	9 03	20 35	9 17	20 19	9 25	20 10	9 34	20 00	9 42	19 50	9 58	19 33	10 11	61 61	10 36	18 51
5	9 54	21 12	10 12	20 52	10 23	20 40	10 35	20 27	10 47	20 14	11 08	19 52	11 26	19 33	12 04	18 53
9	10 47	21 53	11 00	21 29	11 23	21 15	11 38	20 59	11 52	20 44	12 19	20 16	12 43	19 52	13 35	18 58
2	11 41	22 39	12 07	22 12	12 22	21 57	12 40	21 39	12 57	21 21	13 28	20 49	13 57	20 20	15 8	19 10
••	12 36	23 31	13 04	23 03	13 20	22 46	13 39	22 27	13 58	22 09	14 32	21 34	15 04	21 02	16 26	19 39
6	13 31	:: ::	1 13 59	::	14 15	23 44	14 34	23 25	14 52	23 07	15 27	22 33	15 58	22 02	17 18	20 42
9	14 24	0 27	14 50	000	15 05	::	15 22	::	15 39	::	16 10	23 45	16 37	23 18	17 41	22 15
:	: ;	-	16 37	5	11 10	•	50 71		1	ų	2	:	2	:	17 51	:
	2 2	1 2/		70 1		01-02-0	6	10 0			74 01		5 2	:	: :	: :
12	16 00	2 28	16 17	2 08	16 27	22	16 38	142	16 48	2 1 2	17 07	8	17 23	0 45	17 55	80
13	16 42	3 31	16 54	3 16	17 01	3 07	17 08	2 57	17 15	2 48	17 27	2 31	17 37	2 17	17 57	147
14	17 23	4 32	17 29	4 24	17 32	4 18	17 35	4 13	17 39	4 07	17 44	3 57	17 49	3 49	17 58	3 33
Ø 15	18 03	5 34	18 02	5 32	18 02	5 30	18 01	5 29	18 01	5 27	18 00	5 25	17 59	5 22	17 58	5 18
											! : 				1	Ì
16	18 44	6 36	18 37	9 9	18 33	643	18 28	6 86	18 24	6 88	18 17	6 53	18 10	e 26	17 59	7 04
17	19 27	4	19 14	7 50	19 06	7 57	18 57	8 04	18 49	8 10	18 35	8 22	18 23	8 32	18 00	8 51
18	20 14	845	19 55	9 02	19 44	9 12	16 31	9 23	61 61	9 33	18 58	9 53	18 40	10 09	18 04	10 43
19	21 05	9 51	20 41	10 14	20 27	10 27	20 11	10 42	19 56	10 56	67 61	11 23	19 04	11 46	18 11	12 37
8	22 01	10 58	21 34	11 24	21 19	11 39	21 00	11 57	20 43	12 14	20 10	12 46	19 40	13 15	18 30	14 25
10	1 22 01	12 03	1 22 22	12 20	1 22 17	12 46	21 58	12 05	21 40	13 23	1 21 05	13 58	20 23	14 20	10 13	15 40
; ;	3	3 5	3 5) { :	3	2 5	2 2		3 ¥	3 5	5 5 5 5	2 2	3 5) { ; ;	2	
3 5	: 2	3 5	3	2 2	3	2 : 2 :	70 67	20 11	2 2		2 7	2 2	2 2 7 2 7 2	1 2 2	2 2	5 5
33		2 2	: :	2 2	: •		: ;		3		3		3	R :	50	
54	10	14 38	0 38	14 59	0 22	15 11	60	15 24	:: ::	15 37	::	15 59	:: ::	I6 19	23 47	16 59
53	1 28	15 19	-	15 34	1 29	15 43	1 12	15 54	1 05	16 03		16 20	0 25	16 34	:: ::	17 02
X	2 2 1			14 05		5	3	01 71	-	16 26	-	76 71	*	77 71	5	20 01
88	4 G				5 7	71 01	38	2		3:			P 8		3 9	53
17	∽ ₹	10 28	\$ ~	10 <i>3</i> 4	15 5 1	10.3/	2	16 41	2 20	16 4		R ₽	5 65	9 2	2 48	5
8	4 33	16 59	4 3	12 8	4 28	12 01	4 26	12 01	4 24	17 01	4 21	17 02	4 18	17 03	4 12	17 04
€ 2	5 22	17 30	5 24	17 26	5 25	17 24	5 26	17 21	5 27	17 19	5 29	17 14	5 31	17 10	5 34	17 03
8	6 10	18 02	6 17	17 53	6 21	17 48	6 25	17 42	6 30	17 36	6 37	17 27	643	17 19	6 56	17 03

LATITUD	E: +2	so°	+	°0°	+3	5°	+40	•	+	e.,	ł5+	°0	+5+	94) 9+	0
EVENT:	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET
	8 4	2 2	8 -	E £	8		E	F _	6 £	6 £	E £	 6 4	6 Æ		e £	6 £
Oct. 1	6 29	18 35	7 II	18 21	7 18	18 13	7 25	18 04	7 33	17 56	7 46	17 41	7 57	17 29	8 19	17 04
2	7 49	11 61	8 06	18 53	8 15	18 42	8 26	18 30	8 37	18 19	8 56	17 58	9 12	17 41	945	17 06
3	8 41	19 51	9 02	19 28	9 14	19 15	9 28	19 00	942	18 46	10 06	18 20	10 28	17 58	11 14	17 10
4.	9 34	20 35	9 59	20 09	10 13	19 54	10 30	19 37	10 46	19 21	11 16	18 50	11 43	18 23	12 45	17 19
5	10 29	21 24	10 55	20 56	11 11	20 40	11 30	20 21	11 48	20 03	12 21	19 29	12 52	18 59	14 09	17 41
``	; ; 		:	2	5	 5	2		:		:		:		:	
וס	3 :	1 7	R : = :	2	11 1	1 2 2	9 71		F 71	2 2	10 18	2	2	2 2	ני בי	20
7	12 15	23 14	12 41	23 48	12 57	23 33	13 15	22 15	13 32	21 59	14 05	21 27	14 34	20 58	15 43	19 50
** *	13 04	::	13 28	23 51	13 42	23 38	13 58	23 23	14 12	23 08	14 40	22 42	15 04	22 19	15 57	21 27
6	13 50	0 13	14 10	::	14 21	::	14 34	:: ::	14 46	:: ::	15 07	::	15 26	23 45	16 04	23 10
10	14 33	1 13	14 47	0 55	14 56	0 45	15 05	0 34	15 13	0 23	15 29	0 03	15 42	::	16 07	::
:	: : 	;	؟ پ	5			1C 33		10 20	- -	5	~~~~			90 21	2
		CI 7		5	17 61	5	3	2	8 : 2 :	6		8				2
12	15 54	3 13	15 56	38	15 57	3.04	15 59	3 01	16 0l	2 57	16 03	2 51	16 05	- 4 9	16 09	2 35
13	16 34	4 15	16 30	4 15	16 28	4 16	16 25	4 16	16 23	4 17	16 19	4 17	16 16	4 18	16 10	4 19
6 14	17 16	5 17	1 17 06	5 25	17 00	5 29	16 54	5 34	16 48	5 38	16 37	58	16 28	5 53	16 12	6 05
15	18 02	6 23	17 46	6 37	17 36	6 45	17 26	6 54	17 16	7 02	16 58	7 18	16 44	7 30	16 14	7 56
:	: : 								i		;		!			
16	18 53	7 31	18 31	7 50	18 18	8 02	18 04	8 15	17 51	8 28	17 26	8 51	17 05	01 6	16 21	9 52
1	19 49	8 40	19 23	9 04	19 08	61 6	18 51	9 35	18 34	9 51	18 04	10 21	17 37	10 47	16 35	11 48
8	20 20	6 47	20 22	10 15	20 06	10 31	19 47	10 49	19 29	11 07	18 55	11 41	18 24	12 11	17 08	13 28
61	21 52	10 51	21 25	11 18	21 10	11 34	20 51	11 53	20 34	12 11	20 00	12 44	19 30	13 15	18 16	14 29
20	22 54	11 47	22 30	12 12	22 16	12 27	22 00	12 44	21 44	13 00	21 15	13 30	20 49	13 56	19 51	14 56
6 21	23 53	12 36	23 33	12 58	1 23 22	13 10	23 OR	13 24	22 SK	13 38 1	22 23	14 00	22 13	14 23	21 30	15 07
22		13 19	} :: } ::	13 36	:: ::	13 45	:: ::	13 57		14 07	23 49	14 25	23 34	14 41	23 06	15 12
23	0 49	13 56	0 34	14 08	0 25	14 15	0 15	14 23	0 06	14 30	::	14 43	::	14 54	::	15 15
24	1 41	14 30	1 31	14 37	1 25	14 41	1 19	14 46	1 13	14 50	1 02	14 58	0 53	15 04	0 35	15 15
22	2 31	15 02	2 26	15 04	2 23	15 05	2 20	15 07	2 17	15 08	2 12	15 10	2 07	15 12	1 59	15 16
										_						
8	3 19	15 33	3 19	15 30	3 19	15 29	3 20	15 27	3 20	15 25	3 20	15 22	3 20	15 20	3 21	15 16
27	4 07	16 04	4 12	15 57	4 15	15 52	4 19	15 47	4 22	15 43	4 28	15 35	4 32	15 28	4 42	15 16
78	4 55	16 37	- 5 05	16 24	5 11	16 17	5 18	16 09	5 25	16 02	5 36	15 49	5 4 5	15 38	6 04	15 16
0 29	5 45	17 12	9 90	16 55	609	16 45	6 19	16 34	6 28	16 24	645	16 05	7 00	15 50	7 29	15 18
8	6 36	17 50	6 56	17 29	7 07	17 17	7 21	17 03	7 33	16 50	7 56	16 26	8 15	16 05	8 57	15 22
31	1 7 29	18 33	7 53	18 09	8 07	17 54	8 23	17 38	8 37	17 22	906	16 53	9 30	16 28	10 27	15 30

(}

LATITUD	÷	20°	+	30°	÷	2°	+	0_	+	<u>.</u>	+2(°	+ <u>7</u> +	وي) 9+	°
EVENT:	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET	RISE	SET
	-	1 4	6 4	6 £	8 £	6 £	£ _		e _	5 2	e £	6 £	6 4	•	•	8 _
Dec. 1	8 57	20 08	9 22	19 36	9 37	19 22	9 54	19 05	10 10	18 50	10 40	18 21	11 07	17 55	12 07	16 55
2	1 9 4	20 58	10 05	20 37	10 18	20 26	10 33	20 12	10 46	19 59	11 11	19 35	11 33	19 15	12 19	18 31
ŝ	10 27	21 55	10 44	21 39	10 54	21 30	11 06	21 20	11 16	21 11	11 36	20 53	11 52	20 38	12 24	20 08
4	1 11 07	22 51	11 19	22 41	11 26	22 35	11 34	22 29	11 42	22 23	11 55	22 11	12 06	22 02	12 27	21 44
5	4	23 47	11 51	23 43	11 55	23 41	12 00	23 38	12 04	23 35	12 11	23 30	12 17	23 27	12 29	23 19
		:		:	;; ;;		20	:	13 JC	:	5 22	:	20		02 01	:
	17 71	:	3		12 23	:	17 71		12 21	: :	17 71		17 20	:	NC 71	:
2	12 59	0 4	112 55	\$	12 52	047	12 49	0 48	12 47	0 49	12 42	0 51	12 38	0 52	12 31	0 55
*	13 39	- 43	13 29	1 51	13 23	1 55	13 16	2 00	13 10	2 05	12 59	2 13	12 50	2 20	12 33	2 34
6	14 23	245	14 07	2 59	13 58	3 07	13 47	3 16	13 37	3 24	13 20	3 40	13 05	3 53	12 36	4 19
9	15 13	3 50	14 52	4 10	14 39	4 21	14 25	4 34	14 12	4 47	13 47	2 09	13 27	5 29	12 43	6 10
:	ء 		:		ę Ļ				1		2		5		5	
=	65 er	4 79		3	2	7 1	71 (1	- - -	5	5	14 20	8	50 51	5	56 21	8 6
© 12	17 12	6 07	16 44	6 34	16 28	6 50	16 10	7 09	15 52	7 26	15 19	7 59	14 48	8 29	13 34	9 43
13	18 17	7 13	17 51	7 40	17 35	7 56	17 17	8 14	17 00	8 32	16 27	9 05	15 58	9 34	14 47	10 46
ł	19 23	8 12	18 59	8 37	18 46	8 51	18 30	9 08	18 15	9 23	17 47	9 52	17 22	10 18	16 27	11 15
15	20 25	9 03	20 06	9 24	19 55	9 36	19 43	9 50	19 31	10 02	19 09	10 26	18 51	10 45	18 12	11 27
			_													
16	21 23	948	21 09	10 03	21 02	10 13	2 0 52	10 23	20 44	10 32	20 29	10 49	20 16	11 04	19 50	11 32
17	22 17	10 26	22 09	10 37	22 04	10 43	21 59	10 50	21 53	10 56	21 44	11 08	21 37	11 I7	21 22	11 35
8	23 08	10 11	23 05	11 07	23 03	11 10	23 01	11 13	22 59	H 17	22 56	11 22	22 53	11 27	22 48	11 36
6 19	23 57	11 34	23 59	11 34	::	11 34	::	11 35	:: ::	11 35		11 36	::	11 36	::	11 37
ଷ	::	12 05	::	12 01	0 01	11 58	0 02	11 55	0 03	11 53	0 05	11 48	0 07	11 44	0 11	11 37
ä	; , 	5			1		:	1	1				:			
5 5	₽ : 	12 3/		12 28	15 0	12 23	1 02	12 17	8		•	12 01	1 20	11 53	1 33	11 38
2	1 35	13 11	1 47	12 57	-	12 49	2 01	12 40	2 09	12 31	2 22	12 16	2 33	12 04	2 55	11 39
ຊ	2 22	13 47	2 41	13 29	2 51	13 18	3 02	13 06	3 13	12 55	3 32	12 34	3 48	12 17	4 21	11 42
24	3 17	14 27	338	14 05	3.50	13 52	4 04	13 37	4 17	13 23	4 42	12 57	5 03	12 35	5 49	11 47
23	4 11	15 12	4 35	14 47	4 49	14 32	5 06	14 15	5 22	13 58	5 51	13 28	6 18	13 01	7 19	11 59
								-								
8	5.05	16 02	5 32	15 35	5 48	15 19	6 06	15 00	6 23	14 43	6 57	14 09	7 27	13 39	8 41	12 24
27	6 00	16 56	6 27	16 29	6 43	16 13	7 02	15 54	7 19	15 37	7 53	15 03	8 24	14 33	€ 9	13 16
● 28	6 52	17 53	7 18	17 28	7 33	17 13	7 51	16 56	8 07	16 40	8 39	16 09	9 07	15 42	10 12	14 37
8	741	18 52	8 04	18 30	8 17	18 17	8 33	18 03	8 47	17 49	9 14	17 24	9 37	17 02	10 27	16 13
8	8 26	19 50	8 45	19 33	8 55	19 23	9 08	19 12	616	10 61	940	18 42	9 58	18 26	10 34	17 52
31	9 07	20 47	9 21	20 35	9 29	20 29	9 38	20 21	946	20 14	10 01	20 01	10 13	19 51	10 38	19 29

ECLIPSES DURING 1989

By Fred Espenak

Four eclipses occur during 1989. Two are partial solar eclipses and two are total lunar eclipses.

1. 20 February: Total Eclipse of the Moon

Penumbral Eclipse Begins:	12:31.2 UT
Partial Eclipse Begins:	13:43.5 UT
Total Eclipse Begins:	14:55.9 UT
Middle of Eclipse:	15:35.4 UT
Total Eclipse Ends:	16:15.2 UT
Partial Eclipse Ends:	17:27.4 UT
Penumbral Eclipse Ends:	18:39.7 UT

A little more than one hour after occulting the first magnitude star Regulus (α Leo), the Moon begins its passage through Earth's shadow during the first eclipse of 1989. Since apogee occurs on 23 February, the Moon's apparent semi-diameter of 14' 49.9" is rather small. Combined with the Moon's relatively slow orbital velocity and umbral shadow, this eclipse will last six hours and eight minutes. At middle eclipse, the umbral magnitude will reach 1.2791 as the Moon's northern limb vallse swithin 1.1 arc-minutes of the shadow's central axis. At the same instant, the Moon's northern limb will be 8.3 arc-minutes from the shadow's edge. Observers may want to estimate the brightness and coloration of the Moon during totality (see: <u>Danion Scale of Lunar Eclipse Brightness</u>).

First contact with the penumbra is at 12:31.2 UT, but casual observers won't notice anything unusual until half an hour or so before first contact with the umbra (13:43.5 UT). The partial umbral phases proceed smoothly over the next hour until the total eclipse begins at 14:55.9 UT. During mid-totality, the Moon will appear in the zenith from a point just east of the Philippines. The total phase ends at 16:15.2 UT, while the partial umbral phases last until 17:27.4 UT. The final penumbral phases of the eclipse end uneventfully at 18:39.7 UT. Three hours later, the Moon crosses the descending node of its orbit.

Table 1 lists predicted umbral immersion and emersion times for twenty well-defined lunar craters. The timing of craters is useful in determining the enlargement of Earth's shadow due to its atmosphere (see: <u>Crater Timings During Lunar Eclipses</u>).

Table 1

Crater Immersion/Emersion Times for the Total Lunar Eclipse of 20 Feb 1989

Crater Name	Immersion UT	Crater Name	Emersion UT
Grimaldi	13:48	Grimaldi	16:22
Billy	13:50	Aristarchus	16:23
Campanus	13:57	Billy	16:30
Kepler	14:01	Kepler	16:30
Tycho	14:03	Plato	16:35
Aristarchus	14:06	Pytheas	16:36
Copernicus	14:10	Copernicus	16:39
Pytheas	14:14	Timocharis	16:39
Timocharis	14:21	Campanus	16:42
Manilius	14:26	Aristoteles	16:46

Crater Name	Immersion UT	Crater Name	Emersion UT
Dionysius	14:26	Eudoxus	16:48
Menelaus	14:30	Tycho	16:51
Plinius	14:33	Manilius	16:54
Plato	14:34	Menelaus	16:58
Goclenius	14:35	Dionysius	17:02
Eudoxus	14:40	Plinius	17:02
Taruntius	14:40	Proclus	17:13
Langrenus	14:41	Taruntius	17:16
Aristoteles	14:42	Goclenius	17:17
Proclus	14:43	Langrenus	17:23

Note: Predictions include a 2% enlargement of the umbral shadow due to Earth's atmosphere.

Observers throughout Asia, Indonesia and Australia will witness the entire event. The total phase will also be visible around moonrise from Scandinavia, eastern Europe and Africa. In the Western Hemisphere, the total eclipse will occur shortly before or during moonset from Alaska, Yukon, British Columbia, Alberta, Washington, Oregon and northern California. The partial umbral phases will be visible near moonrise from central Europe and central Africa, and near moonset from Saskatchewan, Manitoba, western United States and northwestern Mexico. The early penumbral phases can be seen from Ontario and central U.S. and the late penumbral phases from western Europe and Africa. Unfortunately, none of the eclipse will be visible from eastern North America or South America.

2. 7 March: Partial Eclipse of the Sun

Partial Eclipse Begins:	16:16.9 UT
Greatest Eclipse:	18:07.7 UT
Partial Eclipse Ends:	19:58.2 UT

Two weeks after the lunar eclipse, the first solar eclipse of 1989 occurs as the Moon's umbral shadow misses Earth and swings 596 kilometres above Alaska. The partial eclipse is visible from most of Canada west of Quebec, and the United States west of the Mississippi. Northwestern Mexico is also in the penumbral path as is Hawaii where the eclipse occurs during surrise. The penumbral shadow first touches Earth in the Pacific Ocean about 600 kilometres east of the Hawaiian Islands at 16:16:52 UT. Greatest eclipse occurs at 18:07:44 UT, just off the western coast of Alaska. Observers there can witness a sunrise eclipse with a magnitude of 0.8253. The eclipse ends when the penumbra leaves Earth along the sunset terminator in central Greenland at 19:58:10 UT.

Eclipse times and local circumstances for a number of cities in North America are found in Table 2. The Sun's altitude and the eclipse magnitude are given at the instant of maximum eclipse. Eclipse magnitude is defined as the fraction of the Sun's diameter obscured by the Moon. Partial and annular eclipses are characterized by magnitudes less than 1.0 while total eclipses have a magnitude equal to or greater than 1.0.

Table 2

Geographic	Eclipse	Maximum	Eclipse	Sun's	Eclipse
Location	Begins	Eclipse	Ends	Altitude	Magnitude
Albuquerque, NM	17:21	18:06	18:52	47°	0.200
Anchorage, Ak.	17:15	18:13	19:15	10°	0.797
Bismark, ND	17:42	18:33	19:23	38°	0.282
Boise, Idaho	17:10	18:09	19:11	36°	0.455
Billings, Mont.	17:26	18:22	19:19	37°	0.378
Casper, Wy.	17:27	18:20	19:14	40°	0.312
Denver, Co.	17:28	18:17	19:06	43°	0.244
Des Moines, Iowa	18:04	18:35	19:05	43°	0.086
Flagstaff, Az.	17:09	18:00	18:53	44 °	0.285
Los Angeles, Ca.	16:55	17:50	18:47	40°	0.362
Portland, Or.	17:03	18:05	19:09	30°	0.561
San Diego, Ca.	16:56	17:49	18:45	41°	0.330
San Francisco, Ca.	16:53	17:52	18:54	35°	0.464
Seattle, Wa.	17:08	18:10	19:14	30°	0.565
Salt Lake City	17:14	18:10	19:07	40°	0.362
Rapid City, SD	17:35	18:26	19:17	40°	0.280
Calgary, Alta.	17:23	18:23	19:25	31°	0.505
Edmonton, Alta.	17:27	18:28	19:29	29°	0.521
Saskatoon, Sask.	17:35	18:33	19:31	32°	0.429
Vancouver, B.C.	17:10	18:12	19:16	29°	0.587
Victoria, B.C.	17:08	18:10	19:14	29°	0.583
Winnipeg, Man.	17:51	18:41	19:30	35°	0.277

Local Circumstances for the Partial Solar Eclipse of 7 March 1989

Note : All times are in Universal Time. Sun's altitude is for instant of Maximum Eclipse.

3. <u>17 August: Total Eclipse of the Moon</u>

Penumbral Eclipse Begins:	0:23.9 UT
Partial Eclipse Begins:	1:20.6 UT
Total Eclipse Begins:	2:19.9 UT
Middle of Eclipse:	3:08.2 UT
Total Eclipse Ends:	3:56.6 UT
Partial Eclipse Ends:	4:55.8 UT
Penumbral Eclipse Ends:	5:52.4 UT

Two and a half days before its August perigee, the Moon once again swings through Earth's dark umbral shadow in eastern Capricomus. As a result of its orbital geometry, the Moon appears quite large (semi-diameter = 16' 15.3") and passes through the umbra at a relatively high angular velocity. Nevertheless, its very deep path through the centre of the umbra results in a total phase lasting one hour and thirty-six minutes. At maximum eclipse, the umbral magnitude peaks at 1.6039 as the Moon's centre passes 9 arc-minutes south of the shadow axis. This should produce a relatively dark eclipse and observers are encouraged to estimate the Danjon value at mid-totality.

The eclipse begins at 00:23.9 UT with first penumbral contact. An hour later, the partial eclipse commences with first umbral contact (01:20.6 UT). Totality begins at 02:19.9 UT and lasts until 03:56.6 UT. At mid-eclipse, the Moon appears in the zenith from eastern Brazil. After totality

ends, the partial phases resume and continue until 04:55.8 UT. As the Moon crosses the ascending node of its orbit, the penumbral eclipse ends at 05:52.4 UT.

Table 3 lists predicted umbral immersion and emersion times for twenty lunar craters. Crater timings can be used to measure the enlargement of Earth's shadow due to its atmosphere (see: <u>Crater Timings During Lunar Eclipses</u>).

This eclipse will be widely seen from most of North and South America, Europe and Africa. In North America, eastern observers are favored since totality begins at moonrise along a line through western Saskatchewan, central Montana, western Utah and Arizona. Observers in Alberta, British Columbia and the west coast states will witness totality already in progress as the Moon rises. Only the partial phases after totality will be visible from northern British Columbia. In the Eastern Hemisphere, moonset occurs during mid-totality from Scandinavia, Russia, the Middle East and eastern Africa. Observers west of a line from the Netherlands through Greece and Tanzania will witness all of totality, while all the partial phases will be seen in Great Britain, central France and westward. None of the eclipse will be visible from the eastern half of Asia or Australia.

Table 3

Crater Immersion/Emersion Times for the Total Lunar Eclipse of 17 Aug 1989

Crater Name	Immersion UT	Crater Name	Emersion UT
Grimaldi	1:26	Grimaldi	4:00
Aristarchus	1:29	Billy	4:05
Kepler	1:33	Aristarchus	4:08
Billy	1:33	Kepler	4:11
Pytheas	1:39	Campanus	4:14
Copernicus	1:40	Copernicus	4:19
Timocharis	1:42	Pytheas	4:19
Plato	1:44	Tycho	4:20
Campanus	1:46	Timocharis	4:23
Aristoteles	1:52	Plato	4:24
Eudoxus	1:53	Aristoteles	4:32
Manilius	1:54	Eudoxus	4:33
Tycho	1:56	Manilius	4:33
Menelaus	1:57	Menelaus	4:37
Dionysius	1:59	Dionysius	4:38
Plinius	2:00	Plinius	4:40
Proclus	2:09	Goclenius	4:48
Taruntius	2:10	Proclus	4:49
Goclenius	2:12	Taruntius	4:49
Langrenus	2:16	Langrenus	4:53

Note: Predictions include a 2% enlargement of the umbral shadow due to Earth's atmosphere.

4. 31 August: Partial Eclipse of the Sun

Partial Eclipse Begins:	3:33.6 UT
Greatest Eclipse:	5:30.8 UT
Partial Eclipse Ends:	7:27.6 UT

The second and final solar eclipse of 1989 is another partial event as the axis of the lunar shadow passes 1311 kilometres above the southern Indian Ocean. The eclipse is visible from southern Africa, Madagascar, the Indian Ocean and eastern Antarctica. The eclipse begins at 03:33:38 UT when the penumbral shadow first touches Earth about 300 kilometres west of Madagascar. At greatest eclipse, an observer off the coast of Antarctica could then witness a sunrise eclipse with a magnitude of 0.6332. Finally, the penumbra leaves Earth along the sunset terminator in central Antarctica at 07:27:38 UT.

Eclipse times and local circumstances for cities in southern Africa are found in Table 4. The Sun's altitude and the eclipse magnitude are given at the instant of maximum eclipse.

Table 4

Local Circumstances for the Partial Solar Eclipse of 31 August 1989

Geographic Location	Eclipse Begins	Maximum Eclipse	Eclipse Ends	Sun's Altitude	Eclipse Magnitude
Kimberly, S. Afr.	4:37*	4:37	5:22	0°	0.330
Port Elizabeth, S. Afr.	4:37*	4:37	5:37	0°	0.429
Cape Town, S. Afr.	5:06*	5:06	5:32	0°	0.263
Johannesburg, S. Afr.	4:22*	4:24	5:16	0°	0.303
Durban, S. Afr.	4:12*	4:31	5:29	3°	0.374
Pretoria, S. Afr.	4:20*	4:24	5:15	0°	0.296
Tananarive, Mad.	3:36	4:19	5:05	18°	0.177
Salisbury, Rhodesia	4:04*	4:12	4:49	2°	0.142
Lusaka, N. Rhodesia	4:13*	4:13	4:36	0°	0.080
Mozambique, Moz.	3:39	4:10	4:43	10°	0.100
• •					

Note : All times are in Universal Time. Sun's altitude is for instant of Maximum Eclipse.

* = Eclipse in progress at sunrise.

Solar Eclipse Figures

For each solar eclipse, an orthographic projection map of Earth shows the path of penumbral (partial) eclipse. North is to the top in all cases and the daylight terminator is plotted for the instant of greatest eclipse. The sub-solar point on Earth is indicated by a star shaped character. The partial solar eclipse maps are oriented with the origin at the sub-solar longitude at greatest eclipse and at a latitude equal to the Sun's declination plus or minus 45°.

The limits of the Moon's penumbral shadow delineate the region of visibility of the partial solar eclipse. This irregular or saddle shaped region often covers more than half of the daylight hemisphere of Earth and consists of several distinct zones or limits. At the northern and/or southern boundaries lie the limits of the penumbra's path. Partial eclipses have only one of these limits, as do central eclipses when the shadow axis falls no closer than about 0.45 radii of Earth's centre. Great loops at the western and eastern extremes of the penumbra's path identify the areas where the eclipse begins/ends at sunrise and sunset, respectively. The curves are connected in a distorted figure eight. Bisecting the 'eclipse begins/ends at sunrise and sunset (eastern loop). The points 'P1' and 'P4' mark the coordinates where the penumbral

shadow first contacts (partial eclipse begins) and last contacts (partial eclipse ends) Earth's surface.

A curve of maximum eclipse is the locus of all points where the eclipse is at maximum at a given time. Curves of maximum eclipse are plotted at each half hour Universal Time. They generally run from the northern to the southern penumbral limits, or from the maximum eclipse at sunrise and sunset curves to one of the limits. The curves of constant eclipse magnitude delineate the locus of all points where the magnitude at maximum eclipse is constant. These curves run exclusively between the curves of maximum eclipse at sunrise and sunset. Furthermore, they're parallel to the northern/southern penumbral limits and the umbral paths of central eclipses. In fact the northern and southern limits of the penumbra can be thought of as curves of constant magnitude of 0.0. The adjacent curves are for magnitudes of 0.2, 0.4, 0.6 and 0.8. The northern and southern limits of the umbra which define the path of totality are curves of constant magnitude of 1.0.

Greatest eclipse is defined as the instant when the axis of the Moon's shadow passes closest to Earth's centre. Although greatest eclipse differs slightly from the instants of greatest magnitude and greatest duration (for total eclipses), the differences are usually negligible. The point on Earth's surface which is at or is nearest to the axis at this time is marked by an *. For partial eclipses, the shadow axis misses Earth entirely. Therefore, the point of greatest eclipse lies on the day/night terminator and the sun appears in the horizon.

Data pertinent to the eclipse appear with each map. In the upper left corner are the Universal Times of greatest eclipse and conjunction of the Moon and Sun in right ascension, the minimum distance of the Moon's shadow axis from Earth's centre in Earth radii (Gamma) and the magnitude at greatest eclipse. The magnitude is defined as the fraction of the Sun's diameter obscured by the Moon. To the upper right are exterior contact times of the Moon's shadow with Earth. P1 and P4 are the first and last contacts of the penumbra; they mark the start and end of the partial eclipse. Below each map are the geocentric coordinates of the Sun and Moon at the instant of greatest eclipse. They consist of the right ascension (RA), declination (DEC), apparent semi-diameter (SD) and horizontal parallax (HP). The Saros series for the eclipse is listed, followed by a pair of numbers in parentheses. The first number identifies the sequence order of the eclipse in the series, while the second number is the total number of eclipses in the series. The Julian Date (JD) at greatest eclipse is given, followed by the extrapolated value of ΔT used in the calculations (ΔT is the difference between Terrestrial Dynamical Time and Universal Time).

Lunar Eclipse Figures

Each lunar eclipse has two diagrams associated with it. The top figure shows the path of the Moon through Earth's penumbral and umbral shadows. Above and to the left is the time of middle eclipse, followed by the penumbral (PMAG) and umbral (UMAG) magnitudes of the eclipse. The penumbral and umbral magnitudes are the fraction of the Moon's diameter immersed in the penumbral and umbral shadows respectively at middle eclipse. To the upper right are the contact times of the eclipse. P1 and P4 are the first and last contacts of the Moon with the penumbra; they mark the start and end of the penumbral eclipse. U1 and U4 denote the first and last contacts of the Moon with the umbra; they are the instants when the partial umbral eclipse begins and ends. U2 and U3 are the instants of internal tangency between the Moon and the umbral shadow; they identify the start and end of total umbral eclipse. In the lower left corner is the angle subtended between the Moon's centre and the shadow axis at middle eclipse (AXIS), and the angular radii of the penumbral (F1) and umbral (F2) shadows. The Moon's geocentric coordinates at maximum eclipse are given in the lower right corner. They consist of the right ascension (RA), declination (DEC), apparent semi-diameter (SD) and horizontal parallax (HP). Below, the Saros series of the eclipse is given, followed by the Julian Date at middle eclipse and the extrapolated value of ΔT used in the calculations (ΔT is the difference between Terrestrial Dynamical Time and Universal Time).

The bottom map is a cylindrical equidistant projection of Earth which shows the regions of visibility for each stage of the eclipse. In particular, the moonrise/moonset terminator is plotted for each contact and is labeled accordingly. The point where the Moon is in the zenith at maximum eclipse is indicated by an *. The region which is completely unshaded will observe the entire eclipse while the area marked by solid diagonal lines will witness none of the event. The remaining shaded areas will experience moonrise or moonset while the eclipse is in progress. The shaded zones east of * will witness moonrise after the eclipse ends while the shaded zones west of * will witness moonrise after the eclipse.

Danion Scale of Lunar Eclipse Brightness

The Moon's appearance during a total lunar eclipse can vary enormously from one eclipse to the next. Obviously, the geometry of the Moon's path through the umbra plays an important role. Not as apparent is the effect that Earth's atmosphere has on total eclipses. Although the physical mass of Earth blocks off all direct sunlight from the umbra, the planet's atmosphere refracts some of the Sun's rays into the shadow. Earth's atmosphere contains varying amounts of water (clouds, mist, precipitation) and solid particles (meteoric dust, organic debris, volcanic ash). This material significantly filters and attenuates the sunlight before it's refracted into the umbra. For instance, large or frequent volcanic eruptions dumping huge quantities of ash into the atmosphere are often followed by very dark, red eclipses for several years. Extensive cloud cover along Earth's limb also tends to darken the eclipse by blocking sunlight.

The French astronomer A. Danjon proposed a useful five point scale for evaluating the visual appearance and brightness of the Moon during total lunar eclipses. 'L' values for various luminosties are as follows:

- L = 0 Very dark eclipse. Moon almost invisible, especially at mid-totality.
- L = 1 Dark Eclipse, gray or brownish in coloration. Details distinguishable only with difficulty.
- L = 2 Deep red or rust-colored eclipse. Very dark central shadow, while outer edge of umbra is relatively bright.
- L =3 Brick-red eclipse. Umbral shadow usually has a bright or yellow rim.
- L=4 Very bright copper-red or orange eclipse. Umbral shadow has a bluish, very bright rim.

(}

The assignment of an 'L' value to lunar eclipses is best done with the naked eye, binoculars or a small telescope near the time of mid-totality. It's also useful to examine the Moon's appearance just after the beginning and before the end of totality. The Moon is then near the edge of the shadow and provides an opportunity to assign an 'L' value to the outer umbra. In making any evaluations, you should record both the instrumentation and the time. Also note any variations in color and brightness in different parts of the umbra, as well as the apparent sharpness of the shadow's edge. Pay attention to the visibility of lunar features within the umbra. Notes and sketches made during the eclipse are often invaluable in recalling important details, events and impressions.

Crater Timings During Lunar Eclipses

In 1702, Pierre de La Hire made a curious observation about Earth's umbra. In order to accurately predict the duration of a lunar eclipse, he found it necessary to increase the radius of the shadow one arc-minute larger than warranted by geometric considerations. Although the effect is clearly related to Earth's atmosphere, it's not completely understood since the shadow enlargement seems to vary from one eclipse to the next. The enlargement can be measured through careful timings of lunar craters as they enter and exit the umbra.

Such observations are best made using a low-power telescope and a clock or watch synchronized with radio time signals. Timings should be made to a precision of 0.1 minute. The basic idea is to record the instant when the most abrupt gradient at the umbra's edge crosses the apparent centre of the crater. In the case of large craters like Tycho and Copernicus, it's recommended that you record the times when the shadow touches the two opposite edges of the crater. The average of these times is equal to the instant of crater bisection.

As a planning guide, Tables 1 and 3 list twenty well-defined craters with predicted umbral immersion and emersion times during the two lunar eclipses of 1989. The predictions assume a 2% enlargement of the umbra and include the effects of Earth's oblateness. Naturally, you should be thoroughly familiar with these features before an eclipse in order to prevent confusion and misidentifications. The four umbral contacts with the Moon's limb can also be used in determining the shadow's enlargement. However, these events are less distinct and difficult to time accurately. Observers are encouraged to make crater timings and to send their results to *Sky and Telescope* for analysis.

Eclipse Altitudes and Azimuths

The altitude (a) and azimuth (A) of the Sun or Moon during an eclipse depends on the time and the observer's geographic coordinates. They are calculated as follows.

h = 15 (GST + UT - α) - λ a = ArcSin [Sin δ Sin φ + Cos δ Cos h Cos φ] A = ArcTan [- (Cos δ Sin h) / (Sin δ Cos φ - Cos δ Cos h Sin φ)]

where:

h = Hour Angle of Sun or Moon

- a = Altitude
- A = Azimuth
- GST = Greenwich Sidereal Time at 0 UT
 - UT = Universal Time
 - α = Right Ascension of Sun or Moon
 - δ = Declination of Sun or Moon
 - λ = Observer's Longitude (West +, East -)
 - ϕ = Observer's Latitude (North +, South -)

During the eclipses of 1989, the values for GST and the geocentric α and δ of the Sun or Moon (at greatest eclipse) are as follows:

Date	GST	α	δ
20 Feb	10.036	10.273	11.008
7 Mar	11.029	23.212	-5.076
17 Aug	21.699	21.772	-13.591
31 Aug	22.625	10.631	8.647

Acknowledgements

Predictions for "Eclipses During 1989" were generated on a DEC VAX 11/785 computer using algorithms developed primarily from the Explanatory Supplement [1974] with additional algorithms from Meeus, Grosjean and Vanderleen [1966]. The solar and lunar ephemerides were generated from the Jet Propulsion Laboratory Developmental Ephemeris DE-200. For lunar eclipses, the diameter of the umbral shadow was enlarged by 2% to compensate for Earth's atmosphere and the effects of oblateness were included.

The author would like to thank Goddard's Laboratory for Extraterrestrial Physics for several minutes of computer time. All calculations, diagrams, tables and opinions presented in this paper are those of the author and he assumes full responsibility for their accuracy.

<u>References</u>

Espenak, F., 1987, Fifty Year Canon of Solar Eclipses: 1986 - 2035, NASA RP-1178, Greenbelt, MD.

Explanatory Supplement to the Astronomical Ephemeris and the American Ephemeris and Nautical Almanac, 1974, Her Majesty's Nautical Almanac Office, London.

Meeus, J., Grosjean, C. C., and Vanderleen, W., 1966, <u>Canon of Solar Eclipses</u>, Pergamon Press, New York.

- Meeus, J. and Mucke, H., 1979, Canon of Lunar Eclipses: -2002 to +2526, Astronomisches Buro, Wien.
- Mucke, H. and Meeus, J., 1983, <u>Canon of Solar Eclipses: -2003 to +2526</u>, Astronomisches Buro, Wien.

PARTIAL SOLAR ECLIPSE - 7 MAR 1989

OCCULTATIONS BY THE MOON

Predictions by the International Lunar Occultation Centre Tokyo, Japan

The Moon often passes between Earth and a star, an event called an occultation. During an occultation a star suddenly disappears as the east limb of the Moon crosses the line between the star and observer. The star reappears from behind the west limb some time later. Because the Moon moves through an angle about equal to its own diameter every hour, the longest time for an occultation is about an hour. The time is shorter if the occultation is not central. Occultations are equivalent to total solar eclipses, except they are eclipses of stars other than the Sun.

Since observing occultations is rather easy, amateur astronomers are encouraged to try this activity. The slow, majestic drift of the Moon in its orbit is an interesting part of such observations, and the disappearance or reappearance of a star at the Moon's limb is a remarkable sight, particularly when it occurs as a *graze* near the Moon's northern or southern edge. In the latter case the star may disappear and reappear several times in succession as mountains and valleys in the Moon's polar regions pass by it. On rarer occasions the Moon occults a planet.

Lunar occultation and graze observations are used to refine our knowledge of the Moon's orbit, the shape of the lunar profile, and the fundamental star coordinate system. These observations complement those made by other techniques, such as laser-ranging and photographs. Improved knowledge of the lunar profile is useful in determinations of the Sun's diameter from solar eclipse records. Occultation observations are also useful for detecting double stars and measuring their separations. Binaries with separations as small as 0.02 have been discovered visually during grazes. Doubles with separations in this range are useful for filling the gap between doubles which can be directly resolved visually and those whose duplicity has been discovered spectroscopically.

3

Analysis of lunar occultation observations is currently being done at the U.S. Naval Observatory and the International Lunar Occultation Centre (ILOC). The latter organization is the world clearing house for such observations. Readers who are interested in pursuing a systematic program of lunar occultation observations should write to the ILOC (address on the inside front cover under "Senda") for their booklet: *Guide to Lunar Occultation Observations*.

Observers in North America should also contact the International Occultation Timing Association (IOTA), 6 N 106 White Oak Lane, St. Charles, IL 60175, U.S.A. IOTA provides predictions and coordination services for occultation observers. Detailed predictions for any grazing occultation are available (\$1.50 U.S. each); instructions concerning the use of predictions are also available (\$2.50 U.S.). Annual membership in IOTA is \$15.00 U.S. in North America, \$20.00 U.S. overseas. Membership includes free graze predictions, descriptive materials, and a subscription to *Occultation Newsletter* (available separately for \$10.00 U.S.).

The main information required in a lunar occultation observation is the time of the event and the observer's location. Supplementary information includes the seeing conditions, size of telescope used, timing method used, estimate of the observer's reaction time and the accuracy of the timing, and whether or not the reaction time correction has been applied. The timing should be as accurate as possible, preferably to 0.5 s or better. (A shortwave radio time signal and cassette tape recorder provide a simple, permanent time record). The observer's geodetic latitude, longitude, and altitude should be known to at least the nearest second of arc and 20 metres respectively. These can be determined from a suitable topographical map. For Canada these are available from the Canada Map Office, 615 Booth Street, Ottawa, ON, K1A 0E9. In the United States write to: U.S. Geological Survey, Denver Federal Centre, Bldg. 41, Denver, CO 80225, asking for an index to topographical maps in your state.

The following pages give tables of predictions, and a table and maps of northern or southern limits for many cases where grazing occultations may be seen.

1. TOTAL OCCULTATION PREDICTIONS

The total occultation predictions are for the 18 standard stations identified on the map below; the coordinates of these stations are given in the table headings.

The tables (see pages 100–105) are generally limited to stars of magnitude 5.0 or brighter. The first five columns give for each occultation the date, the Zodiacal Catalogue number of the star, its magnitude, the phenomenon (D.D. or D.B. = disappearance at dark limb or bright limb, respectively; R.D. or R.B. = reappearance at dark limb or bright limb, respectively), and the elongation of the Moon from the Sun in degrees (see page 30). Under each station are given the universal time of the event, factors A and B (see below), and the position angle (from the north point, eastward around the Moon's limb to the point of occurrence of the phenomenon). In several cases, predictions have been replaced by the cryptic notations: GBG (after moonset); GSM (before moonrise); NB2 (Sun's altitude greater than -6°); NSG (after sunrise); NBM (before sunset). If A and B give an unrealistic representation, as in the case of near grazes, they are omitted.

The terms A and B are for determining corrections to the times of the phenomena for stations within 500 km of the standard stations. Thus if λ_0 , ϕ_0 , be the longitude and latitude of the standard station and λ , ϕ , the longitude and latitude of the observer, then for the observer we have: UT of phenomenon = UT of phenomenon at the standard station + A($\lambda - \lambda_0$) + B($\phi - \phi_0$) where $\lambda - \lambda_0$ and $\phi - \phi_0$ are expressed in degrees and A and B are in minutes of time per degree. Due regard must be paid to the algebraic signs of the terms. Also, to convert UT to the standard time of the observer, see page 25.

As an example, consider the occultation of ZC 890 on Jan. 19, 1989 as seen from Ottawa. For Ottawa, $\lambda = 75.72^{\circ}$ and $\phi = 45.40^{\circ}$. The nearest standard station is Montreal, for which $\lambda_{o} = 73.60^{\circ}$ and $\phi_{o} = 45.50^{\circ}$. Therefore, the UT of the disappearance at the dark limb ("D.D.") is $7^{h}41^{m}5 - 0^{m}2(75.72 - 73.60) - 1^{m}7(45.40 - 45.50) = 7^{h}41^{m}2$. Note that almost the same result is obtained by using Toronto as the standard station. The elongation of the Moon is 149° which means that the Moon is in the waxing gibbous phase (between first quarter and full). The position angle of disappearance is about 108°.

The total lunar occultation predictions on pages 100-105, being limited to stars of magnitude 5.0 or brighter, are only the more spectacular events and are presented in

order to introduce observers to this type of work. The number of events observable at any location increases *rapidly* as predictions are extended to fainter and fainter stars. Observers who wish to pursue this work can obtain more extensive lists from Walter V. Morgan, 10961 Morgan Territory Rd., Livermore, CA 94550, U.S.A., by providing accurate geographical coordinates and a long, self-addressed envelope (with postage). Experienced observers who regularly measure 60 or more events per year may obtain even more detailed predictions computed for their location by contacting: Occultation Project, Nautical Almanac Office, U.S. Naval Observatory, 34th and Massachusetts Ave., NW, Washington, D.C. 20390, U.S.A.

2. GRAZE PREDICTIONS

The table on page 106 lists lunar graze predictions for much of North America for 1989. The events are limited to stars of magnitude 7.5 or brighter which will graze the limb of the Moon when it is at a favourable elongation from the Sun and at least 10° above the observer's horizon (5° in the case of stars brighter than 5^{m} :5 and 2° for those brighter than 3^{m} 5). For each is given: a chronological sequential number, the Zodiacal Catalogue number and magnitude of the star, the time of the beginning of each graze track (the west end of the track), the percent of the Moon sunlit (a minus sign indicates a waning Moon), and whether the track is the northern (N) or southern (S) limit of the occultation.

The maps on pages 107–110 show the predicted graze tracks. For any one observer, reference to a geographic map and using the scales on the margins of the graze maps plus a few minutes work with a straight edge and pencil will suffice to locate nearby political boundaries on the graze map (An alternative procedure is to use the same tools to transfer the graze tracks of interest to a geographic map of the observer's area). To obtain greater precision, write to the International Occultation Timing Association (see p. 96) for detailed predictions for any graze.

(7

Each track is keyed to the sequential number in the table. For clarity, on the maps each track is numbered twice: once by computer, and a second time manually (the latter number is in an obvious location). Several tracks begin and/or end with a letter A, B, or S indicated. A denotes that the Moon is at a low altitude, B that the bright limb interferes, and S that daylight interferes. The tick marks along the tracks indicate multiples of 5 minutes of every hour. e.g. If the time for the west end of a track is $3^{h}16^{m}11^{s}$, the tick marks proceeding eastward correspond to $3^{h}20^{m}00^{s}$, $3^{h}25^{m}00^{s}$, etc. The locations of the North American standard stations for lunar total occultation predictions are indicated by small circles on the graze maps (as on the map on page 97, where the names are indicated by symbols).

NAMES OF OCCULTED STARS

The stars which are occulted by the Moon are stars which lie along the zodiac; hence they are known by their number in the Zodiacal Catalogue (ZC) compiled by James Robertson and published in the Astronomical Papers Prepared for the Use of the American Ephemeris and Nautical Almanac, vol. 10, pt. 2 (U.S. Government Printing Office, Washington, 1940). Robertson's Zodiacal Catalogue has been out of print for several years. In 1986 Isao Sato, a member of the Lunar Occultation Observers Group in Japan, republished the ZC. This new edition is based on the epoch J2000 and includes much new data, particularly on double stars. Since stars are not usually recognized by their ZC numbers, the equivalent Bayer designations or Flamsteed numbers of the stars of magnitude 5.0 or brighter occulted during the year are given in the following table:

ZC	Na	ime	ZC	Na	ame	ZC	Na	me
440	E	Ari	1599	58	Leo	2721	φ	Sgr
539	19	Tau	1685	υ	Leo	278 4	τ	Sgr
541	20	Tau	1815	х	Vir	2864	52 h2	Sgr
890	136	Tau	2263	1	Sco	3079	θ	Cap
1170	K	Gem	2287	π	Sco	3126	ι	Cap
1486	31	Leo	2383	τ	Sco	3494	λ	Psc
1487	α	Leo	2617	38B	Sgr			

OCCULTED STARS KNOWN TO BE DOUBLE

In the table below is information on double stars for which occultation predictions are given on the next few pages. This information is from the Sato ZC catalogue. The successive columns give: the ZC number of the star, the number of the graze track (where applicable), the number of the star in the Aitken Double Star catalogue, the magnitudes of the brighter (A) and dimmer (B) components, the separation in seconds of arc, the position angle of B from A measured eastward from north, and the epoch for which the Sep. and P.A. are given.

ZC	Graze No.	ADS	A	В	Sep.	P. A .	Epoch
44 0	_	2257	5.1	5.7	1.4"	203°	1966
539	7	-	4.4	9.	69."	330°	-
890	119	44 74	4.8	6.3	0.0013"	-	-
1170	51	6321	4.	10.	7.0"	239°	1962
1 486	146	76 4 9	4.5	13.5	7.9"	44 °	193 4
1487	12, 57	765 4	1.3	8.	177."	307°	1 924
1599	147	-	5.8	5.8	0.1"	90°	1971
2617	116	-	5.1	5.9	0.26"	12°	1937
2721	-	-	4.1	4.1	0.13"	27°	1973
2864	-	1265 4	4.5	10.	2.5"	170°	1959

						HALIFAX	、 N.S.		MONTREA	L, Q.P.		TORONTO	0 ONT.	
						W 63.6 /	N 44.6		W 73.6 /	N 45.5		N 79.4 /	N 43.7	
DAT	ш	ZC	MAG.	PH.	ELG.	TIME	A B	۵.	TIME	A B	٩	TIME	A B	۵.
Σ	۵				•	×		0	Σ I		•	¥ T		•
I AN.	0	1815	4.8	R.D.	272	9 5.1	-1.3 -0.6	309	8 51.3	-1.4 0.2	295	8 42.1	-1.5 0.9	28(
I AN.	19	890	4.5	0.0.	149	7 44.5	-0.1 -1.4	97	7 41.5	-0.2 -1.7	108	7 43.6	-0.2 -2.0	11
AN.	24	1487	1.3	D.B.	205	2 17.6	:	46	2 15.4	:	37	2 2.6	:	5
I AN .	24	1487	1.3	R.D.	205	2 40.1		10	2 29.2		14	2 34.3		35
.EB.	-	2383	2.9	D.B.	298	13 24.5	-1.8 -0.7	26	13 5.4	-1.9 -0.3	26	12 54.6	-1.9 -0.1	è
.68.	-	2383	2.9	R.D.	299	14 44.9	-1.4 -1.2	273	14 28.6	-1.7 -0.9	279	14 19.8	-1.9 -0.7	278
AR.	m	2784	3.4	R.D.	302	NB2			NB2			10 59.7	-1.6 1.6	23
APR.	•	539	4.4	0.0.	41	1 30.7	0.3 -1.4	100	1 31.9	0.2 -1.7	109	1 36.6	0.3 -2.2	12
APR.	0	541	4.0	0.0.	41	1 49.1	0.7 -2.0	127	1 54.6	0.8 -2.9	141	:		
APR.	11	890	4.5	0.0.	68	2 52.4	-0.3 -0.8	65	2 48.2	-0.4 -1.1	77	2 48.0	-0.4 -1.3	õ
APR.	13	1170	3.7	0.0.	06	0 8.5	-2.3 0.2	69	NBM			NBM		
1 A Y	23	2617	4.7	R.D.	210	7 58.6	-1.9 -1.0	285	7 37.8	-2.1 -0.7	294	7 26.8	-2.1 -0.5	29
IULY	20	3126	4.3	R.D.	201	NB2			8 20.4	-1.4 -0.5	256	8 12.5	-1.7 -0.5	26
SEP.	∞	2383	2.9	0.0.	86	:			:			1 40.9	:	16
SEP.	13	3126	4.3	0.0.	147	2 31.5	-1.0 0.9	33	2 24.3	-0.7 1.5	15	2 17.5	-0.6 2.0	
ост.	~	2617	4.7	0.0.	78	GBG			0 11.7	-2.0 -1.6	116	0 2.5	-2.1 -1.3	11
ост.	17	539	4.4	R.D.	217	9 46.4	-1.4 1.4	211	9 33.0	-1.5 2.0	208	9 18.4	:	19.
101.	m	2721	3.3	0.0.	59	22 49.2	-0.7 -0.2	48	22 42.5	-0.6 0.4	31	22 37.5	-0.7 0.8	~
101.	20	1486	4.6	R.D.	272	9 0.4	-2.9 2.6	248	8 34.9	:	230	:		
101.	22	1685	4.5	R.D.	294	9 10.9	-0.4 -1.8	346	9 5.0	-0.5 -1.1	336	9 3.4	-0.6 -0.6	32,
ес.	11	539	4.4	0.0.	160	7 8.7	-0.5 -1.4	93	7 1.0	-0.8 -1.5	66	6 59.2	-0.9 -1.9	10
DEC.	1	541	4.0	0.0.	160	7 27.8	-0.1 -2.2	119	7 23 3	-0.3 -2.7	126	7 27.4	-0.2 -4.1	14

LUNAR OCCULTATION 1989 UT

	٩	,		105	156			119			170	214	156		250	254	223	157	228	232	250	220	244		80	111
	а ,			0.4	:			-1.9					-2-3	1	1.5	1.7	2.1	-0.5	1.0	1.6	1.3	2.2	2 .8		0.7	-0.7
ER.B.C N 49.C				-1.7	•			0.6					-0.3		0.2	-0.3	0.1	-0.6	-2.3	0.4	-1.2	-0.8	0.2		-1.4	-1.8
VANCOUVI	TIME	H B GSM		2 6.4	7 2.7	6 S M	GSM	9 20.3	•	NSG	10 0.9	10 31.7	8 50.5	GSM	10 18.0	10 54.9	11 2.4	0 17.9	1 6.0	4 46.8	8 33.5	8 41.1	8 12.0	GSM	5 50.1	6 11.0
	٩	•	158	105	128			66	128		154	225	150	1				141	238	228	253	223	259		74	102
. 9	æ			0.0	-2.2			-1.4	-1.9		-0.6	-0.1	-2.1					-0.1	0.0-	1.8	0.9	1.8	2.2		0.5	-0-1
N.ALT/ N 53.			:	-1.6	-1.1			0.4	0.8		-1.2	-1.6	-0.2					-1. 1	-1.7	0.2	-1.2	-1.0	-0.2		-1.3	-1.5
EDMONTO	TIME	e u GSM a	8 43.4	2 23.6	6 59.7	GSM	GSM	98.6	9 27.6	NSG	10 6.2	10 52.9	8 43.1	6 S M	NB2	NB2	NB2	0 25.8	1 27.0	4 51.3	8 50.1	8 58.8	8 22.9	GSM	6 6.1	6 23.8
	• •	278	143	148	125	110	278			96	156	214		299				138	233	207	230	191	240	336	91	121
0	ø	1.4	0 0 0	0	-2.3	0.6	0.2			-1.5	•	0 0		0.5				-1.0	-0.5	2.2	1.2	:	3.7	-0.7	-0.8	-2.3
3, MAN N 49.	×	-0.8	,	:	-0.7	-1.2	-1.6			-0.8	•	0 9 8		-1.3				-1.7	-1.2	°.0	-1.3	•	-0.7	-0.1	-1.4	۰ ۲
WINNIPE W 97.2	TIME	8 29.3	8 40.2	3 6.1	7 22.3	12 28.2	13 46.2	686	GBG	2 28.2	10 34.9	11 13.3	GBG	6 56.3	NB2	NB2	NB2	0 51.0	1 52.4	4 40.6	9 6.8	9 4.2	8 19.3	8 53.9	6 29.0	6 52.5
	ЕLG. 0	272	113	122	149	298	299	95	95	67	217	218	120	210	310	295	295	86	86	232	216	216	272	294	160	160
	PH。	R.D.	D.D.	. D. D.	D.D.	D.B.	R.D.	D.D.	D.D.	0.0.	D.8.	R.D.	D.D.	R. D.	R. D.	R.D.	R.D.	0.0.	8.8.	R.D.	R.D.	R.D.	R.D.	R.D.	D.D.	0.0.
	MAG.	4.8	4.6	4.4	4.5	2.9	2.9	4.4	4.0	4.5	2.9	2.9	4.5	4.7	4.6	4.4	4.0	2.9	2.9	46	4.4	4.0	4.6	4.5	4.4	4.0
	ZC	1815	440	539	890	2383	2383	539	541	890	2383	2383	1685	2617	440	539	541	2383	2383	440	539	541	1486	1685	539	541
	ТЕ Р	0	16	17	19	-	6 -0	13	13	11	54	24	15	23	29	27	27	ø	~	19	17	17	20	22	11	11
	× a	JAN.	JAN。	JAN.	JAN.	FEB.	5EB.	FEB.	FEB.	APR.	APR.	APR.	MAY	MAY	JUN.	יטע	יטרא	SEP.	SEP.	SEP.	ОСТ.	ост.	NOV.	NOV。	DEC.	DEC.

LUNAR OCCULTATION 1989 UT

259 ° 37 347 143 293 555 555 555 063 179 311 104 -0.0 -0.1 3.2 -3.6 -1.6 2.2 -2.1 -0..7 : ÷ ; : CHICAGO,ILLINOIS W 87.7 / N 41.9 œ -2.3 -0.5 -0.5 -1.7 -0.1 -0.6 -1.7 -2.1 0.6 -2..2 ::: : < н м 8 26.4 33.2 39.2 4.3 2 46.9 NBM 7 10.2 7 56.8 46.3 56.2 44.5 59.5 24.2 2.1 9.9 10.3 46.2 55.6 : ; : TIME GSM 1 44. GSM GSM 7 46 1 56 ~ ~ 4 ~ 00 00 P 268 38 38 128 79 331 272 230 237 287 125 319 16 353 40 309 97 21 -2.1 -1.2 -0.3 -2.7 -0.0 -2.0 -1.3 1.8 -2.6 ::0 -0.2 1.3 : ; ß WASHINGTON, D.C. W 77.0 , N 38.9 -2.3 -1.0 -2.6 -0.8 -2.1 -1.9 0.7 -0.2 -2.2 0.0 0.0 2.1 : : 4 2 55.0 NBM 7 34.5 8 17.5 41.3 50.7 8.5 53.8 49.8 2 10.3 7.0 45.4 0.5 27.9 55.7 46.9 24 15.7 25.6 41.0 56.6 36.4 Σ : TIME H H 8 41 1 10 50 1 7 53 4 7 53 : 22 23 8: 22 23 8: ٥~ : ×€40+ 349 186 343 326 108 139 289 P 113 116 155 82 90 289 247 22 124 39 -1.8 3.3 -2.5 -0.4 -1.8 -2.0 -0.8 -1.8 -3.5 -0.3 :: 0.3 1.5 ..0 æ MASSACHUSETTS W 72.5 / N 42.5 **6.**0--1.6 -0.1 -0.8 -2.0 0.3 -0.3 -2.3 -0.8 -0.0 :: • 2 42.7 13 8.6 14 33.3 24 19.4 H M 8 52.2 47.0 NB2 1 36.9 3.5 51.9 49.0 42.4 23.1 2 20.6 8.5 6.8 32.6 24.2 42.3 : : : : TIME .22 .~~~ 8 4 3 5 5 o∕∞ 0 ~ ~ ELG. 294 272 318 318 205 205 205 205 202 202 41 86 86 147 78 78 8.0. 8.0. 0.0. 0 8 0 8 0 0 0 0 0 F. ~~~~~~ а. 0.0. 0.0. MAG. 4.4.9.9 4.5 4.4.0 4.6.9 4.4.5 4.5 1815 2287 2287 890 1487 541 890 1170 2617 3126 2383 2383 3126 440 2617 539 890 2287 2287 2287 1487 2383 2383 2384 2784 539 685 539 541 534400 4 L L W O 20272 8 8 7 6 9 2000 2000 2000 1122 DATE JAN. Feb. Mar. APR. APR. APR. MAY JULY 0CT. 0CT. 0CT. 0CT. NOV. DEC. DEC. SEP. SEP. SEP. OCT.

E

LUNAR "OCCULTATION

5

1989

	۵ °		291			302	148	247		158			330	268	54	189	269	40	14		299		341	261
~	ар Ј		0.4			-0.1	-1.2	1.1		-3.7			-1.3	0.7	:	2.7	0.2	0.6	3.0		-0.5		-3.9	1.6
LEXAS N 30			-0.5			-0.3	-0.8	-3.1		0.7			-0.6	-2.2	:	0.9	-2.7	-0.3	-1.2		-2.1		-2.6	-0.4
AUSTIN/I		GSM	11 16.4	:	GSM	2 37.5	12 28.9	13 36.2	:	3 12.3	MBM	GSM	21 38.6	6 45.8	2 45.3	9 34.3	7 32.3	6 16.4	1 26.6	NBM	7 49.2	EL25	21 38.2	8 46.3
	۰°		326	160	96	310	120	264	207	120		64	344	280			249		20	127	299	30	341	285
A I N	<u>а</u>		-0-7	-3.7		-0.3	-0.5	-0.2	:	-1.8		2.8	-2.4	-0.1			0.2		2.3	-1.9	-0.9	:	:	0.6
GEORG	- 		-0.2	0.9	-0.1	-0.7	-2.0	-2.4	:			-0.3	-0.8	-2.5			-1.9		-1.2	-3.1	-2.3	:	:	-0.9
ATLANTA. U 86 3 2		GSM	11 21.1	8 9.9	1 41.2	2 43.4	12 46.9	14 14.2	10 28.8	3 1.6	MBN	20 57.6	21 42.2	7 18.6	:	:	8 4.8	686	1 52.0	0 4.9	8 17.3	21 25.3	22 1.0	8 59.6
	۰°	100	311		127	281	133	248		135	159	100	311	264			222		42		267	61	306	255
œ	<u>م</u>	0.5	-0.5		-0.4	0.5	-1.4	0.3		-2.0	-3.9	0.6	-0.8	0.2			1.2		1.9		0.5	0.2	-2.2	2.2
ORIDA	A A	-0.8	-0.8		-0.4	-0.9	-2.3	-2.6		0.4	-1.2	-0.5	-1.2	-2.8			-1.3		-1.7		-2.5	-1.6	-1.7	-1.6
MIAMI/FI N RD 3 /		10 19.4	11 27.7	:	1 39.8	2 45.8	13 2.6	14 24.4	:	3 16.1	0 4.3	20 47.3	21 57.6	7 29.2	:	:	8 5.8	GBG	1 41.2	•	8 28.6	21 23.7	22 34.3	8 54.5
	ELG.	317	318	149	205	205	298	299	301	68	90	123	123	210	154	310	201	124	147	78	243	25	26	294
	РН.	D.8.	R.D.	0.0.	0.8.	R.D.	D.B.	R.D.	R.D.	0.0.	0.0.	0.0.	R.B.	R.D.	0.0.	R.D.	R.D.	0.0.	0.0.	0.0.	R.D.	0.0.	R.B.	R.D.
	MAG.	3.0	3.0	4.5	1.3	1.3	2.9	2.9	3.4	4.5	3.7	1.3	1.3	4.7	4.8	4.6	4.3	4.7	4.3	4.7	4.5	3.0	3.0	4.5
	Z C	2287	2287	890	1487	1487	2383	2383	2784	890	1170	1487	1487	2617	2263	440	3126	2864	3126	2617	890	2287	2287	1685
	LE D	4	4	19	24	24.	-	-	m	11	13	15	15	23	17	29	20	11	13	~	19	31	31	22
	۷۵ ۳	AN.	I AN.	I AN.	AN.	I AN .	.EB.	EB.	AAR.	APR.	APR.	VPR.	APR.	AΥ	IUN.	NN.	IULY	SEP.	SEP.	<u>ст.</u>	ост.	<u>ст</u> .	<u>ст.</u>	40 V -

1989 UT

LUNAR OCCULTATION

				163	236	359	172	265	216	302	202	187	192	356		192				65
ANO	B			-1.6	2.2	÷	:		1.8	:	2.7	:	:	:		2.4				-0.3
-ARIZ N 34.	•			×-0	-3.1	:	:	-1.6	0.5	:	0.4	:	:	:		0.8				-0.5
NEW MEX. W109.0 /	TIME H	:	GSM	12 20.3	13 8.0	7 33.2	3 4.4	6 27.9	9 49.2	6 58.7	10 25.2	1 7.4	1 11.7	6 24.7	NSG	4 11.7	:	GSM	:	1 49.9
	۵°			138	258		135	280	222	314	210	155	220			200	193		134	52
00 8	æ			-0.2	0.9		-2.7	0.8	1.9	:	2.6	-1.9	o.0			2.2	4.3		-3.7	-0.1
COLORA N 39.	×			-0.7	-2.2		-0.5	-1.5	0.3	:	0.0	-1.9	-2.0			0.6	-0.6		-2.2	-0.2
DENVER.	TIME H M	:	6 S M	12 17.2	13 26.5	:	2 42.2	6 39.4	9 58.5	7 5.7	10 39.7	0 50.1	1 39.7	:	:	4 22.1	8 32.1	GSM	6 33.1	1 50.4
	⊾°	162	336	123	268		121	286	206	282	181	157	210	17	349	177		297	141	
۶	8	:	-1.2	-0.0	0.2		-2.0	0.3	2.3	-0.4	÷	:	:	1.2	:	:		0.4	:	
117, N 39.	<	:	-0.5	-1.4	-2.3		-0.4	-1.9	0.3	-2.8	:	÷	:	0.4	:	÷		-0.4	:	
KANSAS C W 94.5 ,	TIME H M	7 57.0	2 34.0	12 28.3	13 49.7	:	2 49.1	6 56.7	9 53.9	7 40.8	10 33.1	1 15.1	1 54.7	6 23.4	1 59.2	4 11.4	:	8 55.8	6 55.4	686
	ELG.	149	205	298	299	234	68	210	310	200	295	86	86	124	147	232	216	294	160	35
	РН.	0.0.	R.D.	0.8.	R.D.	R.D.	0.0.	R.D.	R.D.	R. D.	R.D.	0.0.	R.B.	0.0.	0.0.	R.D.	R.D.	R.D.	0.0.	0.0.
	MAG.	4.5	1.3	2.9	2.9	4.8	4.5	4.7	4.6	4.3	4.4	2.9	2.9	4.7	4.3	4.6	4.4	4.5	4.4	4.2
	ZC	890	1487	2383	2383	2263	890	2617	440	3126	539	2383	2383	2864	3126	440	539	1685	539	3079
	LE D	19	24	-		27	11	23	29	50	. 27	ø	∞	:	13	19	17	22	:	31
	۹	JAN.	IAN.	FEB.	FEB.	MAR.	APR.	٩AΥ	IUN.	וחרא	יערא	SEP.	SEP.	SEP.	SEP.	SEP.	ост.	101.	DEC.	θEC.

1989 UT

LUNAR OCCULTATION

104

	۰.	116	66	348		87	326			103	309					90	237	202	104		21
ΪI	æ	-1.4	-0.4	-3.4		0.9	4° L-			0.2	-0.9					0.2	1.4	2.4	0.2		2.3
1, HAWA N 21.	•	-0.3	-3.3	-0.5		-1.3	-0.5			-1.4	-1.6					-2.9	0.0	0.7	-1.2		-0.9
MONOLULL	TIME	13 4.0	10 9.8	11 26.2		10 18.1	11 23.7	•		5 42.5	7 3.1	6 S M	GSM	6 S M	GSM	6 35.1	7 27.6	7 28.9	4 40.2	NSG	5 26.0
	 _°							172				236		234	196	06	217		122	32	
0	8							-2.9				1.5		1.8	2 . 8	-1.1	2.5		-1.7	0.7	
ORNIA N 38.	×							-0-1				0.4		0.0	0.7	-1.4	-0.8		-2.8	-0.3	
N. CALIF W122.D /	TIME	:	0 0 0		GSM	:	0 0 0	9 19.1	GSM		:	10 1.3	8 8 8	10 35.8	10 35.6	7 49.8	8 13.8		5 53.9	1 44.6	
	۰°				333				252			226	322	220		106	195			50	10
	æ				-1.0				1.6			1.6	•	2.1		-1.6	3°8			0.2	2.2
LES,C/ N 34,1	¥				0.2				-1.4			0.5	•	0.2		-1.6	-0.1			-0.6	-0.1
LOS ANGE W118.3 /	TIME H M	::	0 0 0	:	7 38.3	0 0 8	:	686	6 14.1		:	9 53.7	6 30.5	10 27.9	•	8 0.2	8 3.9	•••••	• •	1 44.5	6 10.8
	ELG.	145	177	178	234	235	236	121	209	155	156	310	200	294	295	131	216	215	159	35	75
	РН.	0.0.	D.D.	8.8	R.D.	D.B.	R.D.	0.0.	R.D.	0.0.	R.B.	R.D.	R.D.	R.D.	R.D.	0.0.	R.D.	R.D.	D.D.	0.0.	0.0.
	MAG.	3.7	. . 3	1.3	4.8	3.0	3.0	4.5	4.7	3.0	3.0	4.6	¢ . 3	4.4	4.0	4.7	4.4	4.0	4.4	4.2	4.6
	ZC	1170	1487	1487	2263	2287	2287	1685	2617	2287	2287	077	3126	539	541	2617	539	541	539	3079	3494
	TE D	17	20	20	27	27	27	15	23	17	17	29	20	27	27	13	17	17	11	31	34
	N DA	EB:	FE8.	FEB.	MAR.	MAR.	MAR.	MΑΥ	MΑΥ	JUN.	JUN.	J UN .	JULY	JULY	JULY	AUG.	0 C T .	0CT.	DEC.	DEC.	DEC.

LUNAR OCCULTATION 1989 UT

				UT a	t Start of							U	Γat	Start of		
No.	ZC	m.		Tracl	k in West	8	L	No		ZC	m.	Tr	ack	in West	ж	L
							_									
1	1815	4.8	Ian	٥	7h5 2m185	-48	ç	84	1	555	6.8	Inte	27	11 ^h 50 ^m 43 ⁵	- 28	N
2	1015	6.0	jan.	Å	120020125	-10	2	96		2174	6.4	jury .	10	2h46m465	-20	N
3	2291	0.9		4	13 03 12	-12	2	00		21/4	6.4	Aug.	10	5 40 40	54	N
5	399	5.7		15	23"47"05	66	S	88	s .	2297	0.9		11	2.40.44	03	N
6	536	5.4		17	2"14"28°	77	S	89)	2586	6.0		13	4"12""45	81	S
7	539	4.4		17	2 ^h 16 ^m 37 ^s	77	S	90)	336	7.4		22	4"04"33"	-68	N
8	542	5.8		17	2 h 41m01s	77	S	91	ł	370	6.1	1	22	9 ^h 56 ^m 33 ^s	-65	N
9	541	4.0		17	2h49m59s	77	S	92	2	470	7.0	1	23	3 ^h 19 ^m 49 ^s	-57	N
10	538	5.6		17	2h56m21s	77	S	94	ł	518	5.9		23	12 ^h 26 ^m 08 ^s	~53	N
11	569	54		17	6 ^h 21 ^m 40 ^s	78	N	95	s	994	6.5	;	26	8 ^h 21 ^m 55 ^s	- 23	N
12	1487	1 3		24	2 ^h 14 ^m 14 ^s	- 05	N	QE	ŝ	1013	69		26	11 ^h 12 ^m 17 ^s	-21	N
12	1885	74		21	2 13 13 8h16m0E5	- 95	c	07	,	1117	5.1		27	6 ^h 40 ^m 48 ^s	- 15	N
13	1005	6.9		20	0 10 05	-00	2	91		1260	7.0		20	11000265	- 15	N
19	1993	0.0		29	9 21 34	~50	2	90	2	1209	7.0	· · · · ·	20	11 10 30	- 1	n c
15	2370	0.0	reD.	1	9.59.34	-27	2	95		2303	2.9	sept.	0	1 10 32	40	2
16	2383	2.9		1	12"30"02"	-26	S	100		2540	7.0		9	5.33.33	58	2
17	2702	6.8		3	12 ⁿ 19 ^m 39 ^s	- 10	S	101	l	603	7.5		20	6"52"11"	-69	N
18	233	6.2		11	2 ° 50‴10°	29	N	102	2	616	5.6		20	8"58"22°	-68	N
19	244	6.9		11	3h30m13s	29	S	105	5	773	6.9		21	6 ^h 46 ^m 36 ^s	-58	N
20	370	6.1		12	2h24m50s	40	N	107	7	797	6.3		21	11 ^h 49 ^m 06 ^s	-56	N
21	387	6.9		12	5h35m24s	41	N	108	3	906	6.8		22	2h37m55*	-49	N
22	518	5.0		13	4h57m405	52	N	100	2	958	6.7		22	9 ^h 48 ^m 40 ^s	-46	N
23	673	6.6		14	2h14m525	62	N	110	Ś	958	67		22	10 ^h 20 ^m 00 ^s	-46	S
25	2164	6.0		27	6h20m245	60		111	í	1085	7.0		22	6h10m315	- 27	N
40	2104	0.0		41	0 39 24	-05	2	117		1003	6.0		2.5	71210505	- 36	M
20	21/9	0.4		21	7.51.30	-04	2	112	\$	1094	0.9		23	6 hr 31 30	- 30	N
27	2784	3.4	Mar	3	10.05.54	-24	S	113	5	1221	0.2		29	0.27.14	-21	N
28	311	6.5		11	1"04"25"	15	N	114	ł	1222	7.2		24	7"11"28	-21	N
29	603	7.5		13	0"29"42"	35	N	115	5	1340	6.6		25	7"22"53*	- 18	N
30	616	5.6		13	2"23"21"	35	N	116	5	2617	4.7	Oct.	7	0"27"36	39	S
31	768	7.0		14	0 ^h 56 ^m 23 ^s	46	N	117	7	3069	6.2		10	2"50"22"	71	S
32	771	6.1		14	1 ^h 20 ^m 42 ^s	46	N	118	3	3206	5.2		11	2h37m24s	81	S
33	797	63		14	6h27m56s	48	N	119)	890	4.5		19	6 ^h 56 ^m 27 ^s	-73	N
34	1080	6.8		16	2h25m255	67	N	120	ĥ	1046	60		20	6 ^h 02 ^m 26 ^s	-63	S
25	2276	5.6		27	104547025	. 78	N	121	í	1040	6.6		20	6 ^h 26 ^m 31 ^s	-63	š
25	2406	5.0		21	20 J4 02	-70		121		1061	6 1	•	20	eh2em205	62	Ň
30	2400	0.0		20	10040000	- 70	2	122	5	1001	6.1		20	0 30 20	-02	N
39	2121	(.2		30	10-40-23	-49	2	12:	2	1002	0.3		20	9 10 30	-02	N
41	3031	5.9	Apr.	1	11"42"23"	-28	S	124	1	1068	6.9		20	10"27"59	-01	S
43	538	5.6		9	1"46"00°	12	N	127	7	1215	6.8		21	13"19"53"	-50	S
44	555	6.8		9	2h53m30s	12	N	129	9	1298	6.5		22	4"47"49°	-43	N
45	571	6.9		9	4h13m46s	13	N	130)	1302	6.7		22	4 ^h 51 ^m 13 ^s	-43	N
46	574	68		q	4h29m535	13	N	132	2	1303	6.8		22	5 ^h 07 ^m 32 ^s	-42	N
47	885	5.6		11	1h40m325	30	N	13	3	1312	6.8		22	7h24m38s	-42	S
40	000	6 1		11	6h00m245	22	N	136	ŝ	2879	6.6	Nov	4	23h21m50s	22	s
50	1042	6.6		11	000 21	34	N	135	,	3014	73		6	0 ^h 14 ^m 25 ^s	44	ŝ
50	1042	0.0		12	0 52 51	40	N	13		2167	7.1		ž	4hE 1m225	56	č
51	1170	3.7		13	0.11.53	50	N	13		2416	5.6		5	10100	76	2
52	1180	7.1		13	2"13"23"	51	N	140		3410	5.0			1 15 10	10	2
53	1195	6.7		13	5"57"02°	53	N	141	1	1201	1.4		10	5.42.23	-09	2
54	1200	6.9		13	7 ⁿ 46 ^m 23 ^s	53	N	142	2	1262	0.0		10	11.01.03	-07	2
55	1304	6.6		14	2 ⁿ 09 ^m 01 ^s	61	N	143	\$	1287	0.7		18	12.53.51	-07	S
57	1487	1.3		15	21 ^h 15 ^m 01 ^s	78	N	144	1	1385	6.5		19	7"49"05"	-58	S
58	2852	7.4		27	11 ^h 49 ^m 38 ^s	-64	N	145	5	1396	7.1		19	12"14"015	-57	S
59	994	6.5	Mav	9	2h09m46s	16	N	146	5	1486	4.6		20	7 ⁿ 49 ^m 35 ^s	-48	S
60	1253	7.4	···-/	11	1 ^h 21 ^m 07 ^s	34	N	147	7	1599	5.0		21	12 ^h 51 ^m 51 ^s	-36	S
61	1260	70		11	4h3.0m165	26	N	148	5	1778	7.1		23	11 ^h 17 ^m 53 ^s	- 20	S
60	1466	5.0		12	0h45m025	50	N	140	9	1872	7.3		24	9 ^h 16 ^m 57 ^s	-14	S
6.	1476	J.Z		13	406mors	29	N	150	5	2988	6.8	Dec	2	3 ^h 08 ^m 08 ^s	20	ŝ
03	14/0	7.U		13	4.00.25	50	N	151	1	3105	6.2	200.	ž	23h21m575	28	ŝ
04	1507	0.3		14	3 22 46	05	N	1.1		2252	70		5	2h2 2m175	20	с С
65	1573	7.0		14	3"37"07"	65	N	154	۵. ۵	2257	{.V		5	4 34 11 22025m445	39	د د
66	3474	6.0		29	7 [°] 37 ^{°°} 46 ^s	-37	N	15.	2	3331	V.Ö		S	44 33 94°	49	2
71	1340	6.6	June	8	3 ^h 58 ^m 20 ^s	21	N	155	2	3380	0.2		0	3"12""44"	50	S
72	1343	6.6	-	8	4h21m34s	21	N	151	7	1331	5.9		16	5″21‴03°	-84	S
75	1635	5.4		11	4h48m31*	49	N	158	8	1539	7.4		18	4"09"26°	-67	S
76	1809	6.9		13	1h52m35s	67	N	159	9	1649	6.3		19	9 ^h 12 ^m 57 ^s	-55	S
77	3177	60		23	10 ^h 07 ^m 22 ^s	-81	N	160	С	1852	6.0		21	13 ^h 05 ^m 08 ^s	-35	S
78	3377	64		24	11h36m165	-71	N	16	1	1944	5.6		22	8h35m00s	-28	S
70	3416	5.6		25	4h38m055	-62	N	162	2	1960	6.9		22	13 ^h 01 ^m 09 ^s	- 26	S
19	DILC	J.U 6 7		20	0 00 00°	-03	N	163	3	2164	6.8		24	10 ^h 30 ^m 43 ^s	-12	s
00	430	0.7		29	9.50.30	-17	N	16.	4	2174	64		24	11h42m485	-12	ç
81	1085	4.5	July	9	0"34"40"	31	N	10-	4 . 5	2224	6.2		27	22hd2m015	-12	د د
83	538	5.6		27	10"16"00"	- 29	N	106	י כ ג	2460	0.5		24	20 10 UI 00h (∡mees	29	2
								100 160	ς.	J40U	7.1		د د	44 19 35	- 55	ა

E

Œ

110

E

TIDES

The tidal aspect of gravitation produces some of the most interesting phenomena in the universe, from the structure of interacting galaxies, such as M51, to the volcances of Io, the synchronous rotation of our Moon, and the pulse of the seas on our planet. Perhaps because they occur at our feet, the tides of the oceans often are overlooked when considering the heavens. These tides were known to the ancients, but an understanding of their origin came only three centuries ago with the publication of Newton's *Principia*.

In the Newtonian context, tides originate in the fact that the force of gravity decreases with distance from a massive body. The Moon exerts a force on Earth, and Earth responds by accelerating toward the Moon; however, the waters on the side facing the Moon, being closer to the Moon, accelerate more and fall ahead of Earth. Similarly, Earth itself accelerates more than the waters on the far side and falls ahead of these waters. Thus two aqueous bulges are produced, one on the side of Earth facing the Moon, and one on the side facing away from the Moon. As Earth rotates on its axis beneath these two bulges, the rise and fall of the oceans results. If Earth had no rigidity, the entire planet would flex freely in the same fashion, the ocean bottoms would rise and fall too, and there would be virtually no water tides. The very existence of the tides indicates that on a time scale of several hours, our planet displays considerable rigidity.

Because of the Moon's orbital motion, it transits on the average 50.47 minutes later each day. Thus on successive days, high tides recur about 50 minutes later (or for the many regions experiencing two high tides daily, these tides recur at intervals of $12^{h}25^{m}$).

Although the Sun exerts a gravitational force 180 times as strong as does the Moon on Earth, because the Moon is so much closer, the *variation* in the Moon's force across Earth's diameter is about 2.2 times larger than the variation in the Sun's force. As noted above, it is this variation that produces tides, thus the pair of bulges raised by the Moon are considerably larger than the pair raised by the Sun. As the Moon goes through its monthly cycle of phases, these two pairs of tidal bulges get in and out of step, combining in step to produce "spring" tides (no connection with the season) when the Moon is new or full, and out of step to produce "neap" tides when the Moon is at first or last quarter.

Another factor having a substantial influence on tidal ranges is the elliptical shape of the Moon's orbit. Although the Moon is only 9 to 14% closer at perigee than at apogee, because the *variation* in its gravitational force varies inversely as the cube of its distance (the force itself varies inversely as the square of the distance), the Moon's tidal influence is 30 to 48% greater at perigee than at apogee. In some areas, such as the Bay of Fundy in eastern Canada, the perigee-apogee influence is greater than the spring-neap influence. Although the variation in the Moon's distance is not readily apparent to observers viewing the Moon directly, to observers near the shores of the Bay of Fundy, the three to six metre *increase* in the vertical tidal range makes it obvious when the Moon is near perigee, clear skies or cloudy!

There are many astronomical factors influencing the tides. These can be sorted out according to the periods they produce. The periods of the more important factors are: (1) Semidiurnal, $12^{h}00^{m}$ (two solar-induced tidal bulges, as described above); (2) Semidiurnal, $12^{h}25^{m}$ (two lunar-induced tidal bulges, as described above); (3) Diurnal, $24^{h}50^{m}$ (the changing declinations of the Moon and Sun shift the pairs of tidal budges out of Earth's equatorial plane resulting in a tidal component with a one day period. In some areas, such as parts of the southern coast of Canada's Gulf of St. Lawrence, this is the dominant tide); (4) Bimonthly, 13.66 days (variation in the Moon's declination); (5) Bimonthly, 14.77 days (spring-neap cycle, described above); (7) Biyearly, 182.6 days (variation in the Sun's declination); (8) Yearly, 365.26 days (perihelion-aphelion variation in the Sun's tidal influence); (9) 8.8 years (rotation

period of the Moon's perigee); and (10) 18.6 years (rotation period of the nodes of the Moon's orbit).

In addition to astronomical factors, the tides on Earth are strongly influenced by the sizes, boundaries, and depths of ocean basins and inlets, and by Earth's rotation, winds, and barometric pressure fluctuations. Tides typically have ranges (vertical high-to-low) of a metre or two, but there are regions in the oceans where the various influences conspire to produce virtually no tides at all, and others where the tides are greatly amplified. Among the latter regions are the Sea of Okhotsk, the northern coast of Australia, the English Channel, Ungava Bay in northern Quebec, and the Bay of Fundy between New Brunswick and Nova Scotia. The tidal ranges in these regions are of the order of 10 metres. The highest tides on Earth occur in Minas Basin, the eastern extremity of the Bay of Fundy, where the mean tide range is 12 metres and can reach 16 metres when the various factors affecting the tides are in phase (although the highest tides occur typically a day or two after the astronomical influences reach their peak).

The primary cause of the immense tides of Fundy is a resonance of the Bay of Fundy-Gulf of Maine system. The system is effectively bounded at its outer end by the edge of the continental shelf with its approximately 40:1 increase in depth. The system has a natural period of approximately 13 hours, a Q-value of about 5, and is driven near resonance by the dominant semidiurnal tides of the Atlantic Ocean (but not to any extent directly by the Moon and Sun).

Through friction, the tides convert Earth's rotational energy into heat at a rate of about 3 TW. Approximately 1% of this occurs in the Bay of Fundy and, since 1984, a tiny portion of this (20 MW peak) is being turned into commercial electric power at the Annapolis Basin tidal power plant in Nova Scotia. The only other large-scale tidal power installation is in France on the Rance estuary (240 MW peak). Due to tidal friction, the day is lengthening by about 1 second every 60 000 years—imperceptible on a human time scale, but of profound significance to Earth's rotation over a few billion years. If the Sun does not first incinerate our planet, there will come a day that is as long as the lunar month and the Moon will stand stationary in the sky, as does Earth now in the lunar sky. But this situation will not endure, for solar tides will still be present and cause further changes.

The tidal influence of the Moon and Sun is generally obvious at the shores of the oceans. Perhaps the most awesome place to observe the tides on our planet is at Cape Split, Nova Scotia, on the southern side of the entrance to Minas Basin (Cape Split may be reached by a pleasant, two-hour walk along a well-marked trail from the village of Scots Bay). Here, at the time of the mid-point of an incoming tide, for a considerable distance the forest is filled with a hollow roar produced by the turbulence of the waters surging past the rugged cliffs below. The currents exceed 8 knots (4 m/s) and the flow in the deep, 5 km-wide channel on the north side of Cape Split is equal to about 80 times that of Canada's largest river, the St. Lawrence. Three hours later the spectacle pauses, and then begins flowing in the opposite direction.

For more information, an excellent introduction is: *The Tides* by E. P. Clancy, Anchor Books, Doubleday and Co., 1969 (now unfortunately out of print); *Exploration of the Universe* (4th edition) by G. O. Abell, Saunders College Publishing, 1982, is another good introductory reference; the pamphlet *Tides in Canadian Waters* by G. Dohler of the Canadian Hydrographic Service gives a brief summary of the topic of its title and is available from Canadian Government bookstores. The major astronomical factors influencing the tides (the phases, perigees and apogees of the Moon) are tabulated in The Sky Month By Month section of this Handbook. These may be scanned to determine days favorable for large tides. Detailed predictions for tides in Canadian waters are published in *Canadian Tide and Current Tables*, the six volumes of which are individually available from Canadian Government bookstores, or by mail from the Canadian Government Publishing Centre, Supply and Services Canada, Ottawa, ON, K1A 0S9. (RLB)

PLANETS, SATELLITES, AND ASTEROIDS

PLANETARY HELIOCENTRIC LONGITUDES 1989

The heliocentric longitude of a planet is the angle between the vernal equinox and the planet, as seen from the Sun. It is measured in the ecliptic plane, in the direction of the orbital motion of the planet (counterclockwise as viewed from the north side of the ecliptic plane). Knowing the heliocentric longitudes, and the approximate distances of the planets from the Sun (see page 11), one can construct a diagram or model showing the orientation of the Sun and planets on any date.

UT	ţ	Ŷ	⊕	ď	24	þ	ð	¥	B
Jan. 1.0	3 4 8°	226°	101°	61°	64°	275°	271°	280°	223°
Feb. 1.0	161	275	132	77	67	276	272	280	223
Mar. 1.0	254	320	160	91	70	277	272	280	223
Apr. 1.0	357	9	191	106	72	278	272	280	22 4
May 1.0	16 6	57	221	120	75	279	273	281	22 4
June 1.0	265	107	250	133	78	280	273	281	224
July 1.0	12	156	279	147	80	281	273	281	224
Aug. 1.0	182	206	309	160	83	282	274	281	224
Sept. 1.0	276	255	339	174	86	282	274	281	225
Oct. 1.0	34	303	8	187	88	283	274	282	225
Nov. 1.0	197	352	39	201	91	284	275	282	225
Dec. 1.0	285	40	69	215	94	285	275	282	225
Jan. 1.0	58	90	100	231	96	286	276	282	226

The magnitudes of the five, classical (naked eye) planets in 1989. Oppositions (O), conjunctions (C), inferior and superior conjunctions (IC, SC), and greatest elongations east and west (GEE, GEW) are indicated. (Note the diagram explaining these terms on page 114. For planetary symbols see page 10.)

1ES

Mercury	mûr′kū-rē
Venus	vē'nŭs
Earth	ûrth
Mars	mårs
Jupiter	joo'pĭ-têr
Saturn	sat'ūrn
Uranus	yoor'a-nŭs
Neptune	nĕp'tyoon
Pluto	plōo'tō

ā dāte; ă tăp; â câre; à $ask; \bar{e} w\bar{e}; e met; \bar{e} maker; \bar{i} ce; i bit; \bar{o} g\bar{o}; o hot;$ $ô ôrb; oo book; <math>\overline{oo} moon; \bar{u} \bar{u}nite; u \bar{u}p; u urn.$

Ρ

This diagram is a simplified view of the Solar System, from the north side. Earth is shown (middle orbit) together with an "inferior" planet (e.g. Venus) and a "superior" planet (e.g. Mars). Four special configurations of the inferior planet relative to Earth are shown (in counterclockwise chronological sequence): inferior conjunction (IC), greatest elongation west (GEW), superior conjunction (SC), greatest elongation east (GEE). Four special configurations of the superior planet relative to Earth are also shown (in clockwise chronological sequence): opposition (O), eastern quadrature (EO), conjunction (C), western quadrature (WO).

PLANETS: APPARENT SIZES

Seconds of Arc

The apparent maximum and minimum observable size of seven planets is illustrated along with characteristic telescopic appearance. The large satellites of Jupiter (not shown) appear smaller than Neptune.

PRONUNCIATION OF SATELLITE NAMES

Adrastea	à-drăs'tē-à	Europa	yoo-rō'pà	Oberon	ō'bà-rŏn'
Amalthea	ăm''l-thē'a	Ganymede	găn'ĕ-mēd'	Pandora	păn-dôr'a
Ananke	a'năn-kē	Himalia	hĭm'à-lĭ-à	Pasiphae	pa-sĭf'a ē'
Ariel	âr'ē-ĕl	Hyperion	hī-pēr'ĭ-ĕn	Phobos	fō′bŏs
Atlas	ăt'lăs	Iapetus	ī-ăp'ĕ-tŭs	Phoebe	fē'bē
Callisto	ka-lĭs′tō	Io	ī'ō	Prometheus	prŏ-mē'thē-ŭs
Calypso	ka-lĭp'sō	Janus	jā'nŭs	Rhea	rē'a
Carme	kar'mē	Leda	lē'da	Sinope	sĭ-nō'pē
Charon	kâr'ĕn	Lysithea	lĭs'ĭ-thē'-à	Telesto	ta-lĕs ⁷ tō
Deimos	dī′mŏs	Metis	mē'tĭs	Tethys	tē'thĭs
Dione	dī-ŏ'nē	Mimas	mī'măs	Thebe	thē'bē
Elara	ē'lar-a	Miranda	mĭ-răn'dà	Titan	tī't'n
Enceladus	ĕn-sĕl'a-dŭs	Moon	moon	Titania	tī-tā'nē-a
Epimetheus	ĕp'à-mē'thē-ŭs	Nereid	nēr'ē-ĭd	Triton	trī't'n
-	-			Umbriel	ŭm'brē-ĕl'

ā dāte; ă tăp; â câre; à ask; ē wē; ĕ mět; ẽ makẽr; ī īce; ĭ bǐt; ō gō; ŏ hŏt; ô ôrb; oo book; \overline{oo} moon; ū ūnite; ŭ ŭp; û ûrn.

This diagram shows the variation during the year in the right ascension (α) of the Sun and the planets. The diagram is simplified in that the heavy diagonal line for the Sun (which should be slightly curved) is straight, and the months are assumed to be of equal duration. The stippling in the vicinity of the line for the Sun indicates the region of the night sky affected by twilight. The rectangular grid of dots is an aid to reading the two axes. The two dotted diagonal lines represent the boundary between the evening sky and the morning sky.

The diagram may be used as a quick reference to determine: in what part of the sky a planet may be found (including in which constellation – note the names along the vertical axis); when a superior planet is in conjunction with the Sun or at opposition (opposition is approximately where its curve intersects the dotted diagonal line, and note that, due to retrograde motion, this point is also where the planet's curve has its maximum negative slope); when Mercury and Venus have their various greatest elongations and conjunctions; and when there are conjunctions of planets. e.g. Note that as Mars recedes toward conjunction with the Sun, it has conjunctions with Jupiter in Taurus early in March, with Venus west of Leo in mid-July, and with Mercury in Leo as Mars sinks into the evening twilight early in August. Saturn has a triple conjunction. For more information on these and other events, see the following pages and "The Sky Month By Month" section. (RLB)

THE PLANETS FOR 1989

By TERENCE DICKINSON

INTRODUCTION

Planetary observing is perhaps the most widely accessible and diversified category of amateur astronomical pursuits. Planets can be seen almost any clear night of the year. Indeed, in heavily light-polluted cities they are sometimes the *only* celestial objects visible. With dark sky sites ever more remote from population centres, planetary observing is returning—partly by default—to take its place as an important part of the amateur astronomers' repertoire. But a more important factor than sky conditions is the recent resurgence of the refractor which has, in effect, been reborn in modern moderately-priced apochromatic and semi-apochromatic designs in 90mm to 180mm apertures. These telescopes provide by far the cleanest planetary images of any telescope design (for a reprint of a 1986 *Handbook* article on this subject contact the author at the address on the inside front cover).

Planetary observing divides into three distinct categories, each with its opportunities and limitations. Unaided-eye observing consists of detecting, identifying and monitoring the night-to-night and week-to-week motion and visibility of the five brighter planets. Binoculars add Uranus and Neptune along with the Galilean satellites of Jupiter. Binoculars are ideal for tracking planetary motion against the backdrop of stars, many of which are too faint for naked-eye detection. But it is only through *telescopic* observing that the planets reveal their uniqueness, and this section concentrates on that aspect.

Urban and suburban locales unsuited for many aspects of astronomy can be perfectly acceptable for telescopic planetary observing. Atmospheric turbulence seeing—is often no worse, and sometimes better, in urban areas. However, observers should avoid using telescopes on pavement, balconies or immediately beside a house or substantial building due to the heat radiated to the surrounding atmosphere from these structures. Also, avoid looking over these objects if possible. A typical grassed backyard is fine in most instances. For optimum performance, all telescopes (except small refractors) require from 10 minutes to an hour to cool to outside temperature when taken outdoors. Hazy but otherwise cloudless nights are usually just as good as, and sometimes better than, clear skies for steady telescopic images of planets.

More than any other class of telescopic observing, planetary observing is most affected by seeing. Many nights are rendered useless for planet watching by ever-present ripples and undulations in Earth's atmosphere. Planets within 15° of the horizon are virtually always afflicted. Minimum altitude for expectations of reasonable seeing is 25°. A further problem with lower-altitude planetary targets is dispersion associated with atmospheric refraction. Refraction causes celestial objects to appear displaced to higher altitudes. Since the effect is wavelengthdependent (being less for longer wavelengths), for planets at low altitudes, this produces a red fringe on the lower side of the planet and a green (or blue) fringe on the upper, as well as introducing chromatic smearing to the whole image.

Regardless of the type of telescope used for planetary observing, optical quality is far more critical than aperture. In no other type of observing are the effects of less-than-perfect optics more apparent. Other factors that significantly degrade a telescope's planetary performance include: a large *central obstruction* in the optical system (all Schmidt-Cassegrains, Maksutov-Cassegrains and Newtonians faster than f6); secondary mirror supports (most Newtonians); chromatic aberration (most doublet refractors over 90mm); internal currents (all types, refractors least); optical component *cool-down time* (mostly aperture-dependent, telescopes over 200mm can take hours); *dirty optics*.

In the remarks below, when a planetary phenomenon is stated as being visible in a certain minimum aperture, good seeing is assumed. When a specific minimum aperture is cited, an unobstructed optical system (i.e. a refractor) is assumed. Somewhat larger apertures are often required if centrally obstructed systems are used.

MERCURY

Of the five planets visible to the unaided eye, Mercury is by far the most difficult to observe and is seldom conveniently located for either unaided eye or telescopic observation. The problem for observers is Mercury's tight orbit which constrains the planet to a small zone on either side of the Sun as viewed from Earth. When Mercury is east of the Sun we may see it as an evening "star" low in the west just after sunset. When it is west of the Sun we might view Mercury as a morning "star" in the east before sunrise. But due to celestial geometry involving the tilt of Earth's axis and Mercury's orbit we get much better views of Mercury at certain times of the year.

The best time to see the planet in the evening is in the spring, and in the morning in the fall (from the Northern Hemisphere). Binoculars are of great assistance in searching for the planet about 40 minutes to an hour after sunset or before sunrise during the periods when it is visible. The planet's brightness, which varies by more than two magnitudes, is a more important factor influencing its visibility than its distance from the Sun during any particular elongation. Mercury's true colour is almost pure white but absorption from Earth's atmosphere within 15° of the horizon, where Mercury is usually best seen, usually imparts a yellow or ochre hue to the planet.

Telescopic observers will find the rapidly changing phases of Mercury of interest. The planet appears to zip from gibbous to crescent phase in about three weeks during each of its evening elongations. The phases are accessible to users of 75mm or larger telescopes; the 30% phase can be detected at $50 \times$. Large apertures (over 200mm) rarely offer an advantage due to the crippling effects of poor seeing at lower altitudes, especially following sunset when the planet is most frequently observed. Experienced planetary observers often report their most satisfying telescopic observations

P

Date 0 ^h UT		Mag.	Angular Diameter	% of Disk Illuminated	Distance From Sun	α (1989) δ			
Jan.	4	-0.7	6.1"	75%	18°	20 ^h 17 ^m	-21°22'		
•	9	-0.6	6.8"	59%	19°	20 °4 2‴	- 19°06'		
	14	0.0	7.9"	37%	18°	20"55"	- 16°57'		
Apr	. 19	- 1.0	5.9"	77%	15°	02 "44 "	+17°31'		
-	24	-0.5	6.6"	60%	19°	03 ^h 18 ^m	+20°33'		
	29	+0.1	7.5"	44 %	21°	03 *4 5*	+22°32'		
May	4	+0.7	8.5"	30%	20°	0 4 °05‴	+23°29'		

MERCURY TELESCOPIC OBSERVING DATA FOR FAVOURABLE EASTERN (EVENING) ELONGATIONS 1989

of Mercury in the morning sky. Near favourable western elongations, the planet may be easily located at least an hour before sunrise, then followed to higher altitudes into the daytime sky. Seeing often remains steady more than an hour after sunrise by which time the planet may be 30° above the horizon. Under such conditions the phase is sharply defined and the small disc takes on a unique appearance, paler than Venus, with a vaguely textured surface. Surface details, though suspected in moments of fine seeing, are always elusive. There is only a fair correlation between the Mariner 10 spacecraft images of Mercury and the few dusky features seen by the most acute visual observers prior to that interplanetary mission. Contrasts among the planet's surface features are lower than on the lunar surface, though in other respects the two bodies are similar.

VENUS

Venus is the only world in the solar system that closely resembles Earth in size and mass. It also comes nearer to Earth than any other planet, at times approaching as close as 0.27 AU. Despite the fundamental similarity, surface conditions on Earth and Venus differ greatly. The chief disparity is that Venus' surface temperature varies only a few degrees from a mean of 455° C on both day and night sides of the planet. The high temperature is due to the dense carbon dioxide atmosphere of Venus which, when combined with small quantities of water vapour and other gases known to be present, has the special property of allowing sunlight to penetrate to the planet's surface but does not permit the resulting heat to escape. This process is commonly known as the greenhouse effect.

Clouds and haze that cloak the planet, consisting chiefly of droplets of sulphuric acid, are highly reflective, making Venus the brightest natural celestial object in the nighttime sky apart from the Moon. Whenever it is visible, it is readily recognized. Because its orbit is within that of Earth's, Venus is never separated from the Sun by an angle greater than 47 degrees. However, this is more than sufficient for the dazzling object to dominate the morning or evening sky.

Like Mercury, Venus exhibits phases, although they are much more easily detected in small telescopes because of Venus' greater size. When it is far from us (near the other side of its orbit), we see the planet nearly fully illuminated, but because of its distance, it appears small—about 10 seconds of arc in diameter. As Venus moves closer to Earth, the phase decreases (we see less of the illuminated portion of the planet), but the diameter increases until it is a thin slice nearly a minute of arc in diameter. It takes Venus several months to move from one of these extremes to the other, compared to just a few weeks for Mercury.

When Venus is about a 20% crescent even rigidly-held, good quality binoculars can be used to distinguish that the planet is not spherical or a point source. A 60 mm refractor should be capable of revealing all but the gibbous and full phases of Venus. Experienced observers prefer to observe Venus during the daytime, and indeed the planet is bright enough to be seen with the unaided eye if one knows where to look.

As 1989 opens, Venus is a brilliant beacon low in the southeast before sunrise. It becomes less prominent during January as it nears the Sun and is lost in the twilight glow by early February. Superior conjunction is April 4. Venus enters the evening sky in mid-May, low in the west at dusk, and remains an evening object for the rest of the year. This is not a favorable year for mid-northern latitude observers of Venus since the planet is never well away from twilight glow as it was during much of 1988.

Telescopically on January 1 Venus is gibbous, 93% illuminated and 11.0" in diameter. On July 1 the values will be 92% and 10.9" respectively; on October 1, 66% and 17.4". The interval leading up to inferior conjunction, when the phase is less than 50% and the planet has a large apparent size, is the prime telescopic observing period (see accompanying table).

Venus appears to most observers to be featureless no matter what type of telescope is used or what the planet's phase. However, over the past century some observers using medium or large size telescopes have reported dusky, patchy markings usually described as slightly less brilliant than the dazzling white of the rest of the planet. We now know that there are many subtle variations in the intensity of the clouds of Venus as photographed in ultraviolet by spacecraft and Earth-based telescopes. But when the ultraviolet photos are compared to drawings of the patchy markings seen by visual observers the correlation is fair at best.

Because of Venus' high surface brightness (about 40 times greater than Jupiter's), Venus can accommodate the highest magnifications a telescope can deliver. The author has used magnifications over $4 \times$ per millimetre of aperture on occasion and regularly employs $1.5 \times$ to $3 \times$ per millimetre on the planet, particularly in twilight when the sky is moderately dark but Venus is still high enough to avoid low-altitude seeing degradation.

When Venus is less than 10% illuminated the cusps (the points at the ends of the crescent) can sometimes be seen to extend into the night side of the planet. This is an actual observation of solar illumination being scattered by the atmosphere of Venus. When Venus is a thin sliver of a crescent the extended cusps may be seen to ring the entire planet, but this is a very difficult observation. A similar, though unrelated Venus phenomenon called the ashen light, has been reported by visual observers since the seventeenth century. It is an alleged illumination of the night side of Venus (analogous to Earthshine on the Moon), seen when the planet is in crescent phase. Since nothing like Earthshine can be operating at Venus, electrical phenomena in the planet's atmosphere offer a plausible explanation. However most authorities attribute the sightings to visual contrast effects caused by the brilliant crescent set in a dark sky. Diffraction effects caused by secondary mirror supports in reflector telescopes have also been suggested (*Sky and Telescope*, June 1988, p.574).

Date 0 ^h UT	Mag.	Apparent Diameter	% of Disk Illuminated	Distance From Sun	α (1	989) δ
Nov. 2	- 4.4	23.3"	53	47°E	17 °44 ‴	- 26°49'
18	- 4.5	28.0"	45	4 7°	18"55"	- 26°21'
30	- 4.6	32.9"	37	4 5°	19 °4 1‴	- 2 4 °30'
Dec. 8	- 4.6	37.1"	31	4 3°	20"05"	- 22°46
16	- 4.7	42 .1"	25	4 0°	20°23‴	- 20°48'
20	- 4.7	44 .9"	21	37°	20"29"	- 19°48'
24	- 4.7	48 .0"	17	3 4 °	20"33"	- 18°49'
28	- 4.6	51.1"	14	30°	20 ⁵ 34	- 17°52'
Jan. 1	- 4.6	51.2"	10	26°	20°33™	- 16°59'

Р

VENUS NEAR INFERIOR CONJUNCTION 1989

Mars is the planet that has long captivated the imagination of mankind as a possible abode of life. Although the biology experiments in the two Viking spacecraft that landed on the planet in 1976 detected no known life processes in the Martian soil samples, there are many facets of Mars that make it the most Earthlike planet in the solar system. Volcanoes, polar caps at least partially composed of water ice, and ancient channels where water once flowed are among the most intriguing features. Observations from Earth as well as Mars-orbiting spacecraft have disclosed winds in the Martian atmosphere that reach speeds exceeding 300 km/h and raise vast amounts of dust that can envelop the planet for weeks at a time. The dust storms were thought to occur with seasonal regularity shortly after Mars passed the perihelion point of its elliptical orbit, but the Viking observations revealed more complex weather patterns.

In many ways Mars is the most interesting planet to observe with the unaided eye. It moves rapidly among the stars—its motion can usually be detected after an interval of less than a week—and it varies in brightness over a far greater range than any other planet. Mars may be distinguished by its orange-red colour, a hue that originates with rust-coloured dust that covers much of the planet.

Telescopically Mars is usually a disappointingly small featureless ochre disk except within a few months of opposition when its distance from Earth is then near minimum. If Mars is at perihelion at these times the separation can be as little as 56 million km. Such close approaches occur at intervals of 15 to 17 years; the most recent was in 1988. At a perihelion opposition the telescopic disk of Mars is 25 seconds of arc in diameter and much detail on the planet can be distinguished with telescopes of 100 mm aperture or greater. At oppositions other than when Mars is at perihelion, the disk is correspondingly smaller.

This year marks a lull between the 1988 perihelion opposition and the moderately favourable intermediate opposition in late 1990. Consequently, Mars will be of little interest telescopically, but the planet will offer a fine target for unaided eye viewing as it traces a path through five constellations in seven months.

As 1989 opens the final glimmer of the 1988 apparition remains as Mars is still high in the south in Pisces in early evening, prominent at magnitude zero. But the planet quickly fades as Earth leaves it behind. By March Mars will have passed through Aries, becoming a first-magnitude evening object in Taurus. When Mars passes into Gemini in May it will be dimmer than Pollux. By July Mars will be less than conspicuous in Cancer, low in the west at dusk.

Except for the first three weeks of the year when Mars is still more than 8" in diameter (the threshold for detecting more than fleeting surface detail) the planet is of no telescopic interest in 1989. Expect to see nothing more than an orange blip. Looking ahead to 1990, opposition is on November 27 when the planet will be 18.1" in diameter. This will be by far the best opposition of Mars for the remainder of the century. A detailed observing guide will be published in next year's Handbook.

JUPITER

Jupiter, the solar system's largest planet, is a colossal ball of hydrogen and helium without any solid surface comparable to land masses on Earth. Jupiter likely has a small rocky core encased in a thick mantle of metallic hydrogen which is enveloped by a massive atmospheric cloak topped by a quilt of multi-coloured clouds. These clouds are the visible surface of Jupiter—a realm of constant change characterized by alternating dark belts and brighter zones. The zones are ammonia ice-crystal clouds, the belts mainly ammonium hydrosulphide clouds. Frequently the belts intrude on the zones with dark rifts or loops called festoons.

The equatorial region of Jupiter's clouds rotates five minutes faster than the rest of the planet: 9 hours 50 minutes compared to 9 hours 55 minutes. This means constant interaction as one region slips by the other at about 400 km/h. It also means that there are basically two rotational systems from the viewpoint of week-to-week telescopic observation.

In the table on the next page, the two quantities L(1) and Δ can be used to calculate the longitude L of the central meridian of the illuminated disk of Jupiter. System I is the most rapidly rotating region between the middle of the North Equatorial Belt and the middle of the South Equatorial Belt. System II applies to the rest of the planet. For a given date and time (UT) of observation, L is equal to L(1) for the month in question *plus* Δ times the number of complete days elapsed since 0 h UT on the first of the month *plus* either 36.58° (for system I) or 36.26° (for system II) times the number of hours elapsed since 0 h UT. The result will usually exceed 360°; if so, divide the result by 360 and then multiply the decimal portion of the quotient by 360°. This procedure, which is accurate to 1°, is readily computed using a modest calculator.

Jupiter's rapid rotation also makes the great globe markedly oval so that it appears about 7% "squashed" at the poles. Jupiter's apparent equatorial diameter ranges from a minimum of 32" at conjunction on June 9 to 47" at opposition on December 27.

The Great Red Spot, a salmon-coloured oval vortex whose hue may possibly be due to organic-like compounds that are constantly spewed from some heated atmospheric source below, is the longest-lived structure on the visible surface of Jupiter. The spot and the changing cloud structures that stripe the planet can be easily observed in small telescopes because the apparent size of the visible surface of Jupiter is far greater than that of any other planet. Occasionally (1981–88 for example) the Red Spot loses its prominence, becoming difficult to detect in smaller telescopes, only to return to its normal state a few years later. In recent years the Red Spot Hollow, a bay in Jupiter's South Equatorial Belt that largely encloses the Red Spot, has been far more prominent than the Spot itself. But a darkening and apparent agitation in the southern part of the Hollow suggests that the Spot may be ready to emerge once again.

The smallest of telescopes will reveal Jupiter's four large moons, each of which is equal to or larger than Earth's satellite. The moons provide a never-ending fascination for amateur astronomers. Sometimes the satellites are paired on either side of the belted planet; frequently one is missing—either behind Jupiter or in the planet's shadow. Even more interesting are the occasions when one of the moons casts its shadow on the disk of the planet. The tiny black shadow of one of the moons can be particularly evident if it is cast on one of the bright zones of Jupiter. According to some observers this phenomenon is evident in a good 60 mm refractor.

P

The satellite umbral shadows vary significantly in size from one moon to another. Mean opposition angular diameters in seconds of arc are: Io 0.9, Europa 0.6, Ganymede 1.1, and Callisto 0.5. Theoretically such tiny markings should not be visible in telescopes smaller than 120mm, but the enormous contrast between the dark shadow and the bright Jovian clouds enhances the phenomenon in a way that the human eye is very sensitive to. Furthermore, the satellites' penumbral shadows are quite large, especially Callisto's, which adds a few tenths of an arc second to their effective visual diameters. The satellites themselves have the following mean opposition apparent diameters: Io 1.2, Europa 1.0, Ganymede 1.7, Callisto 1.6. A 150mm telescope reveals the size differences as well as colour variations among the moons. When the Galilean satellites transit the disc of Jupiter they are seldom visible in telescopes under 100mm and are best seen near the planet's limb when entering or leaving the disc. Tracking a satellite transit completely across Jupiter is a challenging observation. Each satellite has a characteristic appearance when superimposed on the Jovian cloudscape. Europa is bright white, similar to the brightest Jovian clouds. When traversing a white cloud zone in the central sector of Jupiter, Europa is usually

JUPITER'S BELTS AND ZONES

Viewed through a telescope of 100 mm aperture or greater, Jupiter exhibits a variety of changing detail and colour in its cloudy atmosphere. Some features are of long duration, others are shortlived. The standard nomenclature of the belts and zones is given in the figure.

south	
s. s. temperate zone	
s. tropical zone	
····· s. equatorial belt	
equatorial zone	
hump constorial belt	
n. tropical zone	
n. temperate zone	t
n. n. temperate zone	

App. System I System I Date Equat. UT Mag. Diam. L(1) Δ L(1) Δ Jan. 1.0 46.0" 124.1° -2.7 157.84° 154.0° 150.21° 41.8" Feb. 1.0 -2.5 337.2° 157.74° 130.7° 150.11° -2.3 38.2" 73.8° 157.67° Mar. 1.0 13.6° 150.04° -2.1 35.1" 281.6° 157.64° 344.9° 150.01° Apr. 1.0 -2.0 33.2" 330.9° 157.65° 165.3° May 1.0 150.02° -1.9 32.4" 178.0° 157.67° June 1.0 135.9° 150.04° July 1.0 -1.9 32.5" 228.2° 157.72° 317.2° 150.09° Aug. 1.0 -2.0 33.6" 77.4° 157.78° 289.9° 150.15° Sept. 1.0 -2.1 35.9" 288.5° 157.85° 264.4° 150.22° Oct. 1.0 -2.339.0" 344.0° 157.94° 90.9° 150.30° 42.9" Nov. 1.0 -2.5 199.9° 158.01° 70.4° 150.38° -2.7 46.2" 260.4° 150.41° Dec. 1.0 158.04° 261.9° R_LB -2.7 47.2" Jan. 1.0

JUPITER - EPHEMERIS FOR PHYSICAL OBSERVATIONS - 1989

invisible. However, it stands out well when near the limb or against a dark belt. Callisto, the darkest moon, is best seen in the reverse circumstances. When seen against a pale zone this grayish moon can be mistaken for a satellite shadow, but it is often lost against a dark belt. Ganymede is intermediate in surface brightness, but because of its great size, it is the easiest of the four to track completely across Jupiter's face. Io, innermost of the Galilean moons, is also the most frequently seen in transit. It is close to Europa in brightness but is generally easier to follow over typical cloud features, probably due to its slightly greater diameter. Near opposition, a transiting satellite often appears adjacent to its own shadow. These events are especially worth a look. Both the satellite positions and the times of their interaction with the Jovian disk are given elsewhere in the HANDBOOK. Jupiter's other satellites are photographic objects for large instruments.

As 1989 opens, Jupiter is in Taurus high in the southern evening sky. By mid-May it is too close to the Sun for observation. Jupiter enters the morning sky in July and late in that month it advances into Gemini, where it remains for the rest of the year. In October it rises not long after midnight, beginning a six month period when the giant planet is well placed for telescopic viewing. At opposition on December 27, Jupiter's distance is 4.166 AU (623 million km) from Earth. (*Editor's Note*: Because of its brightness, near magnitude -2.5, Jupiter is unmistakable as it moves through Taurus and Gemini this year. Hence a finding chart is not provided).

Although Jupiter will be well placed for telescopic scrutiny (from mid-northern latitudes) both early and late in the year, this coincides with the season of least favourable weather prospects in many parts of Canada and the USA. Nevertheless, the planet is near its maximum possible altitude, high on the ecliptic, so that there is the potential for outstanding viewing with a minimum of atmospheric turbulence. In any case, Jupiter is still the most rewarding target for planetary observers in 1989.

SATURN

Saturn is the telescopic showpiece of the night sky. The chilling beauty of the small pale orb floating in a field of velvet is something no photographs or descriptions can adequately duplicate. Any telescope magnifying more than 30 times will show the rings. The view is exquisite in 100 to 200mm instruments. The rings consist of billions of particles—largely water ice—that range in size from microscopic specks to flying mountains kilometres across. The reason "rings" is plural and not singular is that gaps and brightness differences define hundreds of distinct rings. However, from Earth only the three most prominent components—known simply as rings A, B, and C—can be distinguished visually. (See the diagram on p. 125.)

Cassini's Division, a gap between rings A and B discovered in 1675, is visible in small telescopes when the ring system is well inclined to our view. Cassini's Division is a region less densely populated with ring particles than adjacent rings. Ring B, the brightest, overpowers ring C to such an extent that ring C, also known as the crepe ring, is seen only with difficulty in small telescopes. A Saturn phenomenon easily seen with backyard telescopes is the shadow of the planet on the rings. At times this is the most easily observed feature apart from the rings themselves. At opposition it is barely seen, but from one to four months before or after opposition the shadow falling on the rings is very apparent, often giving the scene a powerful three-dimensional aura.

In addition to the rings, Saturn has a family of at least seventeen satellites. Titan, the largest, is easily seen in any telescope as an eighth-magnitude object orbiting Saturn in about 16 days. At east and west elongation Titan appears about five ring diameters from the planet. Titan is the only satellite in the solar system with a substantial atmosphere, now known to be primarily nitrogen and 4.6 times as massive as Earth's, with a surface pressure of 1.6 Earth atmospheres.

Telescopes over 60 mm aperture should reveal Rhea at 10th magnitude less than two ring-diameters from Saturn. The satellite Iapetus has the peculiar property of being five times brighter at western elongation $(10^{m}1)$ than at eastern elongation $(11^{m}9)$. One side of the moon has the reflectivity of snow while the other resembles dark rock. The reason for this is unknown. When brightest, Iapetus is located about 12 ring-diameters west of its parent planet, but it is often difficult to distinguish from a star. Several nights' observation is usually needed to confirm a sighting of Iapetus. Of the remaining moons Tethys and Dione may be glimpsed in a 150 mm telescope but the others require larger apertures or photographic techniques. (See pages 146–149 for the configurations of Saturn's brightest satellites during 1989.)

SATURN

SATURN'S RING SYSTEM MAIN STRUCTURAL REGIONS

Ring	Radius**	Discoverer
D	1.11 - 1.23	Voyager 1 (1980)
C*	1.23 - 1.52	W. C. & G. P. Bond, W. R. Dawes (1850)
B*	1.52 - 1.95	∫ Galileo (1610), C. Huygens (1659),
A*	2.02 - 2.26	G. D. Cassini (1675)
F	2.33	Pioneer 11 (1979)
G	2.8	Voyager 1 (1980)
Ε	3. – 8.	W. A. Feibelman (1966)

* Visible from Earth. Also, the "E" ring can be detected when Saturn's ring system appears edge-on.

** In units of Saturn's equatorial radius (60330 km).

The disk of Saturn appears about 1/6 the area Jupiter appears through the same telescope with the same magnification. In telescopes less than 75 mm aperture probably no features will ever be seen on the surface of the planet other than the shadow cast by the rings. As the size of the telescope is increased the pale equatorial region, a dusky equatorial band, and the darker polar regions become evident. Basically, Saturn has a belt system like Jupiter's but it is much less active and the contrast is reduced. Seldom in telescopes less than 100 mm aperture do more than one or two belts come into view. Very rarely a spot among the Saturnian clouds will appear unexpectedly, but less than a dozen notable spots have been recorded since telescopic observation of Saturn commenced in the 17th century.

From year to year the rings of Saturn take on different appearances. The planet's orbit is an immense 29.5 year circuit about the Sun, so in the course of an observing season the planet moves relatively little in its orbit (and thus appears to remain in

The paths of Saturn, Uranus, Neptune, and Pluto during 1989. The coordinates are for 1989.5, and for planetary symbols see page 10. (Note that larger scale charts for Uranus, Neptune and Pluto appear a few pages ahead. Also, there is a chart showing the mid-year sections of the paths of Saturn, Uranus, Neptune, and the asteroid Vesta on page 151). On the scale of this chart, Neptune's path is touching that of Saturn: Neptune's path is the short, thick "bump" on the north side of the central portion of Saturn's path. Saturn has a close, triple conjunction with Neptune this year, passing 14'S on March 3, 18'S on June 24, and 30'S on November 12. This is a relatively rare encounter, occurring only every 36 years. Moreover, a grouping of Saturn, Uranus and Neptune less than 10° apart is even rarer, occurring at intervals of several centuries. For Saturn and Uranus, the single tick mark on each path indicates the position of the planet at the beginning of the year. With the exception of Neptune, each planet is at the east (left) end of its path at year's end. Saturn begins its retrograde loop on April 23, is at opposition on July 2, and ends retrograde motion on September 11. For observers in the Northern Hemisphere, 1989 is the worst year since 1959 for viewing Saturn, and the worst since 1905 for viewing Uranus. Both planets reach their extreme southern declinations this year. (RLB)

about the same general area of the sky) and maintains an essentially static orientation toward Earth. 1987 marked the maximum inclination (26.75°) of the north side of the rings towards the Sun. A maximum inclination of the north side of the rings last occurred in 1958, with the south side being in a similar position in 1944 and 1973. The rings were edge-on in 1950, 1966, 1980, and will be again in 1996. In apparent width the rings are equal to the equatorial diameter of Jupiter.

Saturn is in Sagittarius during 1989. As the year opens, the sixth planet is too close to the Sun for observation, but from February to May it is prominent in the morning sky. At opposition on July 2 the planet is 9.021 AU (1.35 billion km) from Earth. At that time Saturn's equatorial diameter is 18.3", and the rings are 41.6" in width. Throughout the prime telescopic observing window, from May to September, the rings are tilted between 24.7° and 26.1° with respect to Earth, with the north face being visible. Saturn becomes lost in the evening twilight in early December.

URANUS

Although Uranus can be seen with the unaided eye under a clear, dark sky, it was apparently unknown until 1781 when it was accidentally discovered by William Herschel with a 160 mm reflecting telescope. It can be easily seen with binoculars, and a 75mm telescope will reveal its small, greenish, featureless disk.

Jupiter, Saturn, Uranus and Neptune are rather similar in the sense that their interiors consist mainly of hydrogen and helium and their atmospheres consist of these same elements and simple compounds of hydrogen. Unlike the three other giant planets, the axis of Uranus is tipped almost parallel to the plane of the solar system. This means that we can view Uranus nearly pole-on at certain points in its 84-year orbit of the Sun. The southern (and counter-clockwise turning) hemisphere of Uranus is now facing Earth. Its south pole appeared nearest to (and slightly south of) the centre of its disk in 1985, although the geometry is nearly the same this year. Uranus has at least fifteen satellites, all smaller than Earth's moon, none of which can be detected in small or moderate sized telescopes.

The first spacecraft encounter with Uranus was by the U.S. Voyager 2 probe in late-January 1986 and resulted in a huge increase in our meagre knowledge of the seventh planet. A rotation period of 17.24 hours for the planet's interior was determined together with a latitude-dependent rotation period for its atmosphere (average of 16.7 hours); a substantial magnetic field tilted at a remarkably large angle of some 60° to the rotation axis was found; detailed images of the surfaces of the five large satellites revealed them as individually-unique worlds; ten previously unknown satellites were detected; Uranus' nine, main, slender, dark rings were confirmed, and numerous diffuse bands of dust within the ring system were discovered.

Uranus is in Sagittarius in 1989, near the Lagoon Nebula and easy to find with binoculars. When at opposition on June 24, the planet is 18.33 AU (2.74 billion km) from Earth. Its magnitude is then +5.6 and its apparent diameter is 3.82 seconds of arc.

The path of **Uranus** in Sagittarius during 1989 (note also the wide-field charts on pages 126 and 151). The position of Uranus is indicated for the beginning of each month where 1 = January, 2 = February, etc. The faintest stars shown are of magnitude 8. The coordinates are for 2000.0. The magnitude of Uranus is about 5.6 (just visible to the unaided eye under dark sky conditions) and its pale-green disk is about 3.8" in diameter when it is on the retrograde portion of its path. Opposition is on June 24 when Uranus is 2.54 light-hours (18.33 AU) from Earth. The Lagoon (M8) and Trifid (M20) nebulae are indicated by the larger and smaller dotted circles, respectively. The circles with crosses indicate globular clusters, the smaller one being M28 and the larger one M22. The bright star λ marks the top of the Sagittarian "teapot". M22, λ Sgr, and M8 appear on the July all-sky chart at the back of the Handbook and are located immediately west of the January 1 position of the Sun. (RLB)

NEPTUNE

The discovery of Neptune in 1846, after its existence in the sky had been predicted from independent calculations by Leverrier in France and Adams in England, was regarded as the crowning achievement of Newton's theory of universal gravitation. Actually Neptune had been seen—but mistaken for a star—several times before its "discovery".

Since the discovery of Uranus' rings in 1977, numerous searches for a Neptunian ring system have yielded evidence that a horseshoe-shaped "ring" may exist. The exact nature of the feature may be uncovered when Voyager 2 arrives at the planet in August.

Neptune is an 8th-magnitude binocular object—an easy target in 7×50 or larger glasses—but seeing the planet as a disc rather than a point of light is a different matter. Powers over $200 \times$ are usually necessary, and even then Neptune is just a tiny bluish dot with no hard edge due to limb darkening. At $800 \times$ Neptune appears about the same size as the naked-eye full moon, but much dimmer. No distinct surface features have ever been recorded visually. Neptune's large moon Triton can be seen by an experienced observer using a 300 mm telescope. Triton varies from 8 to 17 seconds of arc from Neptune during its 5.9-day orbit.

In 1989 Neptune is buried in the Milky Way in western Sagittarius a couple of degrees from the globular cluster M22 (see the chart). At opposition on July 2 Neptune is magnitude +7.9, 29.20 AU (4.37 billion km) distant from Earth, and 2".3 in diameter.

P

The path of **Neptune** in Sagittarius, 1989 (note also the wide-field charts on pages 126 and 151). Neptune's position is indicated for the beginning of each month, where l = January, 2 = February, etc. The faintest stars shown are of magnitude 9. The coordinates are for 1950.0. The magnitude of Neptune is about 7.9 and its diameter 2.3" when it is on the retrograde portion of its path. Opposition is on July 2 when Neptune is 4.05 light-hours (29.20 AU) from Earth, the most distant planet at the present time. The bright (magnitude 3.5) star at the east side of the chart, Xi² Sgr, serves as a convenient starting point for locating Neptune (Xi² Sgr appears on the July map of the night sky at the end of this handbook as the star directly east of the "J" marking the Sun's position on January 1). Neptune has a close, triple conjunction with Saturn this year, with Saturn passing 14'S of Neptune on March 3, 18'S on June 24, and 30'S on November 12. (RLB)

PLUTO

Pluto, the most distant known planet, was discovered at the Lowell Observatory in 1930 as a result of an extensive search started two decades earlier by Percival Lowell. The faint star-like image was first detected by Clyde Tombaugh by comparing photographs taken on different dates. Routine examinations of photographs of the planet taken in 1978 revealed an elongation of Pluto's image on some of the photos which has been confirmed as a large satellite revolving once every 6.3867 days—identical to the planet's rotation period. This means that the moon is visible only from one hemisphere of Pluto. Calculations made some years ago suggest that this is the only stable orbit a satellite could have with Pluto's slow rotation rate. The moon too would likely have one side constantly turned to Pluto forming a unique double-planet system.

Pluto and its satellite Charon are almost certainly balls of ice, most likely water, methane, and ammonia. This conclusion is supported by recent observations of a tenuous methane atmosphere on Pluto. However, since Pluto's surface gravity is too feeble to retain a primordial methane atmosphere it is probable that as the planet nears perihelion, the Sun is evaporating its frosty surface.

Besides being the solar system's smallest planet, Pluto is different from the other eight in almost every respect. Its unique characteristics include its orbit which is relatively higher inclined and so elliptical that the planet will be closer to the Sun than Neptune from 1980 to 1999. Just where such a freak fits into the solar system's origin and evolution is unknown. Perhaps Pluto is the largest member of a group of small, icy, comet-like structures beyond Neptune.

Pluto is at perihelion, 0.6 AU inside Neptune's orbit, in early September this year. A more accurate statement is not possible because the planet's orbit is not known with sufficient precision to predict the exact time of perihelion. Nevertheless, in September the planet will be closer to the Sun than it has been since well before its discovery.

Opposition is on May 4 when the planet will be 28.688 AU (4.3 billion km) from Earth, its closest approach until early in the 23rd century. Visually the planet appears as a 13.6 magnitude star on the Virgo-Libra border. It can be identified using the accompanying chart and a 200mm or larger telescope. (Pluto has been seen by experienced observers using telescopes as small as 150mm aperture.) Positive identification requires observation on at least two nights to ensure the object has moved. Since Pluto will never be brighter, seeking the smallest planet should be a high priority this spring.

BIBLIOGRAPHY

There are hundreds of published sources of information on the physical nature of the planets and their satellites. Two outstanding volumes are mentioned below (Hartmann and Hunt). In contrast, there are relatively few references on planetary *observing* that are not either novice-level guides or manuals for establishing a program of systematic scientific investigation of planetary phenomena. Observers might find the following of some interest, especially the two recently published works by Dobbins *et al.* and Sheehan.

Alexander, A. F. O'D., 1962, *The Planet Saturn*, Dover, New York. [The definitive 450-page record of Saturn observations made prior to the space age. If only Alexander had done the same with every planet ...]

P Antoniadi, E. M., 1975, *The Planet Mars* (translated by P. Moore), Keith Reid, Devon, England. [Antoniadi was among the top two or three planetary observers of all time.]

Baker, James G., 1963, "Planetary Telescopes," *Applied Optics*, 2, 2. [A landmark paper that details the importance of unobstructed apochromatic telescopes for planetary observing.]

Ceravolo, Peter, and Dickinson, Terence, "Telescope Performance: Trends, Myths and Principles in Amateur Astronomy," to be published in 1989 in the *Journal of The Royal Astronomical Society of Canada*. [Contains practical information of special interest to the planetary observer.]

Dobbins, T.A., Parker D.C., and Capen, C.F., 1988, *Introduction to Observing and Photographing the Solar System*, Willmann-Bell, Richmond, Virginia, 1988. [The most comprehensive and up-to-date reference available. Highly recommended. A two-part condensed version by Dobbins and Parker appeared in the October and December 1987 issues of *Sky & Telescope*.]

Doherty, Paul, 1980, *Atlas of the Planets*, McGraw-Hill, New York. [Despite the title this is not an atlas but a descriptive work with observing material and fine planetary drawings by an accomplished amateur astronomer.]

Dollfus, Audouin, 1961, "Visual and Photographic Studies of the Planets at the Pic du Midi," in *Planets and Satellites*, Kuiper and Middlehurst (Eds.), U. of Chicago Press. [One of the very few review articles in English written during the last 40 years by a professional astronomer who studied the planets visually.]

Hartmann, William K., 1983, *Moons and Planets*, second edition, Wadsworth, Belmont, Calif. [A comprehensive descriptive text devoted to the surfaces, interiors and atmospheres of the planets and their satellites.]

Hunt, G. and Moore, P., 1983, *Atlas of the Solar System*, Rand McNally, New York. [Includes many spacecraft images of planets and moons out to Saturn. Very limited observing information.]

Roth, Gunter D., 1970, *Handbook for Planet Observers*, Faber, London. [Though outdated and out of print, this is a fairly extensive reference on planetary observing.]

Rudaux, L., and de Vaucouleurs, G., 1959, *Larousse Encyclopedia of Astronomy*, Hamlyn, London. [The illustrations in Chapter 7 of this out-of-print masterpiece offer a wonderful look at visual planetary astronomy from a time when that activity was at its zenith among amateurs.]

Sheehan, William, 1988, *Planets and Perceptions*, U. of Arizona Press, Tucson. [Superbly researched investigation into why the great planetary observers (Schiaparelli, Lowell and others) so frequently misinterpreted what they saw or thought they saw.]

Ρ

JUPITER

PHENOMENA OF THE GALILEAN SATELLITES

The following tables give the various transits, occultations, and eclipses of the four great satellites of Jupiter. Since the phenomena are not instantaneous but require up to several minutes, the predicted times are for the middle of each event. The abbreviations are: I = Io, II = Europa, III = Ganymede, IV = Callisto; Ec = eclipse, Oc = occultation, Tr = transit of the satellite, Sh = transit of the shadow, I = ingress, E = egress, D = disappearance, R = reappearance.

The general motions of the satellites, and the successive phenomena are shown in the diagram at right. Satellites move from east to west across the face of the planet, and from west to east behind it. Before opposition, shadows fall to the west, and after opposition, to the east (as in the diagram). The sequence of phenomena in the diagram, beginning at the lower right, is: transit ingress (Tr.I.), transit egress (Tr.E.), shadow ingress (Sh.I.), shadow egress (Sh.E.), occultation disappearance (Oc.D.), occultation reappearance (Oc.R.), eclipse disappearance (Ec.D.) and eclipse re-appearance (Ec.R.), but this sequence will depend on the actual Sun-Jupiter-Earth angle.

Over half the phenomena listed will not be visible from any one locality because they occur when Jupiter is below the horizon or when daylight interferes. To determine which phenomena are visible from a given locality (latitude ϕ) on a certain date, note the local time that Jupiter transits and its declination δ (see The Sky Month By Month section). Jupiter will be above the horizon for a time of (1/15) cos⁻¹ (-tan ϕ tan δ) hours on either side of the time of transit. A second time interval corresponding to nighttime can be determined from the Twilight table. The region of overlap of these two time intervals will correspond to Jupiter being both above the horizon and in a dark sky. Those phenomena in the table which fall within this time "window" will be visible.

In practice, the observer usually knows when Jupiter will be conveniently placed in the night sky, and the table can simply be scanned to select those events which occur near these times. For example, an active observer in Victoria, British Columbia, on December 19 would know that Jupiter is well placed in the late evening sky. If he planned to observe from 9 pm to 1 am PST (8 h behind UT), he could scan the table for events in the interval December 20, 5 h to 9 h UT. He would find two events, at 2235 and 2258 PST, both involving the satellite Europa.

	JANUARY											
-	4 0	h m 1 43 2 37 3 53 4 46 13 02	I.Tr.I. LSh.I. LTr.E. I.Sh.E. II.Oc.D.	d 8	16 19 18 30 20 32 21 59 22 47	III.Oc.D. III.Oc.R. III.Ec.D. I.Tr.L. II.Ec.R.	4 16	12 56 15 12 15 14 17 31 21 08	II.Tr.I. II.Sh.L II.Tr.E. II.Sh.E. LOc.D.	d 24	h m 2 23 20 08 21 21 22 17 23 31	I.Ec.R. LTr.I. LSh.I. LTr.E. LSh.E.
	1	2 08 12 47 14 56 16 30	II.Ec.R. I.Oc.D. II.Oc.D. III.Oc.D. III.Oc.R. III.Ec.D.	9	0 08 1 11 10 31 12 36 12 48	I.Sn.I. I.Sh.E. II.Tr.I. II.Sh.I. II.Sh.I. II.Tr.E.	17	0 27 18 16 19 25 20 26 21 35	LEc.R. I.Tr.I. I.Sh.I. I.Tr.E. L.Sh.E.	25	9 31 11 52 12 02 14 24 17 27 20 52	II.Oc.D. II.Oc.R. II.Ec.D. II.Ec.R. I.Oc.D. I.Ec.R.
		18 45 20 10 21 05 22 20 23 15	III.Ec.R. I.Tr.I. I.Sh.I. I.Tr.E. I.Sh.E.	10	14 55 19 18 22 32 16 26 17 30	I.Sh.E. I.Oc.D. I.Ec.R. I.Tr.I. I.Sh.I.	18	7 02 9 22 9 24 11 45 15 35 18 56	II.Oc.D. II.Oc.R. II.Ec.D. II.Ec.R. I.Oc.D. I.Ec.R.	26	13 30 14 36 15 45 15 50 16 45	III. Tr.I. I. Tr.I. III. Tr.E. I.Sh.I. I. Tr.E.
	2	8 08 10 00 10 25 12 18 17 30 20 37	II. Ir.1. II.Sh.I. II.Tr.E. II.Sh.E. I.Oc.D. I.Ec.R.	11	18 35 19 40 - 4 36 9 07 13 45 17 01	I. Ir.E. I.Sh.E. II.Oc.D. II.Ec.R. I.Oc.D. I.Ec.R.	19	9 45 11 59 12 44 13 54 14 32 14 53	111. Tr.I. 11. Tr.E. 1. Tr.I. 1. Sh.I. 11. Sh.I. 1. Tr.E.	27	18 00 18 33 20 48 4 38 6 57 7 07	I.Sn.E. III.Sh.I. III.Sh.E. II.Tr.I. II.Tr.E. II.Sh.I.
	3	14 37 15 34 16 46 17 44 2 12	I.Tr.I. I.Sh.I. I.Tr.E. I.Sh.E. II.Oc.D.	12	6 07 8 18 10 31 10 53 11 59	111. Tr. I. 111. Tr. E. 111. Sh. I. 1. Tr. I. 1. Sh. I.	20	16 04 16 46 2 10 4 27 4 31	I.Sh.E. III.Sh.E. II.Tr.I. II.Tr.E. II.Sh.I.	28	9 26 11 55 15 20 9 04 10 19	II.Sh.E. I.Oc.D. I.Ec.R. I.Tr.I. I.Sh.I.
Ρ	5	6 29 11 57 15 06 2 33	II.Ec.R. I.Oc.D. I.Ec.R. III.Tr.I.	12	12 44 13 03 14 09 23 43	III.Sh.E. I.Tr.E. I.Sh.E. II.Tr.I.	21	6 50 10 03 13 25 7 12	II.Sh.E. I.Oc.D. I.Ec.R. I.Tr.L	29	11 13 12 29 22 47 1 08	I.Tr.E. I.Sh.E. II.Oc.D. II.Oc.R.
		6 30 8 43 9 04 10 03 11 14 12 13	III. III.E. III.Sh.I. II.Sh.E. I.Tr.I. I.Sh.I. I.Sh.F.	13	2 00 4 13 8 13 11 30	II.Sh.I. II.Tr.E. II.Sh.E. I.Oc.D. I.Ec.R.		9 21 10 33 20 17 22 37 22 44	I.Sn.1. I.Tr.E. I.Sh.E. II.Oc.D. II.Oc.R. II.Ec.D.	30	3 43 6 23 9 49 3 24 3 32	II.Ec.R. I.Oc.D. I.Ec.R. III.Oc.D.
	6	21 19 23 18 23 36 1 37	I.Tr.I. II.Sh.I. II.Tr.E. II.Sh.E.		6 28 7 30 8 37 17 49 22 27	I.Sh.I. I.Tr.E. I.Sh.E. II.Oc.D. II.Ec.R.	22	1 05 4 31 7 54 23 37	II.Ec.R. I.Oc.D. I.Ec.R. III.Oc.D.		4 48 5 42 5 43 6 58 8 36	I.Sh.I. I.Tr.E. III.Oc.R. I.Sh.E. III.Ec.D.
	7	9 34 9 34 3 31 4 32 5 41	I.Oc.D. LEc.R. I.Tr.L LSh.I. LTr.E.	15	2 40 5 59 19 55 22 09 23 49	I.Oc.D. I.Ec.R. III.Oc.D. III.Oc.R. I.Tr.I.	23	1 54 2 52 3 49 4 35 5 02	I.H.I. III.Oc.R. I.Sh.I. I.Tr.E. III.Ec.D. I.Sh.E.		10 33 17 54 20 12 20 25 22 44	II. EC.R. II. Tr.L. II. Tr.E. II. Sh.L. II. Sh.E.
	8	0 42 15 24 19 49 0 51 4 03	I.Sn.E. II.Oc.D. II.Ec.R. I.Oc.D. I.Ec.R.	16	0 33 0 57 1 58 2 49 3 06	III.Ec.D. I.Sh.I. I.Tr.E. III.Ec.R. I.Sh.E.		6 52 15 24 17 42 17 49 20 08 22 59	II.EC.K. II.Tr.L II.Tr.E. II.Sh.I. II.Sh.E. I.Oc.D.	31	4 18 22 00 23 17	I.Ec.R. I.Tr.L I.Sh.L
						L			L	·		

	FEBRUARY											
d l	b m 0 10 1 27 12 03 14 24 14 40 17 02 19 19 22 47	LTr.E. I.Sh.E. II.Oc.D. II.Oc.R. II.Ec.D. II.Ec.R. I.Oc.D. I.Ec.R.	d 8	2 04 3 22 14 37 16 59 17 19 19 41 21 13	I.Tr.E. I.Sh.E. II.Oc.D. II.Oc.R. II.Ec.D. II.Ec.R. I.Oc.D.	4 15	h m 3 59 5 18 17 14 19 36 19 57 22 20 23 07 2 28	I.Tr.E. I.Sh.E. II.Oc.D. II.Oc.R. II.Ec.D. II.Ec.R. I.Oc.D.	22 23	h m 5 55 7 14 19 53 22 16 22 35 0 58 1 03	LTr.E. LSh.E. ILOc.D. ILOc.R. ILEc.D. II.Ec.R. LOc.D.	
2	16 29 17 19 17 46 18 38 19 37 19 56 22 35	I.Tr.I. II.Tr.I. I.Sh.I. I.Tr.E. II.Tr.E. I.Sh.E. II.Sh.I.	,	18 23 19 42 20 33 21 14 21 51 23 34	I.Tr.I. I.Sh.I. I.Tr.E. II.Tr.I. I.Sh.E. II.Tr.E.	10	20 18 21 37 22 28 23 47 1 14 3 35	I.EC.K. LTr.I. I.Sh.I. I.Tr.E. I.Sh.E. III.Tr.I. III.Tr.E.	24	4 33 22 14 23 33 0 25 1 43 5 17 7 40	LEC.K. LTr.I. LSh.L I.Tr.E. I.Sh.E. III.Tr.I. III.Tr.E.	
3	0 50 7 09 9 28 9 43 12 02 13 47 17 16	Ш.Sh.E. П.Tr.I. П.Tr.E. П.Sh.I. П.Sh.E. I.Oc.D. I.Ec.R.	10	2 36 4 52 9 43 12 02 12 19 14 39 15 41 19 11	Ш.Sh.I. Ш.Sh.E. П.Tr.I. П.Tr.E. П.Sh.I. П.Sh.E. I.Oc.D. I.Ec.R.		6 38 8 55 12 18 14 38 14 55 17 15 17 36 21 06	III.Sh.I. III.Sh.E. II.Tr.I. II.Tr.E. II.Sh.I. II.Sh.E. I.Oc.D. I.Ec.R.		10 39 12 57 14 55 17 15 17 31 19 32 19 51 23 02	III.Sh.I. III.Sh.E. II.Tr.I. II.Sh.I. I.Oc.D. II.Sh.E. I.Ec.R.	
4	10 57 12 15 13 07 14 24	I.Tr.I. I.Sh.I. I.Tr.E. I.Sh.E.	11	12 51 14 10 15 01 16 20	I.Tr.I. I.Sh.I. I.Tr.E. I.Sh.E.	18	14 47 16 06 16 57 18 16	I.Tr.L I.Sh.L I.Tr.E. I.Sh.E.	25	16 44 18 02 18 54 20 12	L.Tr.I. I.Sh.I. I.Tr.E. L.Sh.E.	
5	1 20 3 42 4 00 6 22 8 16 11 45	II.Oc.D. II.Oc.R. II.Ec.D. II.Ec.R. I.Oc.D. I.Ec.R.	12	3 56 6 18 6 38 9 01 10 10 13 40	II.Oc.D. II.Oc.R. II.Ec.D. II.Ec.R. I.Oc.D. I.Ec.R.	19	6 33 8 56 9 17 - 11 39 12 05 15 35	II.Oc.D. II.Oc.R. II.Ec.D. II.Ec.R. I.Oc.D. I.Ec.R.	26	9 14 11 37 11 55 14 01 14 18 17 31	IL.Oc.D. II.Oc.R. II.Ec.D. I.Oc.D. II.Ec.R. I.Ec.R.	
6	5 26 6 44 7 15 7 35 8 53 9 36 12 37 14 55 20 26	I.Tr.I. I.Sh.I. II.Oc.D. I.Tr.E. I.Sh.E. III.Oc.R. III.Ec.D. III.Ec.R.	13	7 20 8 40 9 30 10 49 11 11 13 34 16 38 18 56 23 00	I.Tr.I. I.Sh.I. I.Sh.E. Ш.Oc.D. Ш.Oc.R. Ш.Ec.D. Ш.Ec.R. П.Tc.I	20	9 16 10 35 11 26 12 45 15 12 17 37 20 38 22 58	I.Tr.I. I.Sh.I. I.Tr.E. I.Sh.E. III.Oc.D. III.Oc.R. III.Ec.D. III.Ec.R.	27 28	11 13 12 31 13 23 14 41 19 18 21 44 0 40 2 01	I.Tr.I. I.Sh.I. I.Tr.E. I.Sh.E. II.Oc.D. III.Oc.R. III.Ec.D.	
7	20 20 22 45 23 01 1 20 2 44 6 13 23 54	II.Tr.E. II.Sh.I. II.Sh.E. LOc.D. I.Ec.R. I.Tr.L	14	1 20 1 37 3 57 4 39 8 09	II. Tr.E. II.Sh.I. II.Sh.E. I.Oc.D. I.Ec.R.	21	1 36 3 56 4 13 6 33 6 34 10 04	II.Tr.I. II.Tr.E. II.Sh.I. II.Sh.E. I.Oc.D. I.Ec.R.		4 14 6 35 6 49 8 31 9 09 11 59	II.Tr.I. II.Tr.E. II.Sh.L I.Oc.D. II.Sh.E. LEc.R.	
8	1 13	I.Sh.I.	15	1 49 3 08	I.Tr.I. I.Sh.I.	22	3 45 5 04	I.Tr.L I.Sh.L				
			-			-						

UNIVERSAL TIME OF GEOCENTRIC PHENOMENA

	MARCH										
	() m		4	h m		d	b m		d	h m	
1	5 42	L.Tr.I.	8	11 06	L.Sh.E.	16	6 26	II.Oc.R.	24	6 08	L.Tr.L
	7 00	I.Sh.I.					6 31	ILEC.D.		7 17	I.Sh.I.
	7 52	I.Tr.E.	9	1 17	ILOc.D.		6 56	1.Oc.D.		8 19	LTr.E.
	910	I.Sh.E.		3 41	ILOC.R.		10 10	ILEC.K.		22.06	LSALE.
	22 34	п.ос.р.		4 57	I OC D		10 13	LEC.R.		22 00	III. II.I.
2	0.57	II.Oc.R.		6 16	ILEC.R.	17	4 09	LTr.L	25	0 34	III. Tr.E.
_	1 14	II.Ec.D.		8 24	L.Ec.R.		5 21	I.Sh.I.		1 40	II. Tr. I.
	3 00	I.Oc.D.	l				6 19	LTr.E.		2 44	III.Sh.I.
	3 37	II.Ec.R.	10	2 10	L Ir.I.		7 31	LSh.E.		3 24	LOc.D.
	6 28	I.Ec.K.	[3 25	LSh.I.		1/48	Ш.Ir.L Ш.T.F		3 33	ILSh.I.
-	0.12	1 7.1		5 35	ISh F		20 13	III.Sh I		5 05	III. Sh F
-	1 29	I Sh I		13 34	III. Tr I		22 56	II.Tr.I.		6 15	II.Sh.E.
	2 22	L.Tr.E.		16 00	III.Tr.E.					6 43	L.Ec.R.
	3 39	I.Sh.E.		18 41	III.Sh.I.	18	1 03	III.Sh.E.			
	9 24	III.Tr.I.		20 15	II.Tr.I.		1 18	I.Sh.L	26	0 38	LTr.L
	11 48	III.Tr.E.		21 01	III.Sh.E.		1 18	II. Ir.E.		1 45	I.Sh.I.
	14 40			22 30			1 25			2 49	I.II.E.
	17 34			23 27			4 48	I.Fc.R		20 12	I.Oc.D.
	19 55	II.Tr.E.		25 21	1.00.0.		22 38	I.Tr.L		21 54	I.Oc.D.
	20 07	II.Sh.I.	11	1 03	II.Sh.E.		23 50	LShL			
	21 29	I.Oc.D.		2 52	I.Ec.R.				27	0 54	II.Ec.R.
	22 27	II.Sh.E.		20 39	I.Tr.I.	19	0 49	I.Tr.E.		1 12	L.Ec.R.
	0.57	TEOP	1	21 34	1.3n.1. I T-E		17 25	I.Sh.E.		20 14	I Sh I
•	18 41	LTrL	1	22 30	1. 11.12.		19 50	II.Oc.R.		21 19	LTr.E.
	19 58	I.Sh.I.	12	0 04	LSh.E.		19 51	II.Ec.D.		22 25	LSh.E.
	20 51	I.Tr.E.		14 39	II.Oc.D.		19 55	I.Oc.D.			
	22 08	I.Sh.E.		17 04	ILOC.R.		22 15	II.Ec.R.	28	12 13	III.Oc.D.
		TOD		17 56	LEC.D.		23 10	1.EC.K.		14 43	III.OC.K.
-	14 19			19 36	TI Fc R	20	17.08	LTrL		16 24	LOc.D.
D	14 34	II.Ec.D.		21 21	I.Ec.R.		18 19	I.Sh.I.		16 44	III.Ec.D.
ſ	15 59	I.Oc.D.					19 19	I.Tr.E.		17 11	II.Sh.I.
	16 57	II.Ec.R.	13	15 09	L Tr.I.		20 29	L.Sh.E.		17 24	LI.Tr.E.
	19 26	I.EC.R.		10 23	1.Sh.i. 1 T- E	21	7 55	ΠOD		10 33	III.EC.K.
	5 13 11	ITel		18 33	LSh E	1	10 24	III.Oc.R.		19 40	I.Ec.R.
	14 27	I.Sh.I.					12 18	II.Tr.L.			
	15 21	I.Tr.E.	14	3 40	III.Oc.D.		12 43	III.Ec.D.	29	13 38	L.Tr.L
	16 37	I.Sh.E.	1	6 08	III.Oc.R.		14 25	LOc.D.		14 43	LSh.I.
	23 27	ш.Oc.D.		8 43	III.Ec.D.		14 30	II.Sh.I.		15 49	LILE.
-	7 1 54	TTOCR		11 05	TT Fc R		15 06	III Ec.R.		10 54	LOIL C.
	4 41	III.Ec.D.		11 57	ILTr.E.		16 57	I.Sh.E.	30	9 35	II.Oc.D.
	6 54	II.Tr.I.		12 00	ILSh.L		17 45	I.Ec.R.		10 54	LOc.D.
	7 02	III.Ec.R.	1	12 26	I.Oc.D.					14 09	LEc.R.
	9 15	II.Tr.E.		14 21	II.Sh.E.	22	11 38	LIL		14 13	ILEC.K.
	9 24			12 20	LEC.K.		12 48	LSR.L I Tr F	31	8 08	ITel
	11 45	I.Sh.F.	15	9 39	L Tr.J.		14 58	LSh.E.	· · ·	9 12	LShL
	13 55	I.Ec.R.	l	10 52	LSh.L					10 19	L.Tr.E.
	.		1	11 49	LTr.E.	23	6 48	II.Oc.D.		11 23	LSh.E.
1	s 740	I.Tr.I.		13 02	LSh.E.		8 24	LUC.D.			
	8 DD 9 51	I.Sn.I.	16	4 02	ILOc D		12 14	L.Ec.R			
	7 51	1.11.13.	1 10	4 02	H.		10 14	1.20.11.			

					A	PRIL					
d	h m		d	h m		d	h m		4	b m	
1	2 26	III.Tr.L	8	9 18	III.Tr.E.	15	14 47	III.Sh.I.	23	9 28	I.Sh.I.
	4 24	II.Tr.L		9 33	II. Tr.E.		17 12	III.Sh.E.		10 53	L.Tr.E.
	4 54	III.Tr.E.		10 33	I.Ec.R.					11 39	LSh.E.
	5 24	LOc.D.		10 47	III.Sh.I.	16	0 40	LIL	~		10.0
	6 45			12 10	U.Sn.E.		8 52	1.3n.1. 1 T- E	24	7 20	
	6 47	Ш.Зп.1. ПТ-Б		13 10	ш.эп.с.		0 JL 0 AA	LILE.		8 52	LI.OC.D.
	8 38	I Ec.R	9	4 39	LTrL		7 44	1.511.12.		11 29	ILEC.R.
	8 51	II.Sh.E.	Ĺ	5 37	I.Sh.I.	17	3 55	I.Oc.D.			
	9 07	III.Sh.E.		6 50	LTr.E.		4 39	II.Oc.D.	25	3 12	I. Tr.I.
				748	I.Sh.E.		6 57	I.Ec.R.		3 57	I.Sh.L
2	2 38	I.Tr.I.					8 50	ILEC.R.		5 24	I.Tr.E.
	3 41	I.Sh.I.	10	1 49	11.Oc.D.	1.0		17-1		6 08	LSh.E.
	4 50	LILE.		5 02	I.Oc.D.	10	2 01	I LIFL	26	0.26	ICOD
	23.00			6 12	I.EC.R.		3 22	I Tr E	20	2 06	II TrI
	23 54	I.Oc.D.		23 09	I.Tr.I.		4 13	I.Sh.E.	1	3 20	I.Ec.R.
							22 25	I.Oc.D.		3 32	II.Sh.I.
3	3 07	I.Ec.R.	11	0 06	I.Sh.I.		23 19	II.Tr.I.		4 31	II.Tr.E.
	3 33	II.Ec.R.		1 21	I.Tr.E.					5 47	III.Oc.D.
	21 09	I.Tr.I.		2 17	I.Sh.E.	19	0 57	II.Sh.I.		5 56	II.Sh.E.
	22 10	1.Sn.1.		20 24	I.Oc.D.		1 21	III.OC.D.		8 20	III.OC.R.
	23 20	1. 11.E.		20.52			1 43	TI Tr F		11 14	III.EC.D.
4	0 21	LSh.E.		22 22	II.Sh.L		3 20	ILSh.E.		21 43	L.Tr.L.
•	16 33	III.Oc.D.		22 56	II.Tr.E.		3 53	III.Oc.R.		22 26	I.Sh.L
	17 47	II.Tr.I.		23 28	III.Oc.R.		4 46	III.Ec.D.		23 54	LTr.E.
	18 24	I.Oc.D.		23 30	I.Ec.R.		7 12	III.Ec.R.			
	19 04	III.Oc.R.					19 41	LTrL	27	0 37	I.Sh.E.
	19 40	II.Sh.I.	12	0 44	III.EC.D.		20.30	I.Sh.I.		18 20	1.0c.D.
	20 10	III Fc D		3 10	III. Sn. E.		21 33	I.II.E.		20 33	I.OC.D.
	21 35	L.Ec.R.		17 40	I.Tr.I.			1.011.0.		••••	
	22 09	II.Sh.E.		18 35	I.Sh.I.	20	16 55	I.Oc.D.	28	0 48	II.Ec.R.
	23 09	III.Ec.R.		19 51	I.Tr.E.		18 04	II.Oc.D.		16 13	L.Tr.I.
-				20 46	L.Sh.E.		19 54	I.Ec.R.		16 55	I.Sh.I.
5	15 39	l. lr.l.		14.00	to n		22 09	II.Ec.R.		18 25	Line.
	10 39	1.5n.1. 1 Te F	13	14 04		21	14 11	17-1		19.00	1.Sn.E.
	18 50	LSh E		17 59	I.CC.D.	~1	14 59	LSh.L	29	13 26	LOc.D.
		20122		19 31	II.Ec.R.		16 23	L.Tr.E.		15 30	II.Tr.L.
6	12 24	II.Oc.D.					17 10	I.Sh.E.		16 18	I.Ec.R.
	12 54	I.Oc.D.	14	12 10	L.Tr.L.					16 50	II.Sh.L
	16 04	I.Ec.R.		13 04	L.Sh.L	22	11 25	I.Oc.D.		17 55	II.Tr.E.
	16 52	II.Ec.R.		14 22	I.Tr.E.		12 42	II. Ir.L.		19 14	II.Sh.E.
7	10.00	17-1		12 12	LOLL.		14 15	I.Sn.L		20 03	III. II.I.
'	11 08	LSh I	15	9 24	IOCD		15 07	ILT.E.		22.48	III.Sh.I.
	12 20	L.Tr.E.		9 56	II. Tr.I.		15 37	III.Tr.L			
	13 19	I.Sh.E.		11 12	III. Tr.I.		16 38	ILSh.E.	30	1 15	III.Sh.E.
_				11 39	II.Sh.L		18 08	III.Tr.E.		10 43	I.Tr.I.
8	6 48	III.Tr.I.		12 20	II.Tr.E.		18 48	III.Sh.L		11 23	LSh.L.
	7 09	LL IT.L.		12 28	LEC.K.		21 13	III.Sh.E.		12 33	LILL.
	0 04	TISh I		13 42	III.II.E.	23	8 42	ITel		13 33	LOILE.
	<i>,</i> ,	1		14 05	1.011.D.			4			

UNIVERSAL TIME OF GEOCENTRIC PHENOMENA

					N	MAY					
đ	h m		d	h m		d	h m		d	b m	
1	7 57	I.Oc.D.	9	7 16	I. Tr.I.	17	6 30	LOc.D.	24	15 48	II. Tr.E.
	10 21	11.Oc.D.		7 48	1.Sh.1.		9 05	LEC.R.		16 19	II.Sh.E.
	10 40	I.Ec.R.		9 28	I. Ir.E.		10 31			23 40	ш.Oc.D.
	14 07	II.EC.R.		9 39	I.Sh.E.		11 18	II.Sh.L.	25		
2	614	17-1	10	4.30	IO.D		12 38	II. IT.E.	25	5 18	III.EC.R.
2	5 14		10	4 28	I.Oc.D.		13 43	ILSILE.		2 21	
	2 24	1.Sn.1.		7 10	1.EC.K.		19 11	III.OC.D.		800/	LSh.L
	8 04	LILE.		9 42	II. IT.I.		25 17	III.EC.K.		8 10	LILE.
	0.04	L.SII.E.		10.08	TT-F	18	3 40	1 17-1		0 1 7	LOILE.
2	2 27	Imp		11 08	II.II.E.	10	A 11	I Sh I	26	3 00	ICOD
5	4 54			14 43			6 01	ITTE	20	5 28	LOC.D.
	515	I Fc R		19 16	III Ec R		6 23	I Sh E		8 23	TOD
	6 07	II.Sh I		.,			0 25	2011.0.		11 20	II Fc R
	7 20	II.Tr.E.	11	1 46	I.Tr.L	19	1 00	LOc.D.			2.20.10
	8 32	II.Sh.E.		2 16	I.Sh.I.		3 33	I.Ec.R.	27	0 21	L Tr.L
	10 15	III.Oc.D.		3 59	I.Tr.E.		5 31	II.Oc.D.		0 35	LSh.I.
	15 15	III.Ec.R.		4 28	I.Sh.E.		8 42	II.Ec.R.		2 34	L.Tr.E.
	23 44	I.Tr.I.		22 59	I.Oc.D.		22 19	L.Tr.I.		2 47	I.Sh.E.
							22 40	LSh.L		21 32	I.Oc.D.
4	0 21	I.Sh.I.	12	1 39	I.Ec.R.					23 57	L.Ec.R.
	1 56	I.Tr.E.		2 39	II.Oc.D.	20	0 32	L.Tr.E.			
	2 33	I.Sh.E.		6 04	II.Ec.R.		0 52	L.Sh.E.	28	2 45	II. Tr.I.
	20 57	I.Oc.D.		20 17	I. Tr.I.		19 31	LOc.D.		3 10	II.Sh.I.
	23 44	I.Ec.R.		20 45	I.Sh.I.		22 02	I.Ec.R.		5 13	II.Tr.E.
	23 47	II.Oc.D.		22 29	LTr.E.		23 56	II.Tr.J.		5 37	II.Sh.E.
				22 57	L.Sh.E.	. .		T 01 T		14 00	III.Tr.L
5	3 26	II.Ec.R.		17.00	10 D	21	0 35	II.Sh.L.		14 51	III.Sh.L
	18 15	I.IT.I.	13	1/29	LOC.D.		2 23	II. If.E.		10 35	III. Ir.E.
	18 50	1.Sn.1.		20 07	I.EC.K.		3 01	II.Sn.E.		19 62	III.Sn.E.
	20 27	LILL.		21 07	II. II.L		10 50			10 04	
	21 02	1.511.12.		22 33	TI Tr E		12 04	TT Tr F		21 04	I T. E
6	15 28	IOCD		25 55	H . 11. L .		13 20	III Sh.E		21 16	I Sh F
v	18 12	L.Ec.R.	14	0 25	II.Sh.E.		16 50	I.Tr.L			1.01. 2.
	18 18	II.Tr.L	•••	5 00	III. Tr.L.		17 09	LSh.L	29	16 03	LOc.D.
	19 25	II.Sh.I.		6 50	III.Sh.I.		19 02	L.Tr.E.		18 25	I.Ec.R.
	20 44	II.Tr.E.		7 34	III. Tr.E.		19 21	LSh.E.		21 49	II.Oc.D.
	21 50	II.Sh.E.		918	III.Sh.E.						
				14 48	L.Tr.J.	22	14 01	LOc.D.	30	0 39	II.Ec.R.
7	0 31	III.Tr.I.		15 14	I.Sh.I.		16 31	I.Ec.R.		13 23	I.Tr.L
	2 49	III.Sh.I.		17 00	L.Tr.E.		18 57	II.Oc.D.		13 33	LSh.L
	3 04	III.Tr.E.		17 26	L.Sh.E.		22 02	II.Ec.R.		15 35	LTr.E.
	5 16	III.Sh.E.								15 45	LSh.E.
	12 45	LTr.I.	15	11 59	I.Oc.D.	23	11 20	I.Tr.L			
	13 19	I.Sh.L		14 36	L.Ec.R.		11 38	LSh.I.	31	10 33	LOc.D.
	14 58	L.Ir.E.		16 05	II.Oc.D.		13 33	LILL.		12 34	LEC.R.
	15 30	L.Sh.E.		19/24	ILEC.K.		13 50	LSn.E.		16 10	
0	0 60		14	0.10	17-1	24	8 31	IOPP		10 20	ILSALL II T-E
ō	9 38	LUC.D.	10	9 16	LILL	24	10 50	I LOC.D.		18 56	
	12 41	LEC.K.		11 20	I T-E		13 20	TT-I	l	10 72	L.Sn.E.
	15 15			11 50	I Sh F		13 42	IT Sh T			
	10 40	II.EC.K.		11 55	1.5n.E.		12 22	11.31.1.			
					l			1	·		L

Ρ

UNIVERSAL TIME OF GEOCENTRIC PHENOMENA

					1	UNE					
d	h m	TTO-D	d	h m	TT F. D	d	b m		4	b m	TOP
ł	7 19	III.OC.D.	ð	12 09	IT-E	10	9.00	LEC.D.	23	11 10	II.OC.K.
	7 53	I Te I		12 08	ISE.		16 44	I Fe D	24	8 15	TSET
	8 02	ISHI		12 00	LJILL		10 20		27	8 30	ITel
	10.05	ITrF	9	7.05	TOCD		., .,	1.00.iC		10 27	I Sh F
	10 14	LSh F	Í	9 17	LOC.R.	17	6 20	LSb.L		10 42	LTrE
		1.01.1.2.		14 06	ILOc.D.	•••	6 28	L.Tr.L			211.2.
2	5 03	I.Oc.D.		16 37	II.Oc.R.		8 32	LSh.E.	25	5 22	LEc.D.
	7 22	I.Ec.R.		-			8 40	LTr.E.		7 51	LOc.R.
	11 15	II.Oc.D.	10	4 25	L.Sh.I.					13 31	II.Sh.L
	13 58	II.Ec.R.		4 26	I. Tr. L	18	3 28	LEc.D.		14 03	II.Tr.L
-				6 37	LSh.E.		5 49	LOc.R.		16 00	II.Sh.E.
3	2 24	I.Tr.I.		6 38	L.Tr.E.		10 56	II.Sh.I.		16 34	II.Tr.E.
	2 30	I.Sh.L		1.24	15.5		11 14		20	2.42	
	4 30	LILE.	11	1 34	I.EC.D.		13 24	ILSN.E.	20	2 43	1.Sn.1.
	9 42	I.Sn.E.		9 21			15 45	ш. п.е.		3 00	LILL
	25 54	1. CC .D.		8 24	II.SILL	10	0.48	ISHI		5 12	LSILL.
4	1.51	LEC R		10 48	II.Sh.E.		0 58	LTr.L		6 50	III Sh I
•	5 34	II.Tr.I.		10 53	II.Tr.E.		2 50	III.Sh.I.		7 57	III. Tr.I.
	5 46	II.Sh.L		22 50	III.Sh.I.		3 01	LSh.E.		9 24	III.Sh.E.
	8 03	II.Tr.E.		22 54	I.Sh.L		3 11	L.Tr.E.		10 36	III.Tr.E.
	8 1 2	II.Sh.E.		22 56	I.Tr.L		3 28	III.Tr.I.		23 51	LEc.D.
	18 29	III.Tr.L		22 58	III. Tr.L		5 23	III.Sh.E.			
	18 51	Ш.Sh.I.					6 06	Ш.Ir.E.	27	2 21	LOc.R.
	20.54	L. I.T.L.	12	1.00	LSh.E.		21.57	LEC.D.		8 39	II.EC.D.
	20.59	1.Sn.1.		1 22	LILE.	20	0.20	IOAR		11 40	ILUC.K.
	21 00	III. II.E.		1 25	III.Sn.E.	20	6 02 0	I.OC.R.		21 12	1.5n.1. 1 Tr I
	23 07	I Tr E		20 02	I Ec D		8 55			23 24	L Sh F
	23 11	I.Sh.E.		22 18	I.Oc.R.		19 17	LSh.L		23 43	I.Tr.E.
							19 29	I.Tr.I.			
5	18 04	I.Oc.D.	13	3 26	II.Ec.D.		21 29	I.Sh.E.	28	18 20	I.Ec.D.
	20 20	I.Ec.R.		6 03	II.Oc.R.		21 41	I.Tr.E.		20 52	I.Oc.R.
				17 22	I.Sh.I.						
6	0 41	II.Oc.D.		17 27	I. Tr. I.	21	16 25	LEc.D.	29	2 49	ILSh.I.
	31/	II.Ec.R.		19 35	I.Sh.E.		18 50	LOC.R.		3 28	II. Ir.I.
	15 25	1.11.1. ISET		19 39	LILE.	22	0.14	ПСЬТ		5 17	II.Sn.E.
	17 37	I.SILL	14	14 31	LECD	22	0 38	II Te I		15 40	
	17 40	I Sh F	14	16 48	I Oc R		2 42	II Sh F		16 01	ITel
	17 40	1.011.2.		21 38	ILShL		3 08	ILTr.E.		17 52	LSh.E.
7	12 35	I.Oc.D.		21 49	II.Tr.L		13 46	I.Sh.L		18 13	L.Tr.E.
	14 48	I.Ec.R.					13 59	LTr.I.		20 47	III.Ec.D.
	18 59	II.Tr.I.	15	0 06	II.Sh.E.		15 58	LSh.E.	ł		
	19 03	II.Sh.I.		0 18	II.Tr.E.		16 12	LTr.E.	30	0 50	III.Oc.R.
	21 28	II.Tr.E.		11 51	I.Sh.I.		16 47	III.Ec.D.		12 48	LEc.D.
	21 30	II.Sh.E.		11 57	LTL		20 20	III.Oc.R.		15 22	LOc.R.
	0 40	III O- D		12.47	ILEC.D.	22	10 64	IE-D		21.57	ILEC.D.
8	840 044			14 03	LOLL.	23	10 54	LEC.D.	1		
	9 55	I Sh I		15 40			19 20	TIEC D			
	/ 50	1.01.1.		15 47							
						-			-		

	JULY											
	d 1	h m 1 11 10 09 10 31 12 21 12 44	I.Oc.R. I.Sh.I I.Tr.I. I.Sh.E. I.Tr.E.	4 9	b m 9 11 11 54 18 42 19 42 21 11 22 14	I.Ec.D. LOc.R. II.Sh.I. II.Tr.I. II.Sh.E.	₫ 17	h m 1 03 8 26 9 03 10 38 11 16	II. Tr.E. LSh.L L.Tr.L I.Sh.E. L.Tr.E.	4 24 25	h m 13 16 22 49 1 27 1 45 4 20	LTr.E. III.Sh.I. III.Sh.E. III.Tr.I.
	2	7 17 9 52 16 07 16 53 18 36	I.Ec.D. I.Oc.R. II.Sh.I. II.Tr.I. II.Sh.E.	10	6 32 7 03 8 44 9 15	I.Sh.I. L.Tr.I. L.Sh.E. I.Tr.E.	18	10 30 21 20 21 27 0 03 5 34	III. Tr.I. III. Sh.E. III. Tr.E. I.Ec.D.	26	7 28 10 25 19 02 23 04	LEC.D. LOC.R. ILEC.D. ILOC.R.
	3	4 38 5 01 6 50 7 14 10 50	I.Sh.I. I.Tr.I. I.Sh.E. I.Tr.E. II.Sh.I.	11	14 50 16 53 17 26 19 35 3 39 6 24	Ш. Tr.I. Ш.Sh.E. Ш.Tr.E. I.Ec.D. I.Oc.R.	19	16 26 20 16 2 55 3 34 5 07	I.Ec.D. II.Oc.R. I.Sh.I. I.Tr.I. I.Sh.E.	20	5 34 7 01 7 46 1 56 4 56	LSEI LTrL LSh.E. LTr.E. LEc.D. LOc.R.
	4	12 26 13 25 15 07 1 45 4 23	III. Ir.I. III.Sh.E. III.Tr.E. I.Ec.D. I.Oc.R.	12	13 51 17 27 1 01 1 33 3 13	II.Ec.D. II.Oc.R. I.Sh.I. I.Tr.I. I.Sh.E.	20	5 46 0 02 2 55 10 36 11 55	I.Tr.E. I.Ec.D. I.Oc.R. II.Sh.I. II.Tr.I.	20	13 11 14 43 15 41 17 17 23 18	ILSEL ILTrL ILSEE. ILTrE. LSEL
	5	11 15 14 37 23 06 23 32 1 18	II.Ec.D. II.Oc.R. LSh.I. I.Tr.I. I.Sh.E.	13	3 45 22 08 0 54 8 00 9 06	I. Ir.E. I.Ec.D. I.Oc.R. II.Sh.I. II.Tr.I.		13 05 14 28 21 23 22 04 23 35	II.Sh.E. II.Tr.E. I.Sh.I. I.Tr.I. I.Sh.E.	28	1 29 2 16 12 45 15 24 15 55	I. Ir.I. I.Sh.E. I.Tr.E. III.Ec.D. III.Ec.R. III.Oc.D.
Ρ	6	1 44 20 14 22 53 5 25	I.Tr.E. I.Ec.D. I.Oc.R. II.Sh.I.		10 29 11 38 19 29 20 03 21 41	II.Sh.E. II.Tr.E. I.Sh.I. I.Tr.I. I.Sh.E.	21	0 16 8 45 11 23 11 30 14 14	I.Tr.E. III.Ec.D. III.Ec.R. III.Oc.D. III.Oc.R.	29	18 41 20 25 23 26 8 19	III.Oc.R. I.Ec.D. I.Oc.R. II.Ec.D.
		6 17 7 53 8 49 17 35 18 02 19 47 20 15	II.Tr.I. II.Sh.E. II.Tr.E. I.Sh.I. I.Tr.I. I.Sh.E. I.Tr.E.	14	22 16 4 45 9 47 16 37 19 24	I.Tr.E. III.Ec.D. III.Oc.R. LEc.D. I.Oc.R.	22	18 31 21 25 5 44 9 40 15 52 16 34	I.Ec.D. I.Oc.R. II.Ec.D. II.Oc.R. I.Sh.I. I.Tr.L	30	12 28 17 46 18 34 19 58 20 46 14 53	II.Oc.R. I.Sh.I. LTr.I. LSh.E. LTr.E. LEc.D.
	7	0 46 5 19 14 42 17 23	III.Ec.D. III.Oc.R. LEc.D. I.Oc.R.	15	3 08 6 51 13 58 14 33 16 10 16 46	II.Ec.D. II.Oc.R. I.Sh.I. L.Tr.I. I.Sh.E. I.Tr.E.	23	18 04 18 46 12 59 15 55 23 54	I.Sh.E. I.Tr.E. I.Ec.D. I.Oc.R. II.Sh.I.	31	17 56 2 29 4 08 5 00 6 41	LOc.R. II.Sh.L II.Tr.L II.Sh.E. II.Tr.E.
	8	0 33 4 02 12 03 12 32 14 16 14 45	II.Ec.D. II.Oc.R. I.Sh.I. I.Tr.I. I.Sh.E. I.Tr.E.	16	11 05 13 55 21 18 22 31 23 47	LEc.D. LOc.R. II.Sh.I. II.Tr.I. II.Sh.E.	24	1 20 2 23 3 52 10 21 11 04	II. Tr.L II. Sh.E. II. Tr.E. I. Sh.L L.Tr.L		12 15 13 04 14 26 15 16	LSh I. LTr.I. LSh E. LTr.E.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		AUGUST											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	d	b ma		4	b m						h m		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	2 48	III.Sh.I.	8	13 17	III. Tr.E.	16	7 23	ILOc.R.	23	15 42	L.Tr.E.	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		5 26	III.Sh.E.		14 26	LOc.R.		10 31	LSh.L				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		6 09	III.Tr.I.					11 32	LTr.L.	24	9 32	LEc.D.	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		8 54	III.Tr.E.	9	0 12	II.Ec.D.		12 43	LSh.E.		12 53	LOc.R.	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		9 22	I.Ec.D.		4 38	II.Oc.R.		13 44	L.Tr.E.		23 35	ILSh.I.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		12 20	I.OC.R.		0 22	LSEL	17	7 29	IE-D	26	1 40	TT T T	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		21 37	п.н.р.		10 49	ISHE	17	10 55	LEC.D.	Δ	2.06		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	1 52	II.Oc.R.		11 45	LTrE		20 59	II.Sh I		4 25	II.Su.E.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	6 43	I.Sh.I.					23 04	II.Tr.I.		6 53	LSh.L	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		7 34	I.Tr.I.	10	5 44	I.Ec.D.		23 30	II.Sh.E.		8 00	I.Tr.L	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		8 55	I.Sh.E.		8 55	LOc.R.					9 05	L.Sh.E.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		9 46	I.Tr.E.		18 23	II.Sh.L	18	1 39	IL.Tr.E.		10 12	L.Tr.E.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					20 18	II. Tr.I.		5 00	LSh.L				
	3	3 50	I.Ec.D.		20 54	II.Sh.E.		6 02	LTr.J.	26	4 01	I.Ec.D.	
		6 36	I.Oc.R.		22.52	II. Ir.E.		7 11	I.Sh.E.		4 41	III.Ec.D.	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		12 4/			2.04	TOLT		8 14	LIT.E.		7 25	I.Oc.K.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		18 17			4 03	1.3n.1.	10	0.42	III Fo D		0 16		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		20.05	II.SILE.		5 17	I Sh F	15	2 07	I.Ec.D.		12 07		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		20 05		1	6 15	L.Tr.E.		3 25	III.Ec.R		18 38	ILEC.D.	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4	1 12	I.Sh.I.		20 44	III.Ec.D.		4 59	III.Oc.D.		23 29	II.Oc.R.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2 04	I.Tr.I.		23 25	III.Ec.R.		5 24	I.Oc.R.				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3 23	I.Sh.E.					749	III.Oc.R.	27	1 22	L.Sh.I.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4 16	I.Tr.E.	12	0 13	I.Ec.D.		16 04	II.Ec.D.		2 29	I.Tr.I.	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		16 44	III.Ec.D.		0 40	III.Oc.D.		20 46	II.Oc.R.		3 33	I.Sh.E.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		19 25	III.Ec.R.		3 25	L.Oc.R.		23 28	1.Sh.1.		4 41	I.Tr.E.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		20 19	LECD.		12 29	TE D	20	0.21	17-1		22 29	I.EC.D.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		23.06			18 01		20	1 40	I.I.I.	28	1.52	ICR	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		25 00	m.oc.it.	1	21 34	I Sh I		2 43	I Tr F	20	12 53	I Sh I	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5	1 26	I.Oc.R.		22 33	I.Tr.L		20 35	I.Ec.D.		15 12	II.Tr.I.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	10 54	II.Ec.D.		23 46	I.Sh.E.		23 54	I.Oc.R.		15 25	II.Sh.E.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		15 15	II.Oc.R.								17 47	II.Tr.E.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		19 40	I.Sh.I.	13	0 45	I.Tr.E.	21	10 17	II.Sh.L		19 50	I.Sh.I.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		20 34	I.Tr.I.		18 41	I.Ec.D.		12 27	II.Tr.I.		20 58	I.Tr.I.	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		21 52	I.Sh.E.		21.55	1.Oc.R.		12 48	II.Sh.E.		22 02	I.Sh.E.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		22 40	1. Ir.E.	114	7 41	TCLT		17 66	LI.IT.E.		23 11	1. Ir.E.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	16 47	IFCD	117	0 41	П.Зп.1.		10 01	1.5n.1.	20	16 58	I Fo D	
10 Col 10 Col 12 16 II Tr.E. 21 13 LTr.E. 20 22 LOC.R. 7 5 05 II.Sh.I. 16 03 I.Sh.I. 17 16 II.Tr.E. 21 13 LTr.E. 20 22 IOC.R. 7 5 05 II.Tr.I. 17 02 I.Tr.L. 22 14 46 II.Sh.I. 23 25 III.Tr.I. 9 29 II.Tr.E. 19 15 ITr.E. 17 27 III.Sh.E. 30 2 14 III.Tr.E. 14 09 I.Sh.I. 15 10 46 III.Sh.I. 18 24 IOC.R. 7 55 II.Ec.D. 15 03 I.Tr.I. 15 10 46 III.Sh.I. 18 24 IOC.R. 7 55 II.Ec.D. 16 20 I.Sh.E. 13 10 LEc.D. 21 57 III.Tr.E. 14 19 I.Sh.I. 17 16 I.Tr.E. 13 26 III.Sh.E. 13 26 III.Sh.E. 15 28 ITr.I. 17 16 I.Tr.E. 14 51 III.Tr.E. 12 35 21 II.Ec.D. 16 30 ITr.E. 8 6 47 III.Sh.E. 17 38 III.Tr.E. <td>0</td> <td>19 56</td> <td>LOc.R.</td> <td>1</td> <td>10 12</td> <td>II.Sh E</td> <td></td> <td>20.08</td> <td>I Sh F</td> <td>27</td> <td>18 45</td> <td>III Sh I</td>	0	19 56	LOc.R.	1	10 12	II.Sh E		20.08	I Sh F	27	18 45	III Sh I	
7 5 05 II.Sh.I. 16 03 I.Sh.I. 11 6 03 I.Sh.I. 7 5 05 II.Tr.I. 17 02 I.Tr.I. 12 27 II.Sh.E. 7 5 05 II.Tr.I. 17 02 I.Tr.I. 17 02 I.Tr.I. 9 11 Tr.E. 18 14 15 04 I.Ec.D. 23 25 III.Tr.I. 9 12 07 II.Sh.E. 15 04 I.Ec.D. 30 2 14 III.Tr.E. 14 09 I.Sh.E. 19 15 I.Tr.E. 17 27 II.Sh.E. 30 2 14 III.Tr.E. 15 03 I.Tr.I. 15 10 46 II.Sh.I. 19 09 III.Tr.I. 12 50 II.Oc.R. 16 20 I.Sh.E. 13 10 I.Ec.D. 21 57 III.Tr.E. 14 19 I.Sh.I. 17 16 I.Tr.E. 13 26 III.Sh.E. 10 07 II.Oc.R. 15 28 I.Tr.L. 16 20 I.Sh.E. 17 38 III.Tr.E. 12 05 I.Oc.R. 15 28 I.Tr.L. 17 16 I.Sh.E. 17 38 III.Tr.E. 12 07 II.Oc.R. 17 40 I.Tr.E.		.,			12 16	IL.Tr.E.		21 13	LTr.E.		20 22	L'Oc.R.	
6 55 II.Tr.I. 17 02 I.Tr.L. 22 14 46 III.Sh.L. 23 25 III.Tr.I. 9 29 II.Tr.E. 19 15 I.Tr.E. 15 04 I.Ec.D. 30 2 14 III.Tr.E. 30 2 14 III.Tr.E. 14 09 I.Sh.L. 15 10 46 III.Sh.I. 19 09 III.Tr.L. 12 50 II.Oc.R. 16 20 I.Sh.E. 13 10 I.Ec.D. 21 57 III.Tr.E. 14 19 I.Sh.I. 17 16 I.Tr.E. 13 26 III.Sh.E. 23 5 21 II.Cc.R. 15 28 ITr.I. 8 6 47 III.Sh.E. 13 26 III.Sh.E. 13 00 I.Sh.E. 16 20 I.Sh.E. 17 18 III.Tr.E. 15 28 ITr.I. 8 6 47 III.Sh.E. 16 25 I.Oc.R. 10 077 II.Oc.R. 17 40 I.Tr.E. 9 26 III.Sh.E. 17 38 III.Tr.E. 13 30 I.Tr.I. 31<11 26	7	5 05	II.Sh.I.		16 03	I.Sh.I.					21 27	III.Sh.E.	
7 36 II.Sh.E. 18 14 I.Sh.E. 15 04 I.Ec.D. 9 29 II.Tr.E. 19 15 IT.r.E. 17 27 II.Sh.E. 30 2 14 III.Tr.E. 14 09 I.Sh.I. 15 03 I.Tr.I. 15 10 46 III.Sh.I. 18 24 I.Oc.R. 7 55 II.Ec.D. 16 20 I.Sh.E. 13 10 I.Ec.D. 21 57 III.Tr.E. 14 19 I.Sh.I. 17 16 I.Tr.E. 13 26 III.Sh.E. 13 26 III.Sh.E. 15 28 I.Tr.I. 14 51 III.Tr.L. 16 25 I.Oc.R. 16 30 I.Sh.E. 18 6 47 III.Sh.I. 16 25 I.Oc.R. 10 07 II.Oc.R. 17 40 ITr.E. 9 26 III.Sh.E. 17 38 III.Tr.E. 13 30 ITr.I. 31 11 26 I.Ec.D. 10 30 II.Tr.L. 16 2 47 I.Ec.D. 14 36 I.Sh.E. 14 51 I.Oc.R.		6 55	II.Tr.I.	ł	17 02	I.Tr.L	22	14 46	III.Sh.I.		23 25	III. Tr.I.	
9 29 II.Tr.E. 19 15 I.Tr.E. 17 27 II.Sh.E. 30 2 14 III.Tr.E. 14 09 I.Sh.I. 15 10 46 III.Sh.I. 18 24 I.Oc.R. 7 55 II.Ec.D. 15 03 I.Tr.I. 15 10 46 III.Sh.I. 19 09 III.Tr.I. 12 50 II.Oc.R. 16 20 I.Sh.E. 13 10 I.Ec.D. 21 57 III.Tr.E. 14 19 I.Sh.I. 17 16 I.Tr.E. 13 26 III.Sh.E. 15 528 I.Tr.I. 14 51 III.Tr.L. 13 25 I.Oc.R. 16 30 I.Sh.E. 8 6 47 III.Sh.I. 16 25 I.Oc.R. 10 07 II.Oc.R. 17 40 I.Tr.E. 9 26 III.Sh.E. 17 38 III.Tr.E. 13 30 I.Tr.I. 31 11 26 I.Ec.D. 11 16 I.Ec.D. 16 2 47 I.Ec.D. 14 36 I.Sh.E. 14 51 I.Oc.R.		7 36	II.Sh.E.		18 14	L.Sh.E.		15 04	I.Ec.D.				
14 09 I.Sh.I. 15 03 I.Tr.I. 15 10 46 III.Sh.I. 19 09 III.Tr.I. 12 50 II.Oc.R. 16 02 I.Sh.E. 13 10 I.Ec.D. 21 57 III.Tr.I. 12 50 II.Oc.R. 17 16 I.Tr.E. 13 26 III.Sh.E. 14 51 III.Tr.I. 12 58 IT.L. 8< 647		9 29	II.Tr.E.		19 15	LTr.E.		17 27	III.Sh.E.	30	2 14	III. Tr.E.	
15 03 1.1rL 15 10 46 II.Sh.L 19 09 III.1rL 12 30 II.0c.R. 16 20 I.Sh.E. 13 10 I.Ec.D. 21 57 III.Tr.E. 14 19 I.Sh.I. 17 16 I.Tr.E. 13 26 III.Sh.E. 13 10 I.Ec.D. 21 57 III.Tr.E. 15 28 IT.Tr.I. 8 6 47 III.Sh.I. 16 25 I.Oc.R. 10 07 II.Ce.D. 16 30 I.Sh.E. 9 26 III.Sh.E. 17 38 III.Tr.E. 12 25 I.Sh.I. 11 26 I.Ec.D. 10 30 III.Tr.L. 16 2 47 II.Ec.D. 14 36 I.Sh.E. 14 51 LOc.R.		14 09	I.Sh.I.	1.2				18 24	L.Oc.R.		7 55	II.Ec.D.	
10 20 1.51.E. 13 10 EEC.D. 21 37 III.F.E. 14 19 1.5h.I. 17 16 I.Tr.E. 13 26 III.Sh.E. 14 51 III.Tr.I. 23 5 21 II.Ec.D. 15 28 I.Tr.I. 8 6 47 III.Sh.E. 16 25 LOC.R. 10 07 II.Oc.R. 17 40 I.Tr.E. 9 26 III.Sh.E. 17 38 II.Tr.E. 12 25 I.Sh.E. 13 30 I.Tr.I. 10 30 II.Tr.I. 16 2 47 I.Ec.D. 14 36 I.Sh.E. 14 51 LOC.R. 11 16 I.Ec.D. 16 2 47 I.Ec.D. 14 36 I.Sh.E. 14 51 LOC.R.		15 03		12	10 46	III.Sh.I.		19 09			12 50		
17 10 11 LL 14 51 III.Tr.L 23 5 21 II.Ec.D. 16 30 ISh.E 8 6 47 III.Sh.I 16 25 LOc.R. 10 07 ILOc.R. 17 40 ISh.E. 9 26 III.Sh.E 17 38 III.Tr.E. 12 25 ISh.I. 11 10 ISh.E. IT.R.E. 10 30 III.Tr.L. 11 13 30 IT.Tr.L. 13 30 IT.Tr.L. 31 11 26 I.Ec.D. 11 16 I.Ec.D. 16 2 47 II.Ec.D. 14 36 I.Sh.E. 14 51 I.Oc.R.		10 20	I.Sn.E.		13 26	I.EC.D.		21 57	ш. п.е.		14 19	1.5n.1.	
8 6 47 III.Sh.L 16 25 LOc.R. 10 07 ILOc.R. 17 40 LTTE. 9 26 III.Sh.E. 17 38 III.Tr.E. 12 25 I.Sh.L. 17 40 LTTE. 10 30 III.Tr.L. 13 30 I.Tr.L. 13 30 I.Tr.L. 31 11 26 LEc.D. 11 16 I.Ec.D. 16 2 47 I.Ec.D. 14 36 I.Sh.E. 14 51 I.Oc.R.		17 10	1.11.15.		14 51	III. Tr.I	23	5 21	II Ec D	l	16 30	I Sh E	
9 26 III.Sh.E. 17 38 III.Tr.E. 12 25 I.Sh.I. 17 11 10 30 III.Tr.I. 16 2 47 II.Ec.D. 14 36 I.Sh.E. 14 51 I.Cc.R.	8	6 47	III.Sh.L		16 25	LOc.R		10 07	ILOC.R		17 40	LTr.E.	
10 30 III.Tr.L 16 2 47 II.Ec.D. 13 30 I.Tr.L 31 11 26 I.Ec.D. 11 16 I.Ec.D. 16 2 47 II.Ec.D. 14 36 I.Sh.E. 14 51 I.Oc.R.	Ũ	9 26	III.Sh.E.		17 38	III.Tr.E.		12 25	LSh.L				
11 16 I.Ec.D. 16 2 47 II.Ec.D. 14 36 I.Sh.E. 14 51 LOC.R.		10 30	III.Tr.L					13 30	LTr.L.	31	11 26	L.Ec.D.	
		11 16	I.Ec.D.	16	2 47	II.Ec.D.		14 36	I.Sh.E.		14 51	LOc.R.	
												L	

	SEPTEMBER											
_	d 1	b m 2 11 4 33 4 43 7 09 8 47	II.Sh.I. II.Tr.I. II.Sh.E. II.Tr.E. I.Sh.I.	d 8 9	h m 11 54 12 52 14 06 7 48	I.Tr.I. I.Sh.E. I.Tr.E. I.Ec.D.	4 16	b m 13 15 16 39 19 25 21 52	L.Oc.R. III.Ec.D. III.Ec.R. III.Oc.D.	4 24	h m 1 57 4 51 4 54 7 28 7 29	III.Oc.D. III.Oc.R. II.Ec.D. II.Ec.R. II.Oc.D.
		9 57 10 58 12 09	I.Tr.I. I.Sh.E. I.Tr.E.		11 18 12 39 15 24 17 42	I.Oc.R. III.Ec.D. III.Ec.R. III.Oc.D.	17	0 45 2 20 7 02 7 29	III.Oc.R. II.Ec.D. I.Sh.I. II.Oc.R.		8 56 10 06 10 13 11 07	LSh.I. II.Oc.R. I.Tr.I. LSh.E.
	2	5 55 8 40 9 21 11 25	I.Ec.D. III.Ec.D. I.Oc.R. III.Ec.R.	10	20 35 23 47 4 51 5 00	II.Oc.R. II.Cc.R.	1.0	9 14 9 14 10 30	I. Ir.I. I.Sh.E. I.Tr.E.	25	6 05 9 39	I. Ir.E. I.Ec.D. I.Oc.R.
	2	16 22 21 12	III.Oc.D. III.Oc.R. II.Ec.D.		6 23 7 20 8 35	I.Sn.I. I.Tr.I. I.Sh.E. I.Tr.E.	10	7 43 20 41 23 14 23 18	I.Ec.D. I.Oc.R. II.Sh.I. II.Sh.E. II.Tr I	26	1 51 1 57 3 24	II.Sh.L. II.Sh.E. II.TrL I.Sh.I
	5	3 15 4 26 5 27 6 38	I.Sh.I. I.Tr.I. I.Sh.E. I.Tr.E.	11	2 17 5 47 18 05 20 37 20 38	I.Ec.D. I.Oc.R. II.Sh.I. II.Tr.I. II.Sh.E.	19	1 31 1 55 2 47 3 42	I.Sh.I. II.Tr.E. I.Tr.I. I.Sh.E.		4 34 4 42 5 36 6 54	II. Tr.E. L.Tr.I. I.Sh.E. L.Tr.E.
	4	0 23 3 50 15 29 17 55	I.Ec.D. I.Oc.R. II.Sh.I. II.Tr.I.	12	23 14 23 37 0 52 1 49	II.Tr.E. I.Sh.I. I.Tr.I. I.Sh.F	20	4 59 22 39 2 12 6 41	I.Tr.E. I.Ec.D. I.Oc.R.	27	0 33 4 08 10 39 13 25	I.Ec.D. I.Oc.R. III.Sh.I. III.Sh.E. III.T.I
		20 31 21 44 22 55 23 55	II.Tr.E. I.Sh.I. I.Tr.I. I.Sh.E.	13	3 04 20 45 0 16	I.Tr.E. I.Ec.D. I.Oc.R.		9 25 11 53 14 45 15 37	III.Sh.E. III.Tr.L III.Tr.E. II.Ec.D.		18 11 18 48 20 44 20 47	III. Tr.E. III. Tr.E. II. Ec.R. II. Oc.D.
Ρ	5	1 07 18 51 22 20 22 44	I.Tr.E. I.Ec.D. I.Oc.R. II.Sh.I.		2 42 5 26 7 47 10 38 13 03	111.Sh.I. 111.Sh.E. 111.Tr.I. 111.Tr.E. 11.Ec.D.		18 10 18 11 19 59 20 48 21 16	II.Ec.R. II.Oc.D. I.Sh.I. II.Oc.R. I.Tr.I.	28	21 52 23 10 23 24 0 04	I.Sh.I. I.Tr.I. II.Oc.R. I.Sh.E.
	6	1 27 3 38 6 28	III.Sh.E. III.Tr.I. III.Tr.E.		18 06 18 10 19 21 20 17	I.Sh.I. II.Oc.R. I.Tr.I. I.Sh.E.	21	22 10 23 28 17 08	I.Sh.E. I.Tr.E. I.Ec.D.	20	1 22 19 02 22 36	I.Tr.E. I.Ec.D. LOc.R.
		15 31 16 12 17 25 18 24	I.D.C.R. I.Sh.I. I.Tr.I. I.Sh.E.	14	15 14 18 45	I. H.E. I. Ec. D. I. Oc.R.	22	9 59 12 32 12 37	I.Sh.I. II.Sh.E. II.Tr.I.	29	12 33 15 09 15 15 16 21 17 38	II.Sh.I. II.Sh.E. II.Tr.L LSh.L LTr.L
	7	19 37 13 20 16 49	I.Tr.E. I.Ec.D. I.Oc.R.	15	7 23 9 56 9 57 12 34 12 34	II.Sh.I. II.Sh.E. II.Tr.I. I.Sh.I. II.Tr.F.		14 27 15 14 15 44 16 39 17 56	I.Sh.I. II.Tr.E. L.Tr.L I.Sh.E. I.Tr.F	30	17 52 18 32 19 50	IL Tr.E. LSh.E. LTr.E. LEc D
	8	4 47 7 16 7 19 9 52 10 41	II.Sh.I. II.Tr.I. II.Sh.E. II.Tr.E. I.Sh.I	16	13 49 14 45 16 01 9 42	LTr.L I.Sh.E. I.Tr.E.	23	11 36 15 10 20 38 23 25	I.Ec.D. I.Oc.R. III.Ec.D.		17 05	LOc.R.
_												L
SATELLITES OF JUPITER, 1989

UNIVERSAL TIME OF GEOCENTRIC PHENOMENA

					001	OBE	R				
d 1	b m 0 37 3 26 5 58 8 54 10 04 10 04 10 04 10 04 10 04 12 07 12 41 13 01 14 19 7 58 11 33	III.Ec.D. III.Ec.R. III.Oc.D. II.Ec.D. II.Ec.R. II.Oc.D. I.Sh.I. I.Tr.I. II.Oc.R. I.Sh.E. I.Tr.E. I.Ec.D. I.Oc.R.	4 8 9 10	h m 10 01 12 35 12 36 12 42 12 51 14 00 14 54 15 14 16 12 9 52 13 27 4 30 7 05 7 08	I.Ec.D. I.Ec.R. II.Oc.D. I.ShI II.Oc.R. I.Tr.I. I.Sh.E. I.Oc.R. I.ShI II.ShE II.ShE II.ShE	16 17 18	h m 11 46 13 09 14 11 15 19 7 06 9 04 9 41 9 41 10 19 11 16 12 20 12 31 6 15 9 47	I.Ec.D. N.Tr.I. N.Tr.E. I.Oc.R. I.Sh.I. I.Sh.I. I.Sh.E. I.Tr.I. I.Sh.E. I.Tr.E. I.Tr.E. I.Tr.E. I.Ec.D. I.Oc.R.	24 25 26	h m 12 18 13 09 14 22 14 50 19 53 21 04 8 09 11 38 2 34 4 25 5 24 5 25 6 37 7 26	I.Sh.E. I.Sh.E. LTr.E. I.Tr.E. IV.Oc.D. IV.Oc.R. I.Ec.D. LOc.R. II.Sh.I. II.Sh.I. II.Sh.I. I.Sh.I. I.Tr.I. II.Tr.I.
3	1 54 4 28 4 33 5 17 6 35 7 11 7 29 8 47	II.Sh.I. II.Sh.E. II.Tr.I. I.Sh.I. I.Tr.I. II.Tr.E. I.Sh.E. I.Tr.E.	11	7 11 8 28 9 22 9 47 10 40 4 21 7 55 18 37	I.Sh.I. I.Tr.I. I.Sh.E. II.Tr.E. I.Tr.E. I.Ec.D. I.Oc.R. III.Sh.I.	19	22 35 1 24 1 51 3 32 3 40 4 47 5 44 6 34	III.Sh.I. II.Ec.D. I.Sh.L II.Tr.I. I.Tr.I. I.Sh.E. III.Tr.E.	27	7 37 8 49 9 26 10 21 2 37 6 05 23 00 23 54	I.Sh.E. I.Tr.E. II.Oc.R. III.Tr.E. I.Ec.D. I.Oc.R. II.Sh.I. I.Sh.I.
4	2 27 6 02 14 37 17 24 19 54 20 44 22 48 23 18 23 20 23 46	1.Ec.D. 1.Oc.R. 11.Sh.I. 111.Sh.E. 111.Tr.I. 11.Ec.D. 11.Tr.E. 11.Cc.D. 1.Sh.I.	12	21 24 23 18 23 50 1 39 2 44 2 56 3 51 4 29 5 08 22 49	III.Sh.E. II.Ec.D. III.Tr.I. I.Sh.I. II.Tr.E. I.Tr.I. I.Sh.E. II.Oc.R. I.Tr.E. I.Ec.D.	20	6 59 6 59 0 43 4 15 20 24 22 01 22 56 22 59 23 14	11.0c.R. 1.Tr.E. 1.Ec.D. 1.Oc.R. 1.Sh.I. 1.Sh.I. 1.Sh.I. 1.Sh.E. 1.Tr.I. 1.Sh.E. 1.Tr.I.	28 29	1 04 1 26 1 36 2 06 3 17 4 04 21 06 0 33 16 32	I.Tr.I. II.Tr.I. II.Sh.E. I.Sh.E. I.Tr.E. II.Tr.E. I.Ec.D. I.Oc.R. II.Ec.D.
5	1 03 1 57 1 58 3 15 20 55	I.Tr.I. I.Sh.E. II.Oc.R. I.Tr.E. I.Ec.D.	13	2 23 17 48 20 07 20 22 20 25	I.Oc.R. II.Sh.I. II.Sh.I. II.Sh.E. II.Tr.I.	21	0 12 1 27 1 35 19 12 22 42	I.Sh.E. I.Tr.E. II.Tr.E. I.Ec.D. I.Oc.R.		17 42 18 22 19 24 19 31 20 34 21 19	II.Ec.D. I.Sh.I. II.Ec.R. I.Tr.I. I.Sh.E. III.Oc.D.
D	0 30 15 12 17 46 17 51 18 14 19 31 20 26 20 29 21 44	1.0c.K. II.Sh.I. II.Sh.E. II.Tr.I. I.Sh.I. I.Tr.I. I.Sh.E. II.Tr.E. I.Tr.E.	14 15	21 23 22 19 23 03 23 36 17 18 20 51 8 34 11 25	I. ITL LSh.E. II.Tr.E. LTr.E. L.Oc.R. III.Ec.D. III.Ec.D.	22	12 33 15 08 15 25 16 29 17 35 17 42 18 41 19 54 20 13 20 33	II.Ec.D. II.Ec.D. II.Ec.R. I.Sh.I. II.Oc.D. I.Tr.I. I.Sh.E. I.Tr.E. II.Oc.R. II.Oc.R.	30 31	21 44 22 39 0 17 15 34 19 00 12 19 12 50 13 59	I.I.F.E. ILOC.R. IEC.D. LOC.R. ILSh.L I.Sh.L I.Tr.L
7 8	15 24 18 58 2 49 3 36 4 36 7 25 9 55	I.Ec.D. I.Oc.R. IV.Oc.D. IV.Oc.R. III.Ec.D. III.Ec.R. III.Oc.D.		12 35 13 47 14 36 15 51 16 44 16 47 17 44 18 04	II.Ec.D. III.Oc.D. LSh.L I.Tr.L II.Oc.R. I.Sh.E. II.Oc.R. I.Tr.E.	23 24	13 40 17 10 9 43 10 57 12 09 12 12	I.Ec.D. LOC.R. II.Sh.I. I.Sh.I. I.Tr.I. II.Tr.I.		14 40 14 55 15 02 16 11 17 19	II.Tr.I II.Sh.E. I.Sh.E. I.Tr.E. II.Tr.E.

SATELLITES OF JUPITER, 1989

UNIVERSAL TIME OF GEOCENTRIC PHENOMENA

						NOV	EMB	ER				
-	4			4	b m		4					
	ĩ	10 03	I.Ec.D.	9	9 12	LSh.L	16	13 18	LSh.F.	23	18 52	ILOc.R.
	-	13 27	I.Oc.R.		9 32	ILEC.D.		14 13	LTr.E.		21 21	III.Sh.E.
					10 14	L.Tr.L		14 28	III.Sh.L		21 40	III. Tr.I.
	2	5 47	IV.Tr.L		10 30	III.Sh.I.		16 34	II.Oc.R.			-
		6 32	III.Sh.I.		11 24	LSh.E.		17 21	III.Sh.E.	24	0 36	III. Tr.E.
		6 58	II.Ec.D.		12 26	LTr.E.		18 13	III. Tr.I.		10 14	LEc.D.
		7 03	IV. Ir.E.		13 22	III.Sn.E.		21 09	ш. п.е.		13 10	LOC.K.
		8 26	I.Sn.I.		14 42	II.OC.K.	17	8 10	IFCD	25	7 27	TSHT
		9 23	III Sh F		17 37	III. Tr.E.	.,	11 30	LOCR	2	8 13	L.Tr.I.
		931	I.Sh.E.								9 26	II.Sh.I.
		10 38	I.Tr.E.	10	6 25	I.Ec.D.	18	5 33	I.Sh.I.		9 40	I.Sh.E.
		11 06	III.Tr.I.		9 43	I.Oc.R.		6 27	I.Tr.I.		10 26	I.Tr.E.
		11 51	II.Oc.R.		12 02	IV.Oc.D.		6 50	II.Sh.I.		11 00	II.Tr.I.
		14 02	Ш.Tr.E.		13 24	1V.Oc.R.		7 46	I.Sh.E.		12 04	II.Sh.E.
	2	4 21	I Fa D		3 40	TChT		8 40	II.II.I.		13 39	Ц. 11.Е.
	3	7 55	LOC R		4 13	T Sh I		9 27	TISh F	26	4 47	I Fc D
		1 35	1.00.10		4 40	LTrL		11 19	II.Tr.E	-	7 43	LOc.R.
	4	1 37	II.Sh.I.		5 53	I.Sh.E.		21 28	IV.Tr.L		20 38	IV.Ec.D.
		1 47	I.Sh.I.		6 17	II. Tr. L		22 51	IV.Tr.E.		21 13	IV.Ec.R.
		2 53	I.Tr.I.		6 50	II.Sh.E.						
		3 53	II.Tr.I.		6 53	L.Tr.E.	19	2 48	I.Ec.D.	27	1 55	I.Sh.I.
		3 59	I.Sh.E.		8 20	II. Ir.E.		221	1.0c.R.		2 39	L.Ir.L
		4 13	II.Sn.E.	12	0 54	IFCD	20	0.02	TSHT		3 56	TI Fe D
		6 32	ΠTrF	12	4 10	I Oc R	20	0 53	ITrI		4 08	I Sh E
		23 00	I.Ec.D.		22 09	I.Sh.I.		1 22	II.Ec.D.		4 40	IV.Oc.R.
					22 49	II.Ec.D.		2 15	I.Sh.E.		4 52	I.Tr.E.
	5	2 22	I.Oc.R.		23 07	I. Tr. I.		3 06	I.Tr.E.		8 01	II.Oc.R.
		20 15	II.Ec.D.	1.2	0.21	TOLE		4 30	III.Ec.D.		8 29	III.Ec.D.
_		20 15	1.5п.1. Ш.Бо.D	12	0 31	I.Sn.E.		7 26	II.OC.K.		11 20	
P)	21 20	I TrI		1 20	LTrE		8 02	III Oc D		14 25	HI Oc.R
		22 27	I.Sh.E.		3 24	II.Oc.R.		11 00	III.Oc.R.		23 11	I.Ec.D.
		23 25	III.Ec.R.		3 25	III.Ec.R.		21 17	I.Ec.D.			
		23 33	I.Tr.E.		4 32	Ш. Ос .D.				28	2 09	I.Oc.R.
			mon	1	7 31	Ш.Oc.R.	21	0 23	1.0c.R.		20 24	I.Sh.I.
	0	0.58	II.Oc.D.		19 22	I.EC.D.	1	18 30	I.Sn.I.		21 05	I.I.L.
		3 57			22 31	1.0C.K.		20.08			22 37	
		17 28	LEC D	14	16 37	LSh.L		20 43	L.Sh.E.		23 18	I.Tr.E.
		20 49	I.Oc.R.	· · ·	17 32	I.Sh.I.		21 33	I.Tr.E.			
					17 34	I. Tr.I.		21 50	II.Tr.L	29	0 09	II.Tr.I.
	7	14 44	I.Sh.I.		18 49	LSh.E.		22 46	II.Sh.E.		1 23	II.Sh.E.
		14 55	11.Sh.1.		19 29	IL Ir.I.	22	0.20	TT-F		2 49	II. Ir.E.
		15 4/			20.00	LILE.	22	15 45	II. IF.E.		20.25	L.EC.D.
		17.06	I TrI		22 08	II Tr F		18 50	I Oc P		20 33	LOCK.
		17 32	I.Sh.E.		22 00			10 55	Loca	30	14 52	LSh.I.
		17 59	L.Tr.E.	15	13 51	LEc.D.	23	12 59	L.Sh.L		15 31	I.Tr.I.
		19 45	II.Tr.E.		17 03	LOc.R.		13 46	I.Tr.L.		17 05	I.Sh.E.
	-					1		14 39	II.Ec.D.		17 13	II.Ec.D.
	8	11 57	I.Ec.D.	16	11 05	I.Sh.I.		15 11	I.Sh.E.		17 44	I.Ir.E.
		12 10	I.UC.K.	1	12 00	I Fe D	l	18 27	III.Sh I		21 09	III Sh I
				1	12 05	1		10 21			** **	
			· · · · · · · · · · · · · · · · · · ·	·					· · · · · · · · · · · · · · · · · · ·			

SATELLITES OF JUPITER, 1989

UNIVERSAL TIME OF GEOCENTRIC PHENOMENA

CONFIGURATIONS OF SATURN'S BRIGHTEST SATELLITES By Larry D. Bogan

The curves on the following pages enable one to determine the appearance of Saturn and its brightest satellites during the period January 31 to November 1, 1989. The names and magnitudes of these satellites, in order outward from Saturn, are: *Tethys*, 10.3, *Dione*, 10.4, *Rhea*, 9.7, and *Titan*, 8.4.

The diagrams show the elongations of the satellites from Saturn as they change with time. The horizontal lines mark 0^h UT on the days indicated. The narrower, central, vertical band represents the disk of Saturn, while the wider vertical band represents the outer edge of the "A" ring of Saturn. All four orbits have essentially zero inclination and thus lie nearly in the plane of Saturn's rings. During 1989 there are no eclipses or occultations due to the tilt of Saturn's axis; hence the curves are not shown occulted by the bands representing Saturn's disk and rings. The curve for Dione, the second out from Saturn, is drawn heavier so that it is easier to distinguish from those for Tethys and Rhea. Titan's orbit is not as circular as the others and is the only satellite of the four that has been treated as having an elliptical orbit.

At the beginning of each month is a scale drawing of Saturn with the orbits of the four satellites tilted as seen through an inverting telescope (in the Northern Hemisphere). South is up. The axis of Saturn is now tipped toward Earth so that we see the northern side of the rings and satellite orbits. The directions of motion of the satellites are counterclockwise.

Constructing the configuration from the diagrams is very similar to that for Jupiter's satellites. The main difference is that the orbits of the satellites are not seen edge-on, and the satellites move above and below Saturn. By projecting the elongations for the date and time of interest onto the drawing at the beginning of each month, and locating the satellites on the proper side (north or south) of the orbits, the complete configuration can be developed. A millimetre scale, or better, a pair of dividers, enables one to do this both quickly and accurately. For this purpose, the vertical line representing the east edge of Saturn's "A" ring has been extended upward across the scale drawing. Use this as a fiducial line to transfer the various satellite positions at a given moment in time to the scale drawing (It is convenient first to draw a horizontal line across the lower diagram at the time (UT!) of interest). Since the satellites revolve around Saturn counterclockwise, a satellite moving toward the *left* (west) will be *above* (south of) Saturn in the diagram. Hence the monentic right-below, left-above.

Iapetus is also considered a bright satellite of Saturn. Its magnitude varies between 10.1 (western elongation) and 11.9 (eastern elongation). Below is a table of times for four configurations of Iapetus and Saturn throughout the year. Iapetus-Saturn distances for conjunctions and maximum elongations will be nearly 2.9 times those for Titan distance for the same configuration. This is only an approximation since Iapetus' orbit has a moderate eccentricity (0.028) and is tilted 15 degrees to the plane of the Saturn's rings and the other bright satellite orbits. Iapetus' orbital period is 79.33 days so there is about 20 days between elongations and conjunctions. This can be used to estimate its position at times other than those listed below.

SATURN-IAPETUS CONFIGURATIONS 1989 (UT)

<u>Eastern Elong.</u>	<u>Inferior Conj.</u>	Western Elong.	<u>Superior Conj.</u>
Jan. 5 17.7h	Jan. 25 8.0h	Feb. 15 9.4h	Mar. 8 6.4h
Mar. 27 13.2h	Apr. 15 20.6h	May 611.0h	May 26 18.1h
June 14 13.9h	July 3 11.0h	July 23 17.2h	Aug. 12 23.9h
Aug. 31 23.7h	Sept.20 2.5h	Oct. 10 19.4h	Oct. 31 15.1h
Nov. 20 1.8h	Dec. 9 16.5h	Dec. 30 20.7h	-

EPHEMERIDES FOR THE BRIGHTEST ASTEROIDS 1989

PROVIDED BY BRIAN G. MARSDEN

The following are the ephemerides for the brightest asteroids in 1989: those asteroids which will be brighter than visual magnitude 10.0 and more than 90° from the Sun. The tables give the number and name of the asteroid, the date at 0^h ET (which differs only slightly from UT), the right ascension and declination for the epoch 1950 and the visual magnitude (which is normally about 0^m.7 *brighter* than the photographic magnitude). These data were derived from current osculating elements, and were generously calculated and provided by Dr. Brian G. Marsden of the Smithsonian Astrophysical Observatory.

Readers can make charts for the asteroids listed on pages 152 and 153 by using the ephemerides provided and an appropriate star atlas. Remember to allow for precession if your atlas does not use the same epoch as the tables: 1950.0 (See page 19).

The chart on the next page shows the path of **Vesta** as it moves through its retrograde loop against the star clouds of northern Sagittarius. This will be a fascinating section of sky to watch during the spring and summer of 1989 for, as shown on the chart, during this period Saturn, Uranus and Neptune are also retrograding in this region. Charts showing the paths of these three planets during the *entire* year appear earlier in this Handbook and, for Neptune, the other chart must be used to identify this faint planet.

Tick marks along Vesta's path locate its position at 10-day intervals, beginning with April 7 (A7). Tick marks along the paths of Saturn and Uranus locate their positions at the beginnings of the months April through September (A, M, J, ...). For planetary symbols see page 10. The chart magnitude limit is 8.0 and the coordinates are for 2000.0.

In early April, Vesta is near magnitude 7.0. It brightens to magnitude 6.0 by late May, and to 5.3 when at opposition on June 26, 1.14 AU from Earth. By late July Vesta has faded to 6.0, and reaches 7.0 by mid-September.

During June and much of July, Uranus (magnitude 5.6) and Vesta will be of nearly equal brightness and should both be visible to the unaided eye. However, the low declination (for observers at mid-northern latitudes) and the Milky Way backdrop will hamper attempts to see these bodies without optical aid. It is only at intervals of several years that Vesta is at opposition when it is also near perihelion. June oppositions, as in 1989, are of this type, and at such times Vesta becomes the only asteroid that can ever be seen with the unaided eye. Although Vesta is third in order of diameter amongst the asteroids (538 km for Vesta, versus 1003 km for Ceres and 608 km for Pallas), it has an unusually high albedo (~23%) and a smaller orbit than the other large asteroids. Thus when at a perihelic opposition Vesta is the brightest asteroid. (RLB)

P

			1	1) Ceres		(6) Hebe
	Date Oh E. Oct. Nov. Dec.	T. 11 21 31 20 30 10 20 30	R.A. (1950) 6 06"1 6 13.1 6 17.9 6 20.1 6 19.5 6 15.9 6 09.5 6 09.5 6 00.7 5 50.4 5 40.0	Dec.(1950) +21°20' +21 20' +22 02 +22 02 +23 02 +23 39 +24 20 +25 02 +25 43 +26 18	Mag. 8.5 8.2 7.8 7.3 6.7	Date 0h E.T. R.A. (1950) Dec. (1950) Mag. Jan. 4 $8^{h}42^{m}1 + 10^{\circ}09'$ 14 $8 33.4 + 11 33 8.9$ 24 $8 23.5 + 13 08$ Feb. 3 $8 13.7 + 14 48 9.0$ 13 $8 05.2 + 16 22$ 23 7 59.0 + 17 46 9.5 Mar. 5 7 55.6 + 18 57 15 7 55.2 + 19 53 10.0 25 7 57.7 + 20 34
	Date Oh E. Dec. July Aug. Sept. Oct.	T. 25 13 23 12 22 11 21	(: R.A.(1950) 21 ^h 00 ^m 6 0 54.8 1 00.5 1 04.5 1 06.8 1 07.0 1 05.1 1 05.1 0 10.1 0 55.2 0 48.1 0 03	2) Pallas Dec.(1950) - 3°15' + 4 03 + 3 19 + 2 15 + 0 49 - 1 00 - 5 37 - 8 16 -10 56 -13 25	Mag. 10.5 9.7 9.4 9.0 8.6 8.2	$ \begin{array}{c} (7) \ \mbox{Iris} \\ \mbox{Date} \\ \mbox{Oh E.T. R.A.} (1950) \ \mbox{Dec.} (1950) \ \mbox{Mag.} \\ \mbox{Jan. 4} \ \mbox{9} \ \mbox{51"6} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
	Nov. Dec.	21 31 10 20 30 10 20 30	0 40.3 0 32.9 0 26.7 0 22.3 0 20.2 0 20.4 0 23.1 0 27.9 0 34.8	-13 23 -15 34 -17 15 -18 26 -19 28 -19 24 -19 17 -18 52 -18 11	8.5 8.8 9.1 9.3	$(8) \ \ Flora \\ Date \\ 0h \ E.T. \ R.A.(1950) \ Dec.(1950) \ Mag. \\ Feb. 3 \ 11^h 33^m 9 \ +10^\circ 03' \ 9.6 \\ 13 \ 11 \ 27.8 \ +11 \ 21 \\ 23 \ 11 \ 19.3 \ +12 \ 46 \ 9.4 \\ Mar. 5 \ 11 \ 09.4 \ +14 \ 09 \\ 15 \ 10 \ 59.5 \ +15 \ 20 \ 9.5 \\ 0f \ 10 \ 50 \ 7 \ +15 \ 20 \ 9.5 \\ 0f \ 11 \ 050 \ 7 \ +15 \ 10 \ 9.5 \\ 0f \ 11 \ 0f \ 11 \ 0f \ 11 \ 0f \ 11 \\ 0f \ 11 \ 0f \ 0f$
Ρ	Date Oh E. Jan. Feb. Mar. Apr.	T.4 14 23 13 25 15 14 24 24	() R.A. (1950) 10 ^h 32 ^m 5 10 31.1 10 27.0 10 22.7 10 12.8 10 04.4 9 56.6 9 50.3 9 46.3 9 44.7 9 45.7 9 49.0 9 54.3	3) Juno Dec.(1950) - 0°41' - 0 17 + 0 31 + 1 43 + 3 14 + 4 55 + 6 37 + 8 13 + 9 34 +10 38 +11 24 +11 52 +12 04	Mag. 9.1 8.8 8.6 9.1 9.5 10.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	May Date Oh E Apr. May June July Aug. Sept. Oct.	4 .T. 4 14 24 14 24 3 13 23 12 22 12 22 11 21 11	<pre>9 54.3 (R.A.(1950) 18^h18^m5 18 29.0 18 36.9 18 42.0 18 43.9 18 42.4 18 37.6 18 29.9 18 20.3 18 10.1 18 00.9 17 50.2 17 49.9 17 53.1 17 59.4 18 08.5 18 19.9 18 33.4 18 48.5</pre>	+12 04 +12 04 4) Vesta Dec.(1950) -18 09 -18 09 -18 15 -18 29 -18 52 -19 25 -20 08 -20 55 -21 44 -22 32 -23 16 -23 16 -23 55 -24 30 -25 01 -25 01 -25 07 -26 05	Mag. 7.0 6.7 6.2 5.8 5.3 5.7 6.2 6.6 7.0 7.3	Date Oh E.T. R.A.(1950) Dec.(1950) Mag. Apr. 24 17 ^h 18 ^m 4 -26°24' 9.5 May 4 17 15.9 -26 21 14 17 10.9 -26 11 9.5 24 17 03.8 -25 56 June 3 16 55.6 -25 34 9.0 13 16 47.1 -25 07 23 16 39.4 -24 38 9.4 July 3 16 33.3 -24 09 13 16 29.5 -23 24 9.8 23 16 28.2 -23 24

	(11) Parthenop	e		(29)	Amphitrite
Date			Date	D D (1050) D-	- (1050) -
UN E.T.	R.A.(1950) Dec.(1950) 23h50 ^m 4 _ 5°12'	Mag.	On E.T.	R.A.(1950) De 14h57m1	-22°58′ 10 0
12	23 49.1 - 558	5.5	14	14 49.9	-22 57
22	23 45.0 - 7 00	9.5	24	14 40.9	-22 44 9.6
Sept. 1	23 38.6 - 8 14	0.1	May 4	14 31.0	-22 18
21	23 30.0 - 9 30 23 22 3 -10 39	9.1	24	14 21.4	-21 45 9.0
Oct. 1	23 14.9 -11 32	9.5	June 3	14 06.9	-20 33 10.0
11	23 09.5 -12 04		13	14 03.2	-20 05
21		10.0		(20)	Urania
31	23 00.8 -12 02		Date	(30)	orania
	(12) Victoria		Oh E.T.	R.A.(1950) De	c.(1950) Mag.
Date	R R (1050) Rec (1050)	M	Oct. 1	10572	+10° 53′ 9.8
July 13	$22^{h}31^{m}0$ + 6° 37'	Mag. 9.7	21	0 47.2	+10 06
23	22 31.5 + 7 52	2.1	31	0 39.9	+ 8 22
Aug. 2	22 28.8 + 8 37	9.3			
12	22 23.3 + 8 45	• •	Data	(40)	Harmonia
Sept. 1	22 08.3 + 7 14	0.9	Oh E.T.	R.A.(1950) De	c.(1950) Mag.
11	22 01.7 + 5 49	9.0	Mar. 15	1200200	+ 7° 41′ 10.0
21	21 57.5 + 4 15		25	11 52.4	+ 8 45
11	21 56.5 + 2 44 21 58.7 + 1 26	9.6		(51)	Nemausa
			Date	(31)	incind a bu
	(15) Eunomia		Oh E.T.	R.A.(1950) De	c.(1950) Mag.
Date Ob F T	R & (1950) Dec (1950)	Mag	Mar. 15	11" 38"6	$+1^{\circ}49'$ 9.6
June 3	$22^{h}18^{m}3 - 6^{\circ}09'$	9.9	25	11 30.8	T J 4J
13	22 25.0 - 4 33			(79)	Eurynome
23	22 29.7 - 3 02	9.5	Date	//	(1050)
JULY 3	$22 \ 32.2 \ -1 \ 3/$	0 1	UN E.T. Sept 11	R.A.(1950) De	C.(1950) Mag. + 1°07' 10 0
23	22 29.3 + 0 43	J.1	21	23 08.6	- 0 13
Aug. 2	22 23.9 + 1 34	8.6			
12		0 1	Date	(89)	Julia
Sept. 1	21 57.1 + 2 22	. 0.1	Oh E.T.	R.A.(1950) De	c.(1950) Mag.
11	21 48.2 + 2 07	8.2	Nov. 30	5 ^h 24 ^m 5	+45°08′ 10.0
21	$21 \ 41.2 + 1 \ 45$		Dec. 10	5 10.9	+44 24
UCE. 1	21 37.0 + 1 22 21 35 9 + 1 02	8.6	20	4 57.9	+43 10 10.0
21	21 38.0 + 0 51	9.0	50	4 4/11	+41 55
31	21 43.0 + 0 50			(115)	Thyra
Nov. 10		9.3	Date	D. N. (1050) D-	- (1050) No
20	22 00.7 + 1 27		Nov. 10	4h 20m6	(1950) mag. + $42^{\circ}53'$ 9.8
	(16) Psyche		20	4 10.0	+42 29
Date	(1050) - (1050)		30	3 58.4	+41 25 9.6
Un E.T.	R.A.(1950) Dec.(1950) 21h09m5 _14°24'	Mag.	Dec. 10	3 48.1	+39 49
23	21 03.0 -15 00	10.0	30	3 38.5	+35 54
Aug. 2	20 55.1 -15 43	9.5			
12	$20 \ 47.0 \ -16 \ 27$		Date	(192)	Nausikaa
Sept. 1	20 33.5 -17 45	7.0	Oh E.T.	R.A. (1950) De	c.(1950) Mag
•			Nov. 10	5 ^h 09 ^m 8	+35°31′ 9.7
Date	(20) Massalia		20	5 00.7	+35 53
Oh E.T.	R.A.(1950) Dec.(1950)	Mag.	30 Dec. 10	4 48.8	+35 50 9.3
May 14	15h05m0 -16°55'	9.8	20	4 26.0	+34 34 9.6
24	14 55.7 -16 13		30	4 18.8	+33 35

PLANETARY APPULSES AND OCCULTATIONS

By ROBERT L. MILLIS

Planets, satellites, asteroids, and comets, as they move across the sky, will on occasion pass near an observer's line of sight to a distant star. Such close passes are called appulses. More rarely, the moving object's trajectory will carry it directly between the observer and a star, thereby producing an occultation. Astronomers have learned much about various solar system bodies by carefully monitoring the changing apparent brightness of stars during the immersion and emersion phases of occultations. If the occulting body has an atmosphere, the star's disappearance and reappearance will occur more gradually than otherwise would be the case. If a planet has rings or other debris in its environs, the extent and degree of transparency of this material can be precisely mapped. Indeed, the rings of Uranus were discovered in this way. Additionally, if an occultation can be observed at several appropriately distributed sites, it is often possible to determine the size and shape of the occulting body far more accurately than by other Earth-based techniques.

Amateur astronomers can sometimes contribute importantly to occultation observing campaigns. This is particularly true for asteroid occultations where the strip across Earth from which an event is observable is often very narrow and uncertain in location. By recording the times of the star's disappearance and reappearance as seen from several sites, the asteroid's profile can be directly determined. Often timings of adequate accuracy can be made by visual observers using modest telescopes. The table two pages ahead gives the circumstances for seven asteroid occultations predicted to be observable from North America or Hawaii in 1989. The predictions were taken from a paper by L. H. Wasserman, E. Bowell, and R. L. Millis at Lowell Observatory (*Astronomical Journal 94*, 1364, 1987).

In addition to the asteroid occultation predictions, data are given in the table for an occultation of 28 Sgr by Saturn. According to predictions by Doug Mink at the Center for Astrophysics, the star will be covered by the outer edge of the A Ring at 6:01 UT, disappear behind the ball of the planet at 6:50, re-emerge at 8:29, and be clear of the A Ring by 9:31. The occultation of a star as bright as 28 Sgr by Saturn and the Rings is quite unusual and offers an opportunity to study the astonishingly complex structure of the Rings first revealed by Voyagers 1 and 2. However, because of the high surface brightness of the Rings, the occultation will be observationally very challenging at visual wavelengths. The best results are likely to be obtained in the infrared, where water ice absorption bands reduce the brightness of the Rings.

P

The occultations by Bamberga, Kleopatra, and Brixia are attractive opportunities for individuals wishing to observe an asteroid occultation. In all three events, the star to be occulted is bright relative to the asteroid and, as a consequence, the disappearance and reappearance of the star will be easily detectable visually. Moreover, the occultation by Kleopatra is likely to be the target of intensive observational effort by professional astronomers. Radar observations suggest that this asteroid has an unusual shape, being either extremely elongated or, perhaps, a near-contact binary. If sufficient observational coverage of the occultation can be arranged, the shape of Kleopatra can be determined. The shape of Bamberga is also of interest, because observations, however, were not conclusive, so observations of the upcoming Bamberga occultation are desired. An occultation by Brixia has not yet been well observed.

The successive columns in the table list (1) the date; (2) the name of the occulting body; (3) the apparent magnitude of the planet or asteroid; (4) the catalog number of the star; (5) the apparent magnitude of the star; (6) the right ascension and (7) declination of the star; (8) the expected fractional drop in the combined brightness of the star and occulting body at immersion; (9) the predicted maximum duration of the occultation; and (10) the approximate region from which the occultation is predicted to be observable. Be advised that the exact region of visibility of an occultation often cannot be determined until a few days prior to the event.

When observing an occultation, it is important that an observer know his location to within a fraction of a kilometre. Geographic longitude and latitude as well as the altitude of the site can then be determined from a high-quality topographic map. If observations are to be of maximum value, the times of immersion and emersion must be determined as accurately as possible—certainly to better than 0.5 second. Photoelectric equipment with high-speed digital data recording systems are best suited for this work, but visual observers equipped with tape recorders and shortwave time signal receivers can contribute usefully. Even simple measurements of the duration of an occultation made with an ordinary stopwatch can be of value.

Occultation observations are coordinated in North America by the International Occultation Timing Association (IOTA). This organization publishes a useful newsletter and maintains "hot-lines" for disseminating last-minute prediction updates. (Within a few days of each event, improved predictions may be obtained from recorded telephone messages at 312-259-2376 (Chicago, Ill.), 713-488-6871 (Houston, Tex.), or 301-495-9062 (Silver Spring, Md.)). Individuals interested in joining IOTA should see p. 96 of this Handbook. Other sources of occultation information include the *Solar System Photometry Handbook* (published by Willmann-Bell, Inc. 1983), *Sky and Telescope* (particularly the January issue), and occasional papers in the *Astronomical Journal*, *Icarus*, and other scientific journals.

Editor's Note: Observations of planetary occultations, *including* negative observations, should be sent to: James Stamm, 11781 N. Joi Drive, Tucson, AZ 85737, U.S.A., for publication by the IOTA. When reporting timings describe your geographic longitude, latitude, and altitude (to the nearest second of arc and 20 m, respectively), the telescope used, and the timing method (including reaction time corrections, if applicable).

Approximate Area of Visibility	Mexico, Caribbean	SE to NW U.S.	Western Hemisphere	NW U.S., Central Canada	NW Canada	Eastern Canada	W U.S., W Mexico	Central U.S., E Canada	
Max Dur. (sec)	23	15	÷	24	13	22	196	æ	
ΔI	0.35*	0.96*	÷	0.88*	1.00^{*}	0.97	0.07	0.83	
δ (50)	$+02^{\circ}09'31''$	-021658	-222647	+00.3200	+074211	-130630	+230708	+210605	
α (19	10 ^h 18 ^m 21.1	11 15 16.2	18 43 19.8	195632.0	$01 \ 25 \ 45.7$	$01 \ 09 \ 03.0$	$06\ 19\ 13.9$	06 28 35.6	
m, (mag)	10.2	9.2	5.8	9.8	7.2	7.2	10.5	10.9	
Star	AG+02°1370	AG-02°0652	28 Sgr	AG+00°2438	AG+07°0162	SAO 147658	LJ 00631	LJ 01028	
ma (mag)	9.5	12.5	÷	11.9	13.6	10.9	7.8	12.6	
Occulting Body	3 Juno	324 Bamberga	Saturn	216 Kleopatra	34 Circe	521 Brixia	1 Ceres	895 Helio	
U.T. Date 1989	6.10 Feb	18.17 Mar	3.32 Jul	14.32 Aug	$16.45 \mathrm{Sep}$	23.10 Oct	11.46 Nov	2.29 Dec	

١.

*Magnitudes pertain to blue spectral region.

METEORS, COMETS, AND DUST

METEORS, FIREBALLS, AND METEORITES

BY PETER M. MILLMAN

Meteoroids are small solid particles moving in orbits about the Sun. On entering Earth's atmosphere they become luminous and appear as meteors or fireballs, and in rare cases, if large enough to avoid complete fragmentation and vaporization, they may fall to Earth as meteorites.

Meteors are visible on any night of the year. At certain times of the year Earth encounters larger numbers of meteoroids all moving together along the same orbit. Such a group is known as a meteor stream and the visible phenomenon is called a meteor shower. The orbits followed by these meteor streams are very similar to those of short-period comets, and in many cases can be identified with the orbits of specific comets.

The radiant is the position among the stars from which the meteors of a given shower seem to radiate. This is an effect of perspective commonly observed for any group of parallel lines. Some showers, notably the Quadrantids, Perseids, and Geminids, are very regular in their return each year and do not vary greatly in the numbers of meteors seen at the time of maximum. Other showers, like the Leonids, are very unpredictable and may arrive in great numbers or fail to appear at all in any given year. The δ Aquarids and the Taurids are spread out over a fairly extended period of time without a sharp maximum.

For more information concerning meteor showers, see the paper by A. F. Cook in "Evolutionary and Physical Properties of Meteoroids", NASA SP-319, pp. 183–191, 1973.

The light of meteors is produced by a mixture of atoms and molecules, originating from both the meteoroid and Earth's atmosphere. i.e. The light of a meteor is primarily from a glowing gas, and not from the solid meteoroid itself. The collision, at a very high speed, of the material from the meteoroid with Earth's atmosphere

	Showe	r Maxi	num		Rac	liant		Single		Normal
Shower	Date	U.T.	Moon	Posi at M R.A.	tion lax. Dec.	D Mo R.A.	aily otion Dec.	Observer Hourly Rate	Speed of Encounter with Earth	to $\frac{1}{4}$ Strength of Max.
	(1989)	h		h m	0	m	٥		km/s	days
Quadrantids	Jan. 3	10	NM	15 28	+50			40	41	1.1
Lyrids	Apr. 22	09	FM	18 16	+34	+4.4	0.0	15	48	2
η Aquarids	May 4	12	NM	22 24	00	+3.6	+0.4	20	65	3
S. & Aquarids	July 28	15	LQ	22 36	-17	+3.4	+0.17	20	41	7
Perseids	Aug. 12	06	FQ	03 04	+58	+5.4	+0.12	50	60	4.6
Orionids	Oct. 21	10	LQ	06 20	+15	+4.9	+0.13	25	66	2
S. Taurids	Nov. 2	11	NM	03 32	+14	+2.7	+0.13	15	28	_
Leonids	Nov. 17	16	LQ	10 08	+22	+2.8	-0.42	15	71	
Geminids	Dec. 14	06	FM	07 32	+32	+4.2	-0.07	50	35	2.6
Ursids	Dec. 22 (1990)	12	LQ	14 28	+76	-		15	34	2
Quadrantids	Jan. 3	16	FQ	15 28	+50			40	41	1.1

MAJOR VISUAL METEOR SHOWERS FOR 1989

excites the involved atoms and molecules to shine, each with its own characteristic wavelength (colour). In addition to the light of oxygen and nitrogen, prominent in the luminosity of meteors, we find the orange-yellow of sodium, the brilliant green of magnesium, and various other wavelengths of light produced by iron, calcium, and some dozen, less-common elements. For a general survey of the light of meteors see *Smithsonian Contributions to Astrophysics*, 7, pp. 119–127, 1963.

An observer located away from city lights, and with perfect sky conditions on a moonless night, will see an overall average of seven sporadic meteors per hour apart from the shower meteors. These sporadic meteors have been included in the hourly rates listed in the table. Slight haze or nearby lighting will greatly reduce the number of meteors seen. More meteors appear in the early morning hours than in the evening, and more during the last half of the year than during the first half.

When a meteor has a luminosity greater than the brightest stars and planets it is generally termed a fireball. The visible trails of most meteors occur high in the atmosphere from 60 to 110 kilometres altitude. Only the rare, very bright fireballs survive down to the lower levels of Earth's atmosphere, and, in general, these are not associated with meteor showers. The occurrence of such an object should be reported immediately to the nearest astronomical group or other organization concerned with the collection of such information. Where no local organization exists, in Canada reports should be sent to Meteor Centre, Herzberg Institute of Astrophysics, National Research Council of Canada, Ottawa, Ontario, K1A 0R6. In the United States, fireball reports should be mailed to the Scientific Event Alert Network (SEAN), Mail Stop 129, Natural History Building, Smithsonian Institution, Washington, DC 20560. Special "Fireball Report" forms and related instructions are available from the Meteor Centre without charge. If sounds are heard accompanying a bright fireball there is a possibility that a meteorite may have fallen. Astronomers must rely on observations made by the general public to track down such an object.

Editor's Note: For more information on meteors and their observation, an excellent reference is *Observe Meteors* by David Levy and Stephen Edberg, a guidebook of the Association of Lunar and Planetary Observers. It was published in 1986 by the Astronomical League, Science Service Building, 1719 N. Street, NW, Washington, DC, 20036, U.S.A.

Shower	Dates	Date of Max.	Speed
			km/s
δ Leonids	Feb. 5-Mar. 19	Feb. 26	23
σ Leonids	Mar. 21-May 13	Apr. 17	20
τ Herculids	May 19-June 14	June 3	15
N. δ Aquarids	July 14-Aug. 25	Aug. 12	42
α Capricornids	July 15-Aug. 10	July 30	23
S. i Âquarids	July 15-Aug. 25	Aug. 5	34
N. L Aquarids	July 15-Sept. 20	Aug. 20	31
к Cygnids	Aug. 9-Oct. 6	Aug. 18	25
S. Piscids	Aug. 31-Nov. 2	Sept. 20	26
N. Piscids	Sept. 25-Oct. 19	Oct. 12	29
N. Taurids	Sept. 19-Dec. 1	Nov. 13	29
Annual Andromedids	Sept. 25-Nov. 12	Oct. 3	18-23
Coma Berenicids	Dec. 12-Jan. 23	_	65
		1	

A SELECTION OF MINOR VISUAL METEOR SHOWERS

NORTH AMERICAN METEORITE IMPACT SITES

BY P. BLYTH ROBERTSON

The realization that our Earth is truly part of the solar system, and not a planet in isolation, has been dramatically demonstrated by the past two decades of space exploration. Bodies such as Phobos, Callisto, Mimas, which were once solely part of the astronomer's realm, are now familiar terrain to planetary geologists, and an insight into the age and history of their surfaces can be derived from a knowledge of, and comparison with geological processes on Earth. In particular, as the only common feature apparent on all bodies from Mercury outward to the moons of Uranus is the abundance of meteorite craters, studies of the terrestrial equivalents may lead to better understanding of the evolution of planetary crusts.

Although all the terrestrial planets are heavily cratered, the source of the impacting bodies is not the same throughout the solar system, nor has the rate been constant with time. The densely-cratered lunar highlands reveal a period of intense bombardment between 4.6 and 3.9 billion years ago, whereas the crater populations on the younger mare surfaces indicate a subsequent, considerably reduced rate that may have fluctuated somewhat over the past 3 billion years. It is believed that the cratering history of Earth is like that of the Moon, but all vestiges of the early bombardment, and a large percentage of the craters from the later period have been obliterated by various geologic processes on the 'active' Earth. A significant number of the larger, younger craters have been preserved, however, and their ages determined through radiometric age-dating techniques, to permit a calculation of the recent cratering rate. This rate, for the past 120 million years, is 5.4×10^{-15} per square kilometre of Earth per year, for craters 20 kilometres or larger in diameter. In other words, an event of this magnitude may occur every 7.6 million years in North America.

An impact crater results from a combination of excavation of the shattered target rocks and further expansion of the cavity by outward and downward movements of highly fractured material. Craters larger than 4 or 5 km undergo further modification through rebound and uplift of the crater floor, and downward faulting and displacement of large blocks in a broad annulus surrounding the crater. These movements result in a comparatively shallow impact structure whose outer dimension is approximately 40% larger than that of the initial crater.

The magnitude of the impact event is proportional to the kinetic energy of the meteorite, and therefore depends on its size, composition and speed. A 20 km impact structure on Earth would result from an impact yielding the equivalent of approximately 64 000 megatons of TNT, and could be produced by a stony meteorite (density 3.4 g/cm^3), 900 m in diameter, travelling at a typical speed of 20 km/s. Thus the diameter of the impact structure is many times that of the impacting body. (The kinetic energy of a typical meteor is about 100 times the explosive energy of the same mass of TNT.—Ed.)

In impacts, where craters greater than approximately 1.5 km are created, extreme shock pressures and temperatures vaporize and melt the meteorite. It subsequently becomes thoroughly mixed with the melted target rocks and is no longer recognizable in its original form, although chemical traces have been discovered. Of the 39 North American impact structures listed, which account for roughly 40% of the world's recognized total, meteorite fragments are preserved at only 3. The remainder are identified by the presence of characteristic deformation features in the target rocks; features that are uniquely produced by extreme shock pressures generated in nature only by hypervelocity, meteorite impact. In addition to these sites there are twenty or more structures in Canada and the United States whose impact origin seems highly probable, but where distinctive shock deformation has not been found.

In the table, sites accessible by road or boat are marked "A" or "B" respectively and those sites where data have been obtained through diamond-drilling or geophysical surveys are signified by "D" and "G", respectively.

		•	、								- 1
Name	°La	`	Lon		Diam. (km)	Age (×10 ⁶ a)	Surface Expression	Visible Geologic Fe	atures		1
Barringer, Meteor Crater, Ariz.	35	02	Ξ	01	1.2	.05	rimmed polygonal crater	fragments of meteorite, highly shocked sandstone	A	0	5
Bee Bluff, Texas Brent, Ont. Carswell, Sask.	848 8	885	660 820	33.23	2.4 3.8 37	40±10 450±30 485±50	shallow circ. depress n., rim remnants sediment-filled shallow depression discontinuous circular ridge	breccia fracturing shatter cones, breccia	4 4	00	(7,77
Charlevoix, Que. Clearwater Lake East, Que.	56 56	32	070 074	18 07	8 2	360±25 290±20	semi-circular trough, central elevation circular lake	breccia, shatter cones, impact melt sedimentary float	¥	00	() ()
Clearwater Lake West, Que. Crooked Creek, Missouri	356	ы 8 2	074 091	33	32 5.6	290±20 320±80	island ring in circular lake oval area of disturbed rocks, shallow	impact melt	~	۵ ۵	r D
Decaturville, Missouri Deep Bay, Sask.	37 56	22	092 102	59	6 12	<300 100±50	litation depression slight oval depression circular bay	breccia, shatter cones breccia, shatter cones sedimentary float	< -		5
Flynn Creek, Tenn.	36	16	085	37	3.8	360±20	sediment-filled shallow depression with slight central elevation	breccia, shatter cones, disturbed rocks	v	0	(7)
Glover Bluff, Wis. Gow Lake, Sask.	8 86	85 Z 8	80 10 80	283	0.4 5 0.0011	? <250	disturbed dolomite exposed in 3 quarries lake and central island	shatter cones breccia	< <		רז רי
Haviland, Kansas Haughton, NWT	52	รสล	6688	288	20 20	<20 <0.001	excavated depression shallow circular depression	shatter cones, breccia	< <	2	(") ("
Holleford, Ont. Ile Rouleau, Que.	4 S	87 41 78	0/10	8 K	74	<300±100	sediment-filical shallow depression island is central uplift of submerged	sequentary nu shatter cones, breccia	v	- ב	5
Kentland, Ind.	4	45	087	24	13	300	central uplift exposed in quarries,	breccia, shatter cones, disturbed rocks	A		
Lac Couture, Que.	8	8	075	18	80	430	circular lake	breccia float	:		
Lac la Moinerie, Que. Lake St. Martin Man	51	4 26	990 860	88	8 23	400 225±40	lake-filled, partly circular none, buried and eroded	breccia float impact melt	¥	 -	כיכי
Lake Wanapitei, Ont.	4 2	42	080	4 ĉ	8.5	37±2 210+4	lake-filled, partly circular	breccia float imnact melt hreccia	< #		c) c
Manson, Iowa	543	181	888	÷۳:	33	<100	none, central elevation buried to 30 m	none	•••	Ē	Ċ
Middlesboro, Ky. Mistastin Lake, Labr.	88	53 33	88	4 ≋	6 28	300 38±4	circular depression elliptical lake and central island	disturbed rocks breccia, impact melt	¥		
Montagnais Crater, N.S.	42	53	964	13	45?	52±5	none (under water (115 m) and sediments)	none		Ē	c
New Quebec Crater, Que. Nicholson Lake, NWT	61 62	11 40	073 102	6 14	3.2 12.5	<55 <400	rimmed, circular lake irregular lake with islands	raised rim breccia			000
Odessa, Tex.	E	84	102	99	0.17	0.03	sediment-filled depression with very slight rim, 4 others buried and smaller	tragments of meteorite	v	<u>-</u>	5
Pilot Lake, NWT	84	17	Ξē	58	60	0440 000 000 000 000 000 000 000 000 00	circular lake	fracturing, breccia float	A	2	c
Serpent Mound, Ohio	66	88	083	32	6.4	300	circular area of disturbed rock, slight	breccia, shatter cones	×	1	U U
Sierra Madera, Tex.	30	36	102	55	13	100	central hills, annular depression, outer	breccia, shatter cones	۷	D	Ċ
Slate Islands, Ont.	48	4	087	8	30	350	islands are central uplift of submerged	shatter cones, breccia	đ		Ċ
Steen River, Alta. Sudbury, Ont.	<u>8</u> 4	31	117 081	38 11	25 140	95±7 1840±150	none, buried to 200 metres elliptical basin	none breccia, impact melt,		D	יטמ
Wells Creek, Tenn.	36	23	087	40	14	200±100	basin with cenral hill, inner and	shatter cones breccia, shatter cones	< <	20	50
West Hawk Lake, Man.	49	46	660	11	2.7	100±50	outer annular, valicys and figes circular lake	none	¥	D	Ċ

COMETS IN 1989 By Brian G. Marsden

	Per	ihelion	
Comet	Date	Dist.	Period
		AU	a
Tempel 1 d'Arrest Churyumov-Gerasimenko Pons-Winncecke Gunn Brorsen-Metcalf Lovas 1 du Toit-Neujmin-Delporte Schwassmann-Wachmann 1 Gehrels 2 Clark	Jan. 4 Feb. 4 June 18 Aug. 19 Sept. 24 Sept. 27 Oct. 10 Oct. 18 Oct. 26 Nov. 3 Nov. 28	1.50 1.29 1.30 1.26 2.47 0.48 1.68 1.72 5.77 2.35 1.56	5.5 6.4 6.6 6.8 70.6 9.1 6.4 14.9 5.5

The following periodic comets are expected at perihelion during 1989:

By far the brightest periodic comet to appear during 1989 should be P/Brorsen-Metcalf, although the positions in the ephemeris below are somewhat uncertain. The returns of P/Lovas 1 and P/Gehrels 2 are also rather favourable, and the former is making its first predicted appearance. P/Pons-Winnecke is moderately well placed for observation in 1989, but the returns of P/Tempel 1, P/Churyumov-Gerasimenko and P/du Toit-Neujmin-Delporte are not particularly good. P/d'Arrest and P/Clark are rather unfavourably placed for observation, but observable every year but both happen to be at perihelion in 1989; the former comet is known for its erratic outbursts in brightness.

COMET BRORSEN-METCALF

0h E.T.	R.A.(1950)	Dec.(1950)	Mag.
Aug. 2	0 ^h 56 ^m 8	+25°01′	10.4
- 7	1 28.5	+32 11	
12	2 16.0	+40 31	9.0
17	3 29.7	+48 31	
22	5 12.2	+52 50	7.7
27	6 55.9	+51 12	
Sept. 1	8 11.8	+45 41	6.8
6	9 01.3	+39 13	
11	9 34.9	+33 01	5.9
16	10 00.1	+27 18	
21	10 21.2	+21 56	5.2
26	10 40.8	+16 45	
Oct. 1	10 59.8	+11 45	5.5
6	11 18.5	+ 7 02	
11	11 36.5	+ 2 42	7.1
16	11 53.6	- 1 13	
21	12 09.7	- 4 43	8.9
26	12 24.7	- 7 51	
31	12 38.7	-10 40	10.4

OBSERVING COMETS By David H. Levy

Comets are interesting and fun to observe because they are so individual. Every comet is different from every other comet, and each comet differs from itself as the nights of its apparition pass. Recent comets like P/Halley, Bradfield 1987s, and Liller 1988a, changed almost nightly with the flaring of dust jets.

When a comet is announced, it is assigned a letter designation based on the order of discovery, or "recovery" in the case of a predicted returning comet, in a particular year. If the comet is known to be periodic and with a period of less than 200 years, the prefix P/ precedes the name; thus P/Machholz 1986e was the 5th comet to be found in the year 1986 and it is known to be a "short-period" comet. The letter designation is provisional, but important since it is used when most of the observations of a comet are being made. A few years later when the data on a given year appear to be complete, the comets are assigned permanent designations using Roman numerals based on the order in which they passed closest to the Sun. Thus Comet Bennett 1969i, the 9th comet to be found in 1969, has a permanent designation 1970 II since it was the 2nd comet known to pass perihelion in the following year.

Observationally, comets are very much like deep sky objects. Even in large telescopes an observer can confuse a comet with a galaxy or a diffuse planetary nebula. Comets near a telescope's limit are virtually impossible to spot without an accurate position extracted from a detailed atlas like *Uranometria* or *Stellarum*. It is difficult to define a telescope's limiting magnitude for comets, because the more diffuse a comet is, the more difficult it is to find. Typically, under a dark sky a 15 cm telescope will catch a 9th magnitude comet, a 20 cm telescope will see 10th, and a 40 cm should have no trouble with a 13th magnitude comet.

Magnitude Estimates

The brightness of the coma can be estimated using a variety of methods, the most common of which is the "In-Out" method designed by Sidgwick:

- 1. Study the coma until you become familiar with its "average" brightness, an easy process if the coma is of uniform brightness but rather difficult if there is a strong nuclear condensation.
- 2. Using a variable star chart or some source on which star magnitudes are listed, find a comparison star at approximately the same altitude as the comet.
- 3. Defocus this star to the size of the in-focus coma.
- 4. Compare the star's out-of-focus brightness with that of the coma.
- 5. Repeat the last three steps with a second star, or more if needed, until an interpolation can be made.

Coma Size

A comet magnitude estimate becomes more useful if an estimate of the coma diameter is made at the same time. An observer seeing a 3 minute of arc coma, for example, will estimate much brighter than another observer who sees only a 1 arcminute coma at the same time. The simplest way of estimating coma size is to draw the coma with the embedded and surrounding field stars and then compare the drawing to an atlas, using its scale to determine the size.

Degree of Condensation

A nightly measurement of a comet's degree of condensation is a good way of studying its changing behavior. A comet undergoing an outburst of dust from its nucleus might begin its display by showing almost overnight the development of an increased condensation. Use an integer scale from 0 to 9, where 0 means a diffuse coma with absolutely uniform brightness, 3 means a diffuse coma with gradually increasing brightness toward the centre, 6 involves a definite central condensation, and 9 refers to an almost stellar image.

Tail

Because of the changing Earth-Sun-comet geometry, as well as because of changing activity in a comet, the length and position angle of a tail should be measured. A rough way to measure the length of tail is to sketch it and compare with a detailed atlas, as with the coma. Observers can also measure the position angle using an atlas and a protractor.

Comet Hunting

To ensure a continuing supply of new comets, an ambitious observer really needs to keep only three things in mind:

- 1. Keep the covers off the telescope and the eye affixed to the eyepiece. The more time spent hunting for comets, the greater the chance for a discovery.
- 2. Know what a comet looks like. This means observing every known comet you can find, following the returning periodic comets, and keeping in touch with new discoveries.
- Know what a comet doesn't look like. Observe all the Messiers and as many other deep sky objects as the telescope can locate. Know the territory and what to avoid; M78 and the Cone Nebula exemplify what Leslie Peltier called "comet masqueraders".

Search Procedure

Although comets may appear at any time, they are usually found within 90 degrees of the Sun. A good area to search is in the evening western sky during the week after full moon, and in the morning eastern sky before dawn around new moon. Although comet hunters differ in their approaches to searching, one way is to use an altazimuth mount and make horizontal sweeps. In the western sky, begin near the end of twilight at the horizon, sweep across, then return to the point of origin, move upward about half a field of view and sweep again, etc. In the morning reverse the process.

If you are sure you have discovered a comet, follow the procedure on page 6. For more information on comet observing and hunting, read *Observe Comets* by Stephen J. Edberg and David H. Levy (Astronomical League, Washington, D.C., 1985).

Editor's Note: In 1980 David Levy was awarded the Chant Medal of The Royal Astronomical Society of Canada in recognition of his many contributions to observations and education in astronomy. More recently he was the co-discoverer of Comet Levy-Rudenko 1984t, and the discoverer of Comet Levy 1987a, Comet Levy 1987y, and Comet Levy 1988e. In 1988, asteroid #3673 was named Levy in his honour, making him the first Canadian amateur astronomer to be so recognized.

INTERPLANETARY DUST

Outside of the astronomical community it is not generally realized that the inner solar system contains a vast cloud of dust. The particles in this cloud are concentrated near the plane of the ecliptic and toward the Sun, their spatial particle density in the ecliptic falling off somewhat more rapidly than the reciprocal of their distance from the Sun. Measurements from spacecraft indicate that the cloud extends well beyond the orbit of Mars, but that it is negligible in the vicinity of Jupiter's orbit and beyond. In 1983, *IRAS*, the pioneering Infrared Astronomical Satellite, discovered that there is an extra concentration of dust in the asteroid region, in the form of a ring or torus centred on the Sun. Aside from this overall structure, the cloud is quite uniform both spatially and temporally.

The particles composing the cloud have a continuum of sizes, from pebble-sized clumps down to specks with diameters comparable to the wavelength of visible light and smaller. The smaller particles are the more numerous, although the mass distribution appears to peak near 10^{-8} kg, corresponding to a particle diameter of a few tenths of a millimetre. The total mass of the cloud is small, amounting to perhaps 10^{-14} of the mass of the solar system. It is as if the moons of Mars had been pulverized and spread throughout the inner solar system.

Like the planetary system, the interplanetary dust cloud is not static. Its particles generally move in orbits about the Sun. In addition, the particles undergo continual fragmentation due to collisions, sputtering associated with bombardment by the solar wind, electrostatic bursting, and sublimation. This progression toward smaller and smaller sizes is of crucial significance for the cloud, since particles with diameters appreciably less than a tenth of a millimetre have a sufficiently large surface-to-volume ratio that the pressure of the Sun's radiation has a significant effect upon their motion. Their orbits become non-Keplerian and many particles are lost as they spiral inward toward the Sun (the Poynting–Robertson effect). During a total solar eclipse in 1983, instruments carried by a balloon detected a ring-like concentration of dust only a couple of solar diameters from the Sun. Its inner edge apparently marks the point at which the Sun's heat vaporizes the infalling particles. The resulting tiny gas molecules, like the smallest particles of dust, are blown out of the solar system by the dominant radiation pressure and interactions with the solar wind.

Because of the above-mentioned influences on the sizes and motions of the dust particles, the estimated mean life of a cloud particle is about 10^5 years. Since this is much less than the age of the solar system, it is obvious that the cloud must be in a dynamic equilibrium. Part of the tail of a bright comet is due to significant quantities of dust ejected from its nucleus, and it is generally assumed that comets provide the main supply of new dust to the cloud. Since comet nuclei are believed to consist of the undifferentiated matter from which the solar system formed, the dust of the interplanetary cloud is most likely composed of this same low-density, fragile, primitive material. Collisions of asteroids may also provide dust, but the extent of this possible contribution is unknown.

To an observer on Earth the most noticeable aspect of the dust cloud is meteors – larger particles of the cloud which encounter Earth and vaporize in its upper atmosphere. In addition, sunlight scattered by the dust cloud appears as a faint glow in the vicinity of the ecliptic. This glow is brightest toward the Sun, is due primarily to particles having diameters between a few micrometres and a millimetre, and is referred to as the *zodiacal light*. A slight brightening in the sky opposite the Sun, called the *Gegenschein* (German for "counter-glow"), is due to a phase effect (analogous to the full moon), and also possibly to a concentration of dust at the L3 Lagrangian point of the Earth-Sun system. As astronomical objects, the zodiacal light and Gegenschein are unusual in that they can be seen only with the unaided eye. Both are invisible in binoculars or a telescope.

The Zodiacal Light

Nearly a millenium ago the Persian astronomer-poet Omar Khayyam referred to the zodiacal light in the second quatrain of his *Rubaiyat*. As translated by the poet Edward FitzGerald, we have the haunting lines: "Dreaming when Dawn's Left Hand was in the Sky", and "Before the phantom of False morning died".

When conditions are favorable, the zodiacal light is indeed a mysterious and beautiful sight. It is best seen after the end of evening twilight and before the beginning of morning twilight (see page 66). Because the zodiacal light is brightest nearest the Sun, it is best seen when the ecliptic is at a steep angle relative to the horizon. In the tropics this is always the case and the short duration of twilight is an added advantage. At mid-northern latitudes the optimum geometry occurs in the evening western sky in February and March, and in the morning eastern sky in October. The zodiacal light appears as a huge, softly radiant pyramid of white light with its base near the horizon and its axis centered on the zodiac. In its brightest parts it exceeds the luminance of the central Milky Way.

Despite its brightness, many people have not seen the zodiacal light. As mentioned above, certain times of night and times of year are more favorable than others. In addition, moonlight, haze, or light pollution rule out any chance of seeing this phenomenon. Even with a dark, transparent sky the inexperienced observer may confuse the zodiacal light with twilight and thus ignore it, or he may not notice it because he is expecting a much smaller object.

The Gegenschein

Photometric measurements indicate that the zodiacal light extends all around the zodiac with a shallow minimum in brightness some 120° to 150° from the Sun; nevertheless, this "zodiacal band" or "light bridge" is exceedingly faint and hence rarely visible. However, the slight brightening in the vicinity of the anti-solar point can be seen under the right conditions.

The Gegenschein is very faint. The slightest haze, moonlight, bright nearby stars, planets, or light pollution will hide it completely. Most observers, including experienced ones, have not seen it. It is a ghostly apparition best seen near midnight and, in mid-northern latitudes, in the fall or winter when the anti-solar point is nearest the zenith. To avoid interference from bright stars or the Milky Way, observations should be restricted to the periods late September to early November, and late January to early February when the Gegenschein is in Pisces and Cancer respectively. It appears as a faint yet distinct, somewhat elliptical glow perhaps 10° in diameter. The luminance of the Gegenschein is about 10^{-4} cd/m², some ten orders of magnitude dimmer than the brightest light the human eye can tolerate. (RLB)

STARS

CONSTELLATIONS

Nominative & Pronunciation	Genitive & Pronunciation	Abbr.	Meaning
Andromeda, ăn-drŏm'ē-da	Andromedae, ăn-drŏm'ē-dē'	And	Daughter of Cassiopeia
Antlia, ănt'lĭ-à	Antliae, ănt'lē-ē'	Ant	The Air Pump
Apus, ā'pŭs	Apodis, ăp'ă-dĭs	Aps	Bird of Paradise
Aquarius, a-kwâr'ē-ŭs	Aquarii, a-kwâr'ē-ī'	Agr	The Water-bearer
Aquila, a-kwil'a	Aquilae, a-kwĭl'ē	Aql	The Eagle
Ara, ā'ra	Arae, ā'rē	Ara	The Altar
Aries, âr'ēz	Arietis, a-rī'e-tīs	Ari	The Ram
Auriga, ô-rī'ga	Aurigae, ô-rī'jē	Aur	The Charioteer
Bootes, bō-ō'tēz	Bootis, bō-ō'tĭs	Boo	The Herdsman
Caelum, sē'lum	Caeli, sē'lī	Cae	The Chisel
Camelopardalis	Camelopardalis	Cam	The Giraffe
ka-měl'ō-par'da-lĭs	ka-měl'ō-par'da-lĭs		
Cancer, kăn'sẽr	Cancri, kăn'krē	Cnc	The Crab
Canes Venatici	Canum Venaticorum	CVn	The Hunting Dogs
kā'nēz vē-nāt'ĭ-sī	kā'nŭm vē-năt'ĭkôr'ŭm	C	
Canis Major, kā'nīs mā'jēr	Canis Majoris, kā'nīs ma-jôr'īs	CMa	The Big Dog
Canis Minor, kā'nīs mī'nēr	Canis Minoris ka'nīs mī-nôr'īs	CMi	The Little Dog
Capricornus kăn'rĭ-kôr'nŭs	Capricorni kăp'rĭ-kôr'nī	Can	The Horned Goat
Carina ka-rī'na	Carinae ka-rī'nē	Car	The Keel
Cassioneia kăs'ĭ-ō-nē'và	Cassioneiae kăs'ĭ-ō-nē'vē	Cas	The Oueen
Centaurus săn-târ'ŭs	Centauri săn-târ'i	Cen	The Centaur
Cenheus sā'fā ŭs	Cenhei sē'fē-ī'	Cen	The King
Cetus, se le-us	Ceti së'ti	Cet	The Whale
Chamaeleon kà mā'lā ŭn	Chamaeleontis ka-mā'lā-ŏn'tīs	Cha	The Chameleon
Circinus sur'si nus	Circini sûr'sĭ-nī'	Cir	The Compasses
Columba kā lūm'bė	Columboa kā lūm/bā		The Dove
Coma Baranicas	Come Recences	Com	Berenice's Hair
kā'mi bēr'ā nī'sāz	kā'mā bār'ā nī'sāz	Com	Bereince's Han
Corona Australia	Coronae Australis	CrA	The Southern Crown
kā rā/ná âs trā/līs	kā rā'rā âs trā'līs		The Southern Crown
Corona Porcelia	Coronaa Borealia	CrP	The Northern Crown
kā rā/nā bân/ā ăl/ĭa		Сів	The Northern Crown
KO-TO Ha DOI C-al IS	Ko-to he bot e-at is	C	The Crow
Corvus, kor vus	Corvi, kor vi		The Crow
Crater, Kra ter	Crateris, kra-ter is	Cri	The Cup
Crux, kruks	Crucis, kroo sis	Cru	The Cross
Cygnus, sig nus	Delabiai del fr/az		The Swan
Delphinus, del-fi nus	Delphini, del-fi ni	Del	The Dolphin
Dorado, do-ra do	Doradus, do-ra dus	Dor	The Goldnish
Draco, dra ko	Draconis, dra-ko nis	Dra	The Dragon
Equuleus, e-kwoo le-us	Equulei, e-kwoo'le-i	Equ	I he Little Horse
Eridanus, e-rid'a-nús	Eridani, e-rid'a-ni	En	A River
Fornax, for naks	Fornacis, for-nas is	For	The Furnace
Gemini, jem'i-ni	Geminorum, jem 1-nör úm	Gem	The Twins
Grus, grus	Gruis, groo'is	Gru	The Crane (bird)
Hercules, húr ku-lez	Herculis, hür ku-lis	Her	The Son of Zeus
Horologium, hör'ö-lö'jí-ům	Horologii, hōr'ō-lō'jī-ī	Hor	The Clock
Hydra, hī'dra	Hydrae, hī'drē	Hya	The Water Snake (\mathcal{Q})
Hydrus, hī'drūs	Hydri, hī'drī	Hyi	The Water Snake (\mathcal{S})
Indus, ĭn'dŭs	Indi, ĭn'dī	Ind	The Indian
Lacerta, là-sûr'tà	Lacertae, la-sûr'tē	l Lac	The Lizard

龢

Nominative & Pronunciation	Genitive & Pronunciation	Abbr.	Meaning
Leo, lē'ō	Leonis, lē-ō'nĭs	Leo	The Lion
Leo Minor, lē'ō mī'nēr	Leonis Minoris, lē-ō'nĭs mī-nôr'ĭs	LMi	The Little Lion
Lepus, lē'pŭs	Leporis, lĕp'ôr-ĭs	Lep	The Hare
Libra, lē'bra	Librae, lē'brē	Lib	The Balance
Lupus, loo'pŭs	Lupi, loo'pī	Lup	The Wolf
Lynx, lĭnks	Lyncis, lĭn'sĭs	Lyn	The Lynx
Lyra, lī'ra	Lyrae, lī'rē	Lyr	The Lyre
Mensa, měn'så	Mensae, měn'sē	Men	Table Mountain
Microscopium	Microscopii	Mic	The Microscope
mī'krō-skō'pē-ŭm	mī'krō-skō'pē-ī'		-
Monoceros, mo-nos'er-os	Monocerotis, mo-nos'er-o'tis	Mon	The Unicorn
Musca, mŭs'ka	Muscae, mus'ē	Mus	The Fly
Norma, nôr'mà	Normae, nôr'mē	Nor	The Square
Octans, ŏk'tănz	Octantis, ŏk-tăn'tĭs	Oct	The Octant
Ophiuchus, ö'fē-ū'kŭs	Ophiuchi, ö'fē-ū'kī	Oph	The Serpent-bearer
Orion, ō-rī'ŏn	Orionis, ôr'ē-ō'nĭs	Ori	The Hunter
Pavo, pā'vō	Pavonis, pa-vo'nis	Pav	The Peacock
Pegasus, peg'a-sus	Pegasi, peg'a-sī	Peg	The Winged Horse
Perseus, pûr'sē-ŭs	Persei, pûr'sē-ī'	Per	Rescuer of Andromeda
Phoenix, fē'nīks	Phoenicis, fē-nī'cīs	Phe	The Phoenix
Pictor, pĭk'tēr	Pictoris, pĭk-tôr'ĭs	Pic	The Painter
Pisces, pī'sēz	Piscium, pĭsh'ē-ŭm	Psc	The Fishes
Piscis Austrinus	Piscis Austrini	PsA	The Southern Fish
pī'sis ôs-trī'nŭs	pī'sĭs ôs-trī'nī		
Puppis, pup'is	Puppis, pup'is	Pup	The Stern
Pyxis, pik'sis	Pyxidis, pĭk'sĭ-dĭs	Pvx	The Compass
Reticulum, rē-tĭk'ū-lŭm	Reticuli, rē-tĭk'ū-lī	Ret	The Reticle
Sagitta, så-iĭt'å	Sagittae, sà-iĭt'ē	Sge	The Arrow
Sagittarius, săi'ĭ-târ'ē-ŭs	Sagittarii, săi'ĭ-târ'ē-ī'	Sgr	The Archer
Scorpius, skôr'pē-ŭs	Scorpii, skôr'pē-ī	Sco	The Scorpion
Sculptor, skulp'ter	Sculptoris, skŭlp-tôr'ĭs	Scl	The Sculptor
Scutum, skū'tŭm	Scuti. skoo'tī	Sct	The Shield
Serpens, sûr' pěnz	Serpentis, sûr-pěn'tĭs	Ser	The Serpent
Sextans, seks'tanz	Sextantis, seks-tan'tis	Sex	The Sextant
Taurus, tôr'ŭs	Tauri, tôr'ī	Tau	The Bull
Telescopium těl'a-skô'pē-ŭm	Telescopii, těl'a-skô'pē-ī	Tel	The Telescope
Triangulum, trī-ăng'gū-lum	Trianguli, trī-ăng'gū-lī'	Tri	The Triangle
Triangulum Australe	Trianguli Australis trī-ăng 'gū-lī' As-trā'līs	TrA	The Southern Triangle
Tucana too-kăn'à	Tucanae too-kăn'ē	Tue	The Toucan
Ursa Major úr'sa mā'jēr	Ursae Majoris ûr'sê mâjôr'is	IIMa	The Great Bear
Ursa Minor fir'sa mī'nēr	Ursae Minoris ûr'sê mī-nôr'is	UMi	The Little Rear
Vela vē'la	Velorum vē-lôr'ŭm	Vel	The Sails
Virgo vîr'gō	Virginie vûr'iĭn-ĭe	Vir	The Maiden
Volans võ'länz	Volantis võlan'tis	Vol	The Flying Fish
Vulnecula vŭl-něk'ū-la	Vulneculae vŭl-pěk'ū-lē'	Vul	The Fox
vuipooula, vui-pok u-la	vuipeeulae, vui-pek u-ie	vui	THE FUX

ā dāte; ă tăp; â câre; à ask; ē wē; ě mět; ẽ makēr; ī īce; ĭ bĭt; ō gō; ŏ hŏt; ô ôrb; oo moon; ū ūnite; ŭ ŭp; û ûrn.

In terms of area (based on the official IAU boundaries), of the 88 constellations the three largest are Hydra (1303 square degrees), Virgo (1294), and Ursa Major (1280); the three smallest: Sagitta (80), Equuleus (72), and Crux (68). A complete list of the areas of the constellations appears in the 1972 edition of *The Handbook of the British Astronomical Association*, and was reproduced in the June 1976 issue of *Sky and Telescope* (p. 408).

FINDING LIST OF SOME NAMED STARS

Name	Con.	R.A.	Name	Con.	R.A.
Acamar, ā'kā-mār	θEri	02	Gienah, jē'na	γ Crv	12
Achernar, ā'kēr-nar	α Eri	01	Hadar, hăd'ar	β Cen	14
Acrux, ā'krŭks	α Cru	12	Hamal, hăm'ăl	α Ari	02
Adara, a-dā'ra	€ CMa	06	Kaus Australis,	€ Sgr	18
Al Na'ir, ăl-nâr'	α Gru	22	kôs ôs-trā'lĭs	Ũ	
Albireo, ăl-bĭr'ē-ō	β Суg	19	Kochab, kô'kăb	β υΜί	14
Alcor, ăl-kôr'	80 UMa	13	Markab, mar'kāb	α Peg	23
Alcyone, ăl-sī'ō-nē	η Tau	03	Megrez, mē'grĕz	δ UMa	12
Aldebaran,	αTau	04	Menkar, měn'kar	α Cet	03
ăl-dĕb'à-ràn			Menkent, měn'kěnt	θ Cen	14
Alderamin,	α Cep	21	Merak, mē'rāk	β UMa	11
ăl-dĕr'à-mĭn			Merope, mĕr'ō-pē	23 Tau	03
Algeiba, ăl-jē'ba	γ Leo	10	Miaplacidus,	β Car	09
Algenib, ăl-jē'nĭb	γ Peg	00	mī'a-plăs'ĭ-dŭs		
Algol, ăl'gŏl	β Per	03	Mintaka, mĭn-ta'ka	δOri	05
Alioth, ăl'ĭ-ŏth	€ UMa	12	Mira, mī'ra	o Cet	02
Alkaid, ăl-kād'	η UMa	13	Mirach, mī'rāk	β And	01
Almach, ăl'măk	γ And	02	Mirfak, mĭr'făk	α Per	03
Alnilam, ăl-nī'lăm	e Ori	05	Mizar, mī'zar	ζ UMa	13
Alphard, ăl'färd	α Hya	09	Nunki, nŭn'kē	σ Sgr	18
Alphecca, ăl-fĕk'à	α CrB	15	Peacock, pē'kŏk'	α Pav	20
Alpheratz, ăl-fē'răts	α And	00	Phecda, fěk'da	γ UMa	11
Altair, ăl-târ'	α Aql	19	Polaris, pō-lâr'ĭs	α UMi	02
Ankaa, ăn'ka	α Phe	00	Pollux, pŏl'ŭks	β Gem	07
Antares, ăn-tā'rēs	α Sco	16	Procyon, pro'sĭ-ŏn	α CMi	07
Arcturus, ark-tū'rūs	α Βοο	14	Pulcherrima,	€ Boo	14
Atria, ā'trī-a	α TrA	16	pŭl-kĕr'ĭmå		
Avior, ă-vĭ-ôr'	€ Car	08	Ras-Algethi,	α Her	17
Bellatrix, be-la'triks	γ Ori	05	ras'āl-jē'the		
Betelgeuse, bēt'ēl-jūz	αΟτι	05	Rasalhague, ras'ăl-hā'gwē	α Oph	17
Canopus, ka-no'pus	αCar	06	Regulus, reg'ū-lus	α Leo	10
Capella, ka-pěl'a	α Aur	05	Rigel, rī'jĕl	β Ori	05
Caph, kăf	β Cas	00	Rigil Kentaurus,	α Cen	14
Castor, kas'ter	α Gem	07	rī'jīl kēn-tô'rūs		
Cor Caroli, kôr kăr'ŏ-lī	α CVn	12	Sabik, sā'bīk	η Oph	17
Deneb děn'ěb	a Cvo	20	Scheat shē'ăt	ß Peg	23
Denebola dě-něh'ō-la	BLeo	11	Schedar shĕd'àr	a Cas	00
Diphda dĭf'dà	B Cet		Shaula shô'là	λ Sco	17
Dubhe, dŭb'ē	a UMa		Sirius, sir'i-ŭs	α CMa	06
Elnath, ĕl'năth	βTau	05	Spica, spī'ka	α Vir	13
Eltanin, ĕl-tā'nĭn	v Dra	17	Suhail, sŭ-hāl'	λ Vel	09
Enif. ĕn'ĭf	€ Peg	21	Thuban, thoo'ban	α Dra	14
Fomalhaut, fō'măl-ôt	a PsA	22	Vega, vē'gā	αLvr	18
Gacrux, ga'krŭks	γ Cru	12	Zubenelgenubi,	α Lib	14
Gemma, jĕm'a	α CrB	15	zoo-běn'ěl-jě-nů'bē		

Key to pronunciation on p. 167.

₩

THE BRIGHTEST STARS

BY ROBERT F. GARRISON

The 314 stars brighter than apparent magnitude 3.55 in both hemispheres are listed with 1989.5 positions. A few errors have been corrected this year and several types have been changed because of better available data. The spectral classification column, especially, is therefore a valuable resource for both professionals and amateurs.

Star. If the star is a visual double, the letter A indicates that the data are for the brighter component. The brightness and separation of the second component (B) are given in the last column. Sometimes the double is too close to be conveniently resolved and the data refer to the combined light,(AB); in interpreting such data the magnitudes of the two components must be considered.

Visual Magnitude (V). These magnitudes are based on photoelectric observations. The V filter is yellow and corresponds roughly to the response of the eye. The photometric system is that of Johnson and Morgan in Ap. J., vol. 117, p. 313, 1953. It is as likely as not that the true magnitude is within 0.03 mag. of the quoted figure, on the average. Variable stars are indicated with a "v". The type of variability, range and period are given in the remarks.

Colour index (B-V). The blue magnitude, B, is the brightness of a star as observed photoelectrically through a blue filter. The difference B–V is therefore a measure of the colour of a star. There is a close relation between B–V and the spectral type, but some of the stars are reddened by interstellar dust. The probable error of a value of B–V is about 0.02 mag. at most.

Spectral Classification. A "temperature" type (O, B, A, F, G, K, M) is given first, followed by a finer subtype (0-9) and a "luminosity" class (Roman numerals I–V, with an "a" or "b" added occasionally to indicate slightly brighter or fainter). The sequences are in the sense that the O stars are hottest, M stars are coolest, Ia stars are the most luminous supergiants, III stars are giants and V stars are the most numerous; the V's are known as dwarfs or main-sequence stars. Other symbols used in this column are: "p" for peculiar; "e" for hydrogen emission; "m" for strong metallic lines; "f" for broad, non-hydrogen emission in hot stars; and "n" or "nn" for unusually broad lines (= rotation). The table now contains the best types available, either from the literature or from my own plates.

Parallax and Proper Motion. From "The Bright Star Catalogue" by Dorrit Hoffleit and Carlos Jaschek, Yale University Press, 1982. Parallaxes in which the decimal point is preceded by the letter "D" are "dynamical parallaxes" (i.e. determined through Kepler's laws rather than by trigonometric measurement). Proper motions given are the absolute value of the vector resultant from the individual-coordinate proper motions given in "The Bright Star Catalogue".

Absolute Visual Magnitude and Distance in Light-Years. If the parallax is greater than 0''.05 the distance and absolute magnitude correspond to this trigonometric parallax. Otherwise a generally more accurate absolute magnitude and distance were obtained from a new (by the author, unpublished) calibration of the spectral classification; distances determined in this way are called "spectroscopic parallaxes." In a few cases (the Hyades, Orion, and Scorpius clusters), the cluster distances are given; these are indicated by parentheses. The effect of the absorption of light was corrected by comparing the spectral classification and the B–V, using an intrinsic-colour calibration by the author (unpublished).

Radial Velocity. From "The Bright Star Catalogue" referenced above. The symbol "V" indicates variable velocity and an orbit is usually not known. On the other hand, "SB" indicates a spectroscopic binary, which is an unresolved system whose duplicity is revealed by periodic oscillations of the lines in its spectrum and an orbit is generally known. If the lines of both stars are detectable, the symbol "SB2" is used. "+" indicates motion away from, "-" towards, the observer.

Remarks. These contain data on companions and variability as well as notes on the spectra. Traditional names have been selected from "The Bright Star Catalogue". The Navigation stars are in bold type.

In preparing the table, the aid of Brian Beattie is gratefully acknowledged.

		Sun Alpheratz Caph Algenib	Ankaa Shedir Diphda	Mirach Ruchbah
	Remarks	var: 2.25–2.31, 0.10d var: 2.80–2.87, 0.15d	B: 7.51, K4 Ve, 12"	var: 1.6–3.0; B: 8.8, 2" AB similar in light, spectrum, 1" ecl.? 2.68–2.76, 759d
Radial Velocity	RV(km/s)	varies -12 SB +11 SB +4 SB +23	+75 SB -7 SB -4 V? +13 +9 SB	-7 SB -1 +12 +3 V +7 SB
Proper Motion	μ(")	0.209 0.555 0.008 2.255	0.442 0.161 0.058 0.234 1.218	0.026 0.030 0.250 0.210 0.303
Distance (Light Years)	D(ly)	8 lm 100 45 490 20	62 170 110 53 18	730 130 140 170 59
Absolute Magnitude	M(V)	+4.7 -0.4 -3.1 -3.8	0.7 -0.3 -0.8 0.3 4.7	-4.7 0.3 0.1 -1.6 1.4
Parallax	π(")	0.032 0.072 0.000 0.159	0.039 0.028 0.016 0.061 0.061	0.016 0.021 0.041 0.049 0.037
Spectral Classification	MK Type	G2 V B9p IV:(HgMn) F2 III B2 IV G1 IV	K0 IIIb K3 III K0 IIIa K0 III G0 V	B0 IVnpe(shell) G8 III K1.5 III CN1 M0 IIIa A5 IV
Colour Index	B-V	0.63 -0.11 0.34 -0.23 0.62	1.09 1.28 1.17 1.17 1.02 0.57	-0.15 0.89 1.16 1.58 0.13
Visual Magnitude	>	-26.73 2.1v 2.3v 2.8v 2.80	2.39 3.27 2.23 3.44	2.5v 3.31 3.45 2.06 2.7v
Declination (Degrees, Minutes)	389.5 Dec	+29 02 +59 06 +15 06 -77 19	-42 22 +30 48 +56 29 -18 03 +57 46	+60 40 -46 46 -10 14 +35 34 +60 11
Right Ascension (Hours, Minutes)	R.A. 19	00 07.8 00 08.6 00 12.7 00 25.2	00 25.8 00 38.8 00 39.9 00 43.1 00 48.5	00 56.1 01 05.6 01 08.1 01 08.1 01 09.1 01 25.1
	Star Name	Sun α And β Cas γ Peg β Hyi	α Phe δ And A α Cas β Cet η Cas A	γ Cas β Phe AB η Cet β And δ Cas

	ternar etallah Segin	aratan Jimaak Hamal Mira Polaris	jidhma kcamar Aenkar Algol irphak	dcyone	Zaurak Ain
Remarks	var: 3.39–3.49 Ach	Sh B: 5.4,B9V,10";C: 6.2,A0V;BC: 1" A Calcium weak? LPV, 2–10; B: VZ Cet,9.5v,Bpe,1" Cep 1.9–2.1,4d; B: 8.2,F3 V,18"	A: 3.57; B: 6.23, 3" Kaffal B: 4.35, A1 Va, 8" A A composite spectrum semi-regular var: 3.3-4.0 eel: 2.12-3.4,2.87d; composite in cluster M	in Pleiades B: 9.16, B8 V, 13" B: 7.39, B9.5 V, 9"	Calcium, Chromium weak ecl: 3.3–3.8, 3.95d; B: A4 IV in Hyades in Hyades
RV(km/s)	+26 SB +16 V -16 V -13 SB -8 V	-2 SB +1 V -12 SB -14 SB +10 SB2 +64 V -17 SB	-5 V +12 SB2 -26 +3 SB +3 SB +28 +4 SB +4 SB +4 SB +4 SB	-6 +10 V? +16 +20 SB +1 SB2	+62 +18 SB2 +36 SB? +39 +40 SB
μ(")	0.204 0.108 1.921 0.230 0.036	$\begin{array}{c} 0.145\\ 0.271\\ 0.066\\ 0.238\\ 0.153\\ 0.153\\ 0.046\end{array}$	0.203 0.065 0.075 0.075 0.075 0.075 0.075 0.075 0.002 0.033	0.752 0.048 0.128 0.011 0.029	0.124 0.011 0.068 0.114 0.115
D(ly)	280 69 53 53 440	44 55 42 78 71 71 71 8200 8200	63 93 200 500 500 53 630 340	29 450 230 1100 740	170 270 230 (150) (150)
M(V)	-1.4 -1.3 -1.3 5.8 2.6 -2.4	1.8 1.7 1.7 1.8 0.1 1.3 1.3 -0.5 -5.1	1.4 1.5 -1.5 -1.5 -2.6 -2.6 -5.1 -2.2	3.8 -1.5 -5.8 -4.2	-0.7 -1.3 -0.9 0.2 1.1
π(")	0.000 0.026 0.287 0.287 0.057 0.010	0.074 0.048 0.013 0.013 0.049 0.022 0.024 0.007	0.052 0.035 0.009 0.011 0.011 0.045 0.016 0.016	0.113 0.008 0.005 0.010 0.010	0.010 0.002 0.013 0.020 0.029
MK Type	K7 IIIa B3 Vnp (shell) G8 V F6 IV B3 IV:p(shell)	A4 V F0 III-IVn K3 IIb K2 IIIab A5 IV M5.5-9 IIIe F5-8 Ib	A2 Va A5 IV M1.5 IIIa M1.5 IIIa G8 III + A2 V M4 II B8 V + F: F5 Ib B5 IIIn B5 IIIn	K0 IV B7 IIIn M2 III B1 Ib B0.5 IV	M1 IIIb B3 V G8 II–III K1 III A 7 III
B-V	1.57 -0.16 0.72 0.49 -0.15	0.13 0.28 1.37 1.15 0.14 0.14 0.60	0.09 0.14 1.64 1.65 0.70 1.65 -0.05 0.48 0.48	0.92 -0.09 1.62 0.12 -0.18	1.59 -0.12 0.91 1.01 0.18
>	3.4v 0.46 3.50 3.41 3.38	2.64 2.86 2.26 2.00 3.00 2.0v 2-10v	3.47 3.42 2.53 2.53 2.93 3.4v 2.1v 1.79 3.01	3.54 2.87 3.24 2.85 2.89	2.95 3.5v 3.35 3.40
89.5 Dec	-43 22 -57 17 -16 00 +29 32 +63 37	+20 45 -61 37 +42 17 +23 25 +34 56 - 3 02 +89 13	$\begin{array}{c} + & 3 & 12 \\ -40 & 21 \\ + & 4 & 03 \\ +53 & 28 \\ +38 & 48 \\ +40 & 55 \\ +47 & 45 \\ +47 & 45 \end{array}$	- 9 48 +24 04 -74 16 +31 51 +39 59	$\begin{array}{c} -13 \ 32 \\ +12 \ 28 \\ -62 \ 30 \\ +19 \ 09 \\ +15 \ 51 \end{array}$
R.A. 19	01 27.9 01 37.3 01 43.6 01 52.5 01 53.6	01 54.1 01 58.5 02 03.3 02 06.6 02 08.9 02 18.8 02 18.8	02 42.8 02 57.9 03 01.7 03 04.0 03 04.5 03 04.5 03 23.6 03 42.2 03 42.2	03 42.7 03 46.9 03 47.4 03 53.5 03 57.1	03 57.5 04 00.1 04 14.3 04 28.1 04 28.0
Star Name	γ Phe α Eri τ Cet α Thi ε Cas	β Ari α Hyi γ And A α Ari β Tri α UMi A	γ Cet AB θ Eri A α Cet γ Per β Per α Per δ Per δ Per	δ Eri η Tau γ Hyi ζ Per A ¢ Per A	γ Eri λ Tau A α Ret A ε Tau θ ² Tau

	rks	0.2" Aldebaran Hassaleh Al Anz	Hoedus I] Kurse ; BC: 0.1" Rigel	1.1,0.04" Capells 3.6; B: 5.0, 1.6" Bellatri	Mintakı Arnek .8d Meissi), 11" Nair al Sai	, 0.007" Alnilan Phae Alnital	Saip Wezn Wezelgeus Aenkalinau
	Rema	A: 3.8; B: 4.3, B9 IV, var: 0.75-0.95 var? ecl: 2.94-3.83, 9892d	var: 2.97–3.36, 2d B: 7.6,B5 V,9″; C: 7.6	composite; A: 0.6; B: ecl: 3.14-3.35,8d; A: B: 7.4, 2.6"	ecl: 1.94–2.13,5.7d Cepheid: 3.46–4.08, 9 B: 5.61, B0 V, 4" B: 7.3, B7 IIIp(He wk	var: 2.90–3.03; B: 5.0 B: 4.2, B0 III, 2.4"	var: 0.4–1.3 eci: 1.93–2.02, 4d(=n B: 7.2, G2 V, 4"
	RV(km/s)	+26 +54 SB +24 SB2 +24 SB2 +18 -3 SB	+1 +7 V? -9 +28 +28	+30 SB +20 SB2 +18 SB? +9 V -14	+16 SB +24 +7 V +34 +34 +32	+26 SB +20 SB +35 V? +18 SB +20 SB?	+21 V? +89 V +21 SB -18 SB2 +30 SB
	μ(")	0.051 0.200 0.463 0.018 0.004	0.073 0.073 0.128 0.043 0.004	0.430 0.003 0.018 0.178 0.178	0.002 0.006 0.007 0.006 0.005	0.004 0.023 0.026 0.002 0.002	0.006 0.405 0.028 0.055 0.055
	D(ly)	190 60 24 240 2800	160 250 65 150 (1400)	41 (1400) (1400) 140 320	(1400) 1090 820 2200 (1400)	(1400) 830 180 (1400) 97	$(1400) \\ 120 \\ (1400) \\ 55 \\ 110$
	M(V)	0.0 -0.3 3.9 -7.8	-0.3 -1.3 0.5 -0.2 -8.1	0.4 -3.8 -3.9 -1.5 -2.1	-5.8 -5.1 -5.1 -5.8 -5.8	-7.0 -4.0 -1.1 -6.2 1.0	-7.0 0.1 -7.2 0.7 0.0
	π(")	0.018 0.054 0.137 0.021 0.021	0.011 0.022 0.050 0.023 0.013	0.080 0.007 0.029 0.028 0.028	0.014 0.007 0.012 0.007 0.007	0.000 0.008 0.001 0.024 0.049	0.015 0.028 0.005 0.041 0.022
	MK Type	A0p V:(Si) K5 III F6 V K3 II A9 Iae + B	K4 III B3 V A3 IVn B9p IV:(HgMn) B8 lae	G6:III + G2:III B1 IV + B B2 III B7 III G5 II	09.5 II F0 Ib F7-G2 Ib 08 III 09 III	B0 Ia B2 IIIpe(shell) B7 IV O9.5 Ib A2 Vann	B0.5 Ia K1.5 III M2 Iab A1 IV A0p II:(Si)
	B-V	$\begin{array}{c} -0.10 \\ 1.54 \\ 0.45 \\ 1.53 \\ 0.54 \end{array}$	1.46 -0.18 0.13 -0.11	0.80 -0.17 -0.22 -0.13 0.82	-0.22 0.21 0.82 -0.18	-0.19 -0.19 -0.12 -0.21 0.10	-0.17 1.16 1.85 0.03 -0.08
	>	3.27 3.27 0.85 3.19 2.69 3.04	3.19 3.17 2.79 3.3v 0.12	0.08 3.4v 1.64 1.65 2.84	2.23 2.58 3.8v 3.54 2.77	1.70 3.0v 2.64 3.55 3.55	2.06 3.12 0.5v 1.90 2.62
	89.5 Dec	-55 04 +16 29 + 6 57 +33 09 +43 49	-22 23 +41 13 - 5 06 -16 13 - 8 13	+45 59 - 2 24 + 6 20 +28 36 -20 46	$\begin{array}{r} - 0 \ 18 \\ -17 \ 50 \\ -62 \ 30 \\ + 9 \ 56 \\ - 5 \ 55 \end{array}$	$\begin{array}{c} - 1 \ 12 \\ +21 \ 08 \\ -34 \ 05 \\ - 1 \ 57 \\ -14 \ 50 \end{array}$	- 9 40 -35 46 + 7 24 +44 57 +37 13
	R.A. 19	04 33.8 04 35.3 04 49.3 04 56.3 05 01.2	05 05.0 05 05.8 05 07.3 05 12.5 05 14.0	05 15.9 05 23.9 05 24.6 05 25.7 05 27.8	05 31.5 05 32.3 05 33.5 05 34.6 05 34.9	05 35.7 05 37.0 05 39.3 05 40.2 05 46.5	05 47.3 05 50.6 05 54.6 05 58.8 05 59.0
*	Star Name	α Dor AB α Tau A π ³ Ori ι Aur ε Aur A	ε Lep η Aur β Eri μ Lep β Ori A	α Aur AB η Ori AB η Ori β Tau β Lep A	δ Ori A α Lep β Dor λ Ori A ι Ori A	e Ori ζ Tau α Col A ζ Uri A ζ Lep	κ Ori β Col α Ori β Aur β Aur AB

	Propus Phurud osterior Murzim mopus	Alhena febsuta Alzirr Sirius	Adara	Wezen HR2748 Wasat Aludra	rocyon	Pollux Naos d
	, Tejat P Ce	M (080		3	0 £	-2.78, 0.14
emarks	8.8, 1.6' .25d	r, 10″(1		2.6–6.		ur: 2.68
8	3.9; B: 4 -3.02 -2.00, 0	DA, 50	-3.49	od Var: 3 V, 0.2	5: V, 22 paratio "	ug spec; vi
	var: 3.3– var: 2.76 var: 1.93	B: 8.5, W	var: 3.43-	Long Peri B: 8.2, Ki	B: 8.6, G AB: 2″ se BA: 2″ se BA: 2″ se B: 10.3, 4	Si II stroi delta Del
(km/s)	19 SB 32 SB +55 34 SB +21	13 SB 28 SB 10 SB 25 V? -8 SB	+21 36 SB +27 +22 +22 48 SB	34 SB 53 V? +16 -4 SB +41 V	22 SB 88 SB 6 SB -1 SB -3 SB	+3 V -3 SB -19 V 24 V? 46 SB
RV	+ + +	· ∓ ∓ + '	¥ +	¥ Ŧ Ŧ Ŧ	÷÷+ + + + +	+++++++++++++++++++++++++++++++++++++++
μ(")	0.068 0.006 0.125 0.014 0.034	0.061 0.010 0.016 0.224 1.324	0.275 0.079 0.002 0.008 0.008	0.008 0.346 0.012 0.029 0.008	0.065 0.195 0.199 0.199 0.199	0.629 0.033 0.042 0.033 0.033
D(ly)	210 260 190 750 74	57 240 940 59 9	63 100 570 830 2200	2600 200 570 53 2500	110 160 49 11	35 800 470 2000 280
M(V)	-0.7 -1.6 -4.9 -2.5	0.7 -1.2 -1.2 -4.0 1.4	2.1 -4.8 -6.3	-8.0 -1.3 -4.0 2.2 -7.0	0.1 -0.3 1.2 1.4 2.7	0.7 -4.2 -2.4 -6.8 -2.0
π(")	0.014 0.004 0.020 0.019 0.019	0.037 	0.052 D.001 0.024	0.000 0.022 0.032 0.061	0.019 0.020 0.067 0.067 0.067 0.067	0.094 0.003 0.004 0.035
MK Type	M3 III B2.5 V M3 IIIab B1 II-III A9 II	A1 IVs B8 IIIn G8 Ib F5 IV A0mA1 Va	A6 Vn K1 III B2 II K7 Ib B3 Ia	F8 Ia M5 IIIe K3 Ib F0 IV B5 Ia	B8 V K5 III A1mA2 Va A2mA5 V: F5 IV-V	K0 IIIb G6 la B3 IVp(note) O5 lafn F2mF5 II:(var)
B-V	1.60 -0.19 1.64 -0.23 0.15	$\begin{array}{c} 0.00\\ -0.11\\ 1.40\\ 0.43\\ 0.00\end{array}$	0.21 1.20 -0.21 1.73 -0.08	$\begin{array}{c} 0.68\\ 1.56\\ 1.62\\ 0.34\\ -0.08 \end{array}$	-0.09 1.51 0.03 0.04 0.42	$\begin{array}{c} 1.00\\ 1.24\\ -0.18\\ -0.26\\ 0.43\end{array}$
>	3.3v 3.02 2.9v 2.0v -0.72	1.93 3.17 2.98 3.36 -1.46	3.27 2.93 1.50 3.5v 3.02	1.84 2.6v 3.53 2.45	2.90 3.25 1.94 2.92 0.38	1.14 3.34 3.47 2.25 2.8v
89.5 Dec	+22 31 -30 03 +22 31 -17 57 -52 41	+16 25 -43 11 +25 09 +12 54 -16 42	-61 56 -50 36 -28 57 -27 55 -23 49	-26 23 -44 37 -37 05 +22 00 -29 17	+ 8 19 -43 17 +31 55 +31 55 +31 55 + 31 55 + 5 15	+28 03 -24 50 -52 57 -39 58 -24 16
R.A. 19	06 14.2 06 19.9 06 22.3 06 22.2 06 23.7	06 37.1 06 37.4 06 43.3 06 44.7 06 44.7	06 48.1 06 49.7 06 58.2 07 01.3 07 02.6	07 08.0 07 13.2 07 16.8 07 19.5 07 19.5	07 26.6 07 28.9 07 33.9 07 34.0 07 38.8	07 44.7 07 48.9 07 56.5 08 03.2 08 07.1
Star Name	η Gem ς CMa μ Gem β CMa α Car	γ Gem ν Pup ε Gem & CMa A	α Pic τ Pup ε CMa A σ CMa ο ² CMa	δ CMa L2 Pup π Pup δ Gem AB η CMa	β CMi σ Pup A α Gem A α CMi A	β Gem ξ Pup ζ Pup ρ Pup

Star Name	R.A. 19	89.5 Dec	>	B-V	MK Type	π('')	M(V)	D(ly)	μ(")	RV(km/s)	Remarks
γ ² Vel β Cnc ε Car ο UMa A δ Vel AB	08 09.2 08 15.9 08 22.3 08 29.4 08 44.4	-47 18 + 9 13 -59 29 +60 45 -54 40	1.8v 3.52 1.86 3.4v 1.96	-0.22 1.48 1.28 0.84 0.04	WC8 + 09 I: K4 III K3:III + B2:V G5 III A1 Va	0.017 0.012 	-6.7 -0.2 -0.1 0.5 0.7	1500 160 79 120 64	0.007 0.068 0.030 0.171 0.082	+35 SB2 +22 +2 +2 +2 +20 +20	var: 1.6–1.8, 154s Suhail al Muhli ecl? 3.1–3.4, 785d Altar var: 3.3–3.8, 358d B: 5.0, 2"
 ϵ Hya ABC ζ Hya ℓ UMa A λ Vel a Car 	08 46.2 08 54.8 08 58.5 09 07.6 09 10.7	$\begin{array}{r} + 6 \ 27 \\ + 5 \ 59 \\ + 48 \ 05 \\ - 43 \ 23 \\ - 58 \ 55 \end{array}$	3.38 3.11 3.14 3.14 2.21 3.44	0.68 1.00 0.19 1.66 -0.19	G5:III + A: G9 II–III A7 IVn K4 Ib–IIa B2 IV–V	0.027 0.035 0.075 0.022	0.5 -1.0 1.7 -3.3 -2.6	150 220 43 330 500	0.198 0.101 0.501 0.026 0.028	+36 SB +23 +9 SB +18 +23 SB2	composite A: 3.8; B: 4.7, 0.2 "; C: 7.8,3" BC: 10.8, M1 V, 4" Talithe var: 2.14–2.22 Suhail eel: 3.2–3.6, 6.7d HR3655
β Car ι Car α Lyn κ Vel α Hya	09 13.1 09 16.8 09 20.4 09 21.8 09 27.1	-69 40 -59 14 +34 26 -54 58 - 8 37	1.68 2.2v 3.13 2.50 1.98	0.00 0.18 1.55 0.18 1.44	A1 III A7 Ib K7 IIIab B2 IV-V K3 II-III	0.021 0.017 0.025 0.013 0.013	0.2 -2.6 -0.5 -3.3 -1.0	64 300 170 430 110	0.183 0.019 0.223 0.012 0.034	-5 V? +13 +38 +22 SB -4 V?	Miaplacidus Turaid Alpharc
N Vel Ø UMa ø Leo AB I Car ¢ Leo	09 30.9 09 32.2 09 40.6 09 45.3 09 45.3	-5659 +5144 +956 -6228 +2349	3.13 3.17 3.52 3.4v 2.98	$\begin{array}{c} 1.55\\ 0.46\\ 0.49\\ 1.22\\ 0.80\end{array}$	K5 III F6 IV F5 II + A5? F9-G5 Ib G1 II	0.022 0.068 0.034 0.027 0.010	-0.3 2.6 -2.3 -5.1 -2.3	150 48 590 750 350	0.034 1.094 0.149 0.016 0.048	-14 +15 SB +27 SB +3 V +4 V?	HR380; A: occ.bin.(=mags) Subr Cepheid var: 3.38-4.10, 35d HR384 Ras Elased Australi
υ Car AB φ Vel η Leo α Leo A ω Car	09 46.8 09 56.5 10 06.8 10 07.8 10 13.5	-65 01 -54 31 +16 49 +12 01 -69 59	3.01 3.54 3.52 1.35 3.32	0.28 -0.08 -0.11 -0.11	A6 II B5 Ib A0 Ib B7 Vn B8 IIIn	0.027	-5.1 -5.4 -5.2 -0.3 -1.2	1100 1900 1800 69 250	0.012 0.013 0.006 0.248 0.032	+14 +14 +3 V +6 SB +7 V	B: 6.26, B7 III, 5″ B: 4.5, 0.1″ Regulu
ζ Leo λ UMa q Car γ Leo A γ Leo B	10 16.1 10 16.5 10 16.7 10 16.7 10 19.4 10 19.4	$\begin{array}{c} +23 \ 28 \\ +42 \ 58 \\ -61 \ 17 \\ +19 \ 54 \\ +19 \ 54 \end{array}$	3.44 3.45 3.4v 2.61 3.47	0.31 0.03 1.54 1.15 1.15	F0 IIIa A1 IV K3 IIa K1 IIb Fe-0.5 G7 III Fe-1	0.017 0.030 0.027 0.022 0.022	1.5 1.0 3.0 0.7 0.8	77 100 35 76 76	0.023 0.170 0.027 0.342 0.358	-16 SB +18 V +8 -37 SB -36 V	Adhafer: Tania Boreali var: 3.36–3.42 Tania Boreali AB: 5″ separation Algieb BA: 5″ separation

	ustralis HR4140	Merak Dubhe Zosma Chort	Borealis enebola Phad	Minkar Megrez Ghurab	Acrux Algorab Gacrux Kraz	Porrima
\$2	Tania A	<1"	Alula D	Gienah	•	-
Remark	Ca II emission var: 3.27–3.37 Nitrogen enhanced B: 6.4, 2″	A: 1.86, B: 4.8, A8 V, .	B: 9.5, 7″	var: 2.51–2.65 var: 2.25–2.31, 3.7h sp. var?	AB: 5" BA: 5" B: 8.26, K2 V, 24" var: 1.6–1.9	var: 2.17–2.24, 2h AB: 5" BA: 5" A: 3.48, B: 3.50, 4" A: 3.58, B: 4.10, 1"
RV(km/s)	-21 SB +26 +24 SB +6 SB -1	-12 SB -9 SB -4 -20 V +8 V	-9 SB -5 V -1 V 0 V -13 SB	+11 V +5 +22 V? -13 V -4 SB	-11 SB -1 +9 V +21 -8	+13 V -6 SB -6 SB -20 SB +42 V
μ(")	0.088 0.021 0.022 0.085 0.085	0.087 0.138 0.075 0.197 0.104	0.036 0.211 0.039 0.511 0.094	0.034 0.073 0.039 0.102 0.163	0.030 0.031 0.255 0.269 0.059	0.043 0.190 0.190 0.190 0.567 0.041
D(ly)	170 220 540 75 110	62 100 51 80	130 170 80	370 180 490 53 190	510 510 150 120 310	340 190 190 31 520
M(V)	-0.7 -1.1 -3.5 0.8 0.1	0.7 -0.8 0.2 1.6 1.4	0.0 0.4 0.4 1.5 0.5	-3.1 -0.8 -3.1 -1.2 -1.2	-4.2 -3.2 -0.3 -1.2 -2.3	-2.5 -0.3 0.0 2.6 -1.9
π('')	0.035 D.022 0.028	0.053 0.038 	0.020 0.027 	0.026 0.027 0.003 0.061	D.008 D.008 0.024 	0.016 0.016 0.099 D.015
MK Type	M0 IIIP B4 Vne B0.5 Vp G5 III + F8:V K2 III	A0mA1 IV-V K0 IIIa K1 II1 A4 IV A2 IV(K var)	K3 III Ba0.3 G7 III B9.5 IIn A3 Va A0 Van	B2 IVne K2 III B2 IV A2 Van B8 III	B0.5 IV B1 Vn B9.5 IVn M3.5 III G5 II	B2 IV-V A1 IV A0 IV F1 V + F0mF2 V B2 V + B2.5 V
B-V	$\begin{array}{c} 1.59 \\ -0.09 \\ -0.22 \\ 0.90 \\ 1.25 \end{array}$	-0.02 1.07 1.14 0.12 -0.01	1.40 0.94 -0.04 0.09 0.09	-0.12 1.33 -0.23 0.08 -0.11	-0.24 -0.26 -0.05 1.59 0.89	-0.20 -0.03 0.01 0.36 -0.18
>	3.05 3.3v 2.76 2.69 3.11	2.37 1.79 3.01 2.56 3.34	3.48 3.54 3.13 2.14 2.44	2.6v 3.00 2.80 2.59 2.59	1.33 1.73 2.95 2.65 2.65	2.69 2.87 2.96 2.76 3.05
89.5 Dec	+41 33 -61 38 -64 20 -49 22 -16 08	+56 26 +61 48 +44 33 +20 35 +15 29	$\begin{array}{c} +33 \ 09 \\ -31 \ 48 \\ -62 \ 58 \\ +14 \ 38 \\ +53 \ 45 \end{array}$	-50 40 -22 34 -58 41 +57 05 -17 29	-63 02 -63 02 -16 27 -57 03 -23 20	69 05 48 54 48 54 1 24 68 03
R.A. 19	10 21.7 10 31.6 10 42.6 10 46.3 10 49.1	11 01.2 11 03.1 11 03.1 11 13.6 11 13.6 11 13.7	11 17.9 11 32.5 11 35.3 11 48.5 11 48.5 11 53.3	12 07.8 12 09.6 12 14.6 12 14.9 12 15.3	12 26.0 12 26.0 12 29.3 12 30.6 12 33.8	12 36.5 12 40.9 12 40.9 12 41.1 12 45.6
Star Name	μ UMa p Car β Car μ Vel AB ν Hya	β UMa α UMa AB ψ UMa δ Leo θ Leo	ν UMa ξ Hya λ Cen β Leo γ UMa	 δ Cen ϵ Crv δ Cru δ UMa γ Crv 	α Cru A α Cru B δ Crv A γ Cru β Crv	α Mus γ Cen A γ Cen B γ Vir AB β Mus AB

	crux Alioth Auva Caroli iatrix	Mizar Spica Heze	\lkaid fufrid	ladar nkent turus	eginus eg turus	Izar genubi Kocab
	Be L Cor (Vindam	5,7.5	Y Z	H Me Arci	Se M5e, 2d il Kente	uben Elg
rks		V, 14" 3.1,4.	.43	9, 1″	, 12.4, Rigi	Ř
Rema	, 0.7d?), 5.1d 20″	47 IV-	2.92-5	3; B: 3. ocity	roxima	l, 0.26d 16" .2, 3"
	3–1.31 6–1.79 F0 V, 2	, A1mA	shell:	i1-0.66 ace vel	shell "; C: P	8–2.3) K5 V, ; B: 5.1
	var: 1.2 var: 1.7 B: 5.6,	B: 3.94 var: 0.9	variable	var: 0.6 high sp	variable BA: 21 AB: 21	var: 2.5 B: 8.6, A: 2.70
cm/s)	6 SB SB? 8 V? -3 V -14	5 V? 0 SB2 SB2 -13	+3 SB? 9 SB 9 SB 0 SB	SB2 6 SB +27 +1 5 V?	+22 37 V 0 SB 1 V? 5 SB	5 SB SB? 17 V 3 SB 3 SB
RV(I	+11	+ 1 9 +		·		+ + + + + + + + + + + + + + + + + + + +
μ(")	0.042 0.109 0.474 0.242 0.242	0.081 0.351 0.122 0.054 0.287	0.028 0.127 0.035 0.034 0.370	0.072 0.030 0.049 0.738 2.281	0.014 0.189 0.049 3.678 3.678	0.026 0.302 0.054 0.130 0.130
D(ly)	460 65 270 130 100	190 53 74 220 79	670 140 640 380 31	370 320 67 50 34	550 53 450 4	580 58 160 65 83
M(V)	-4.7 0.3 -1.2 0.0 0.3	-0.8 1.4 0.7 -3.2 1.4	-4.4 -1.3 -3.1 -2.5 2.8	-2.7 -4.4 0.7 0.2	-2.7 1.9 -3.5 4.4	-4.1 2.0 -1.0 1.2 -0.2
π(")	$\begin{array}{c} - \\ 0.009 \\ 0.022 \\ 0.027 \\ 0.043 \end{array}$	0.027 0.062 0.047 0.023 0.023	0.035 0.035 0.108	0.009 0.049 0.065 0.065	0.025	0.056 0.016 0.050 0.039
be	cu)		one	-0.5	ల్ల	-A0 V
IK Ty	IV:(Cr IV:(Cr II:(SiH IIab	IIIa /a V				(Sr) (Sr) II-III+ II-IV
	B0.5 M3 M3 G9 I G9 I	G8 1 A2 1 A1 1 B1 1 A2 1 A2 1	B1 I B3 1 B3 1 B2 1 B2 1 G0 1	B2.5 B1 I B1 I K2 I K2 I K0 I K1.5	B2.5 A71 B1.5 K1 K1 C2	B1.5 A7p K0 A3 K4
B-V	-0.23 -0.02 1.58 -0.12 0.94	0.92 0.04 0.02 -0.23 0.11	-0.22 -0.19 -0.22 -0.17 0.58	-0.22 -0.23 1.12 1.01 1.23	-0.18 0.19 -0.19 0.88 0.88	-0.20 0.24 0.97 0.15 1.47
>	1.2v 1.8v 3.38 2.9v 2.83	3.00 2.75 2.27 1.0v 3.37	2.3v 1.86 3.41 3.0v 2.68	2.55 0.6v 3.27 2.06 -0.04	3.55 3.03 2.3v 1.33 -0.01	2.3v 3.19 2.37 2.75 2.08
5 Dec	59 38 56 01 - 3 27 38 22 11 01	23 07 36 39 55 00 11 06 0 33	53 25 49 22 41 38 42 25 18 27	47 14 60 19 26 38 36 19 19 14	46 01 38 21 42 07 60 48 60 47	47 21 64 56 27 07 16 00 74 12
1989.	2.5		9.2 7.1 9.0 + + + +	5.2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	8.7 11.7 3.9 3.9 3.9	1.2 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6
R.A.	12 47 12 55 12 55 12 55 12 55 13 01	13 15 13 27 13 24 13 24 13 24	13 4/ 13 4/ 13 4/ 13 4/ 13 4/ 13 4/	13 5/ 14 00 14 00 14 15 14 15	14 18 14 33 14 33 14 36 14 36 14 36 14 36	14 4 14 4 14 5(14 5(
Vame	/n A	a A		AB	A B B	AB I
Star 1	β Cru ε UM δ Vir α ² CV	γ Hy , Cen ¢ UM ¢ Vir ¢ Vir	J L C E D C	ς Cei β Cei α Boc α Boc	k Lui A Boc A Cen A Cen	α Lul α Cir α Lib α Lib UM

諅

Remarks	3a 0.4, Fe -0.5. Nekka ar: 3.20-3.36 Brachiun	Zuben Elschemal Pherkac	 k: 3.5; B: 5.0, <1" Ed Asicl cl: 2.21-2.32, 17.4d Alphekkt i: 3.5; B: 3.6, <1"; similar spectra ar? 	l: occ.bin: 3.4 + 4.5, 0.0003" sep. ecurrent nova 1866, 1946; now V=11 1: 3.47, B: 7.70, 15"	AB:mult<1",C:4.9,B2IV-V,8" Dschubbs L: 2.78; B: 5.04, 1"; C: 4.93, 14" Graffia Yed Prior Yed Posterior ar: 2.94-3.06,0.25d; B: 8.3, B9 V, 20"	s. 8.7, 6" S: 5.37, B2.5 V, 3" Antare Kornephoro
RV(km/s)	0 SB +8 SB -20 1 -4 1	-12 SB -35 SB -3 V -3 V 0 V? -4 V	+8 SB2 -11 +2 SB +2 V +3 V?	-9 SB 0 -3 SB2 -29 SB +8 V	-7 SB / -1 SB / -20 V -20 V +3 SB /	-14 SB? 1 -3 SB 1 -26 SB +2 V
μ(")	0.057 0.033 0.036 0.056 0.087 0.128	0.143 0.101 0.067 0.036 0.031	0.024 0.020 0.151 0.035 0.035	0.094 0.438 0.028 0.013 0.040	0.027 0.022 0.153 0.089 0.089	0.064 0.024 0.100 0.026
D(ly)	460 320 51 130	140 100 110 650 110	510 140 78 650 62	170 39 (522) 8200 550	(522) (522) 160 130 (522)	64 (522) 170 (522)
M(V)	-3.1 -1.9 -0.8 -1.0	0.3 0.1 0.2 -3.4 0.4	-2.5 0.1 0.3 -3.1 0.7	$\begin{array}{c} 0.0\\ 2.2\\ -3.2\\ -1.0\\ -2.7\end{array}$	-4.4 -3.5 -0.8 -4.4	0.3 -5.2 -0.8
π(")	0.043	0.030 0.000 0.010 0.013	D.009 0.045 0.045 D.008 0.053	0.007 0.083 0.010 	0.009 0.034 0.043	0.051 0.024 0.024 0.020
MK Type	B2 IV B2 V G8 IIIa(note) M2.5 III G8 III	G8 III Fe-1 B8 IIIn A1 IIIn B1.5 IVn A3 III	B2 IV-V K2 III A0 IV(composite) B2 IVn K2 IIIb CN1	A0 III F0 IV B1 V + B2 V gM3: + Bep B2.5 IVn	B0.3 IV B0.5 V M0.5 II G9.5 IIIbFe-0.5 B1 III	G8 IIIab M1.5 Iab G7 IIIa B0 V
B-V	-0.22 -0.20 0.97 1.70 0.92	0.95 -0.11 0.00 -0.22 0.05	-0.18 1.16 -0.02 -0.20 1.17	-0.04 0.29 -0.19 0.10 -0.22	-0.12 -0.07 1.58 0.96 0.13	0.91 1.83 0.94 -0.25
٧	2.68 3.13 3.50 3.3v 3.41	3.47 2.61 2.89 3.2v 3.05	3.37 3.29 2.2v 2.78 2.65	3.53 2.85 2.0v 3.41	2.32 2.62 2.74 3.24 2.9v	2.74 0.9v 2.77 2.82
89.5 Dec	-43 06 -42 04 +40 26 -25 14 -52 04	+33 21 - 9 21 -68 38 -40 37 +71 52	-44 39 +59 00 +26 45 -41 08 + 6 27	-3 24 -63 24 -26 05 +25 57 -38 22	-22 36 -19 47 - 3 40 - 4 40 -25 34	+61 32 -26 25 +21 31 -28 12
R.A. 15	14 57.8 14 58.5 15 01.5 15 03.5 15 11.5	15 15.1 15 16.4 15 17.9 15 20.7 15 20.7	15 22.0 15 24.7 15 34.2 15 34.4 15 43.7	15 49.1 15 54.2 15 58.3 15 59.0 15 59.4	15 59.7 16 04.8 16 13.8 16 17.8 16 20.5	16 23.8 16 28.8 16 29.8 16 35.2
Star Name	β Lup κ Cen β Boo σ Lib ζ Lup	δ Boo β Lib γ TrA δ Lup γ UMi	 ϵ Lup AB ℓ Dra α CrB γ Lup AB α Ser 	μ Ser β TrA π Sco A T CrB η Lup A	 δ Sco AB β Sco AB δ Oph ϵ Oph σ Sco A 	η Dra A α Sco A β Her τ Sco

	Atria	Aldhibah Sabik	Ras Algethi Sarin 0.14d	Restaban Shaula	Rasalhague Sargas Cebalrai	HR6630 Etamin
Remarks	A: 2.90; B: 5.53, G7 V, 1.1" ecl: 2.80-3.08, 1.4d	A: 3.0; B: 3.5, A3 V, 1″	var: 3.0–4.0; B: 5.4, 5" B: 8.8, 9" occ.bin: 3.4, 5.4; var: 3.25–3.29,	broad lines for Ib; B: 10.0, 18" B: 11.5, 4" var: 1.59–1.65, 0.21d	var: 2.39–2.42, 0.2d	BC: 9.78, 33″
RV(km/s)	-70 SB +8 V? -3 -3 -25 SB2	-56 -6 -17 V -1 SB -27	-33 V -40 SB -26 -28 -2 SB	-3 V 8 SB -20 V 0 SB -3 SB2	+13 SB? +1 -43 SB -14 SB -12 V	-16 V -28 SB +25 -28 +13
μ(")	0.614 0.089 0.044 0.661 0.031	0.293 0.037 0.033 0.033 0.102 0.286	0.035 0.159 0.029 0.021 0.024	0.011 0.032 0.026 0.075 0.075	0.255 0.016 0.076 0.030 0.164	0.808 0.006 0.064 0.025 0.118
D(ly)	31 120 110 89 89 610	140 110 310 63 53	630 94 330 610 580	2000 460 490 280 330	49 200 73 650 110	25 3500 130 100 140
M(V)	3.0 0.7 -1.0 0.1 -3.5	$\begin{array}{c} 0.1 \\ -0.2 \\ -1.8 \\ 1.4 \\ 1.4 \end{array}$	-3.2 0.7 -2.0 -3.1 -3.5	-5.8 -3.1 -3.5 -1.9 -3.5	0.7 -2.4 1.8 -4.2 0.1	- 4.0 - 8.0 - 0.1 - 0.3 0.2
π(")	$\begin{array}{c} 0.102\\ 0.034\\ 0.031\\ 0.022\\ \end{array}$	0.031 0.044 0.023 0.052 0.062	0.000 0.044 0.025 	0.000 0.007 0.007	0.067 0.027 0.030 0.033	0.133 0.019 0.040 0.025 0.021
MK Type	Gl IV G7.5 IIIb Fe–1 K2 IIb–IIIa K2 III B1.5 IVn	K2 III K4 III B6 III A2.5 Va F2p V:(Cr)	M5 Ib–II A1 Vann K3 IIab B2 IV K3 Ib–IIa	B1 Ib B2 IV G2 Ib–Ila B2 Vne B1.5 IV	A5 Vnn F1 III F0 IIIb B1.5 III K2 III	G5 IV F2 Ia K2 III K5 III K0 III
B-V	0.65 0.92 1.44 1.15 -0.20	1.15 1.60 -0.12 0.06 0.41	1.44 0.08 1.44 1.44 1.46	-0.13 -0.22 0.98 -0.17 -0.22	0.15 0.40 0.26 -0.22 1.16	0.75 0.51 1.17 1.52 0.99
>	2.81 3.53 1.92 2.29 3.1v	3.20 3.13 3.17 2.43 3.33	3.1v 3.14 3.16 3.3v 2.85	3.34 2.69 2.79 2.95 1.6v	2.08 1.87 3.54 2.4v 2.77	3.42 3.03 3.21 2.23 3.34
89.5 Dec	+31 37 +31 37 +38 57 -69 01 -34 16 -38 02	+ 9 23 -55 58 +65 44 -15 43 -43 14	+14 24 +24 51 +36 49 -24 59 -55 31	-56 22 -37 17 +52 19 -49 52 -37 06	$\begin{array}{c} +12 \ 34 \\ -43 \ 00 \\ -15 \ 24 \\ -39 \ 02 \\ + 4 \ 34 \end{array}$	+27 44 -40 07 -37 02 +51 29 - 9 46
R.A. 19	16 40.9 16 42.5 16 47.5 16 49.5 16 51.2	16 57.2 16 57.7 17 08.8 17 09.8 17 11.4	17 14.2 17 14.6 17 14.6 17 14.7 17 21.4 17 21.4	17 24.5 17 30.1 17 30.2 17 31.0 17 32.9	17 34.5 17 36.6 17 37.0 17 41.8 17 42.9	17 46.0 17 46.9 17 49.1 17 56.4 17 58.4
Star Name	ζ Her AB η Her α TrA ε Sco μ ¹ Sco	κ Oph ζ Ara ζ Dra η Oph AB η Sco	α Her AB δ Her π Her θ Oph β Ara	γ Ara A v Sco β Dra A λ Sco	α Oph θ Sco κ Sco β Oph	μ Her A t ¹ Sco G Sco γ Dra ν Oph
	Nash 38: IV:, 4" us Meridionalis Kaus Australis	Kaus Boreali Vega Sheliak	Nunk Sulaphat Ascella	" Albaldat odus Secundus	Albirec Tarazed Altair 7.2d	.7, <1" Dabil Sadı Peacock
-----------	---	---	--	---	---	---
Remarks	var: 3.08, 3.12; B: 8.33, C Ka	similar companion, 0.1" ecl: 3.34-4.34, 12.9d	A: 3.2; B: 3.5, <1″	A: 3.7; B: 3.8; C: 6.0, <1 [,] N	B: 5.11, 35" B: 6.4, F1 V, 2" Cepheid var: 3.50–4.30, '	A: mult: 4.0+4.3+4.8+6.
RV(km/s)	+22 SB +1 V? -20 +9 V? -15	0 V? -43 -14 V +22 SB -19 SB	-11 V -20 -21 V +22 SB -25 SB	-12 V +45 SB -10 +25 -30 SB	-24 V -20 SB -2 V -26 -15 SB	-33 -27 SB2 -19 SB +2 SB
μ(")	0.192 0.210 0.050 0.890 0.129	0.048 0.190 0.348 0.052 0.002	0.056 0.035 0.007 0.014 0.095	0.090 0.255 0.035 0.130 0.130	$\begin{array}{c} 0.002\\ 0.069\\ 0.016\\ 0.662\\ 0.009\end{array}$	0.070 0.037 0.039 0.001 0.087
D(ly)	120 210 140 56 76	480 62 25 220 150	170 130 190 74 110	120 92 110 45	380 140 270 16 860	220 170 560 800 150
M(V)	0.2 -1.0 -0.8 1.8 0.0	-2.4 0.7 0.6 -1.0 -0.3	-1.6 0.1 -0.6 1.4 0.3	0.6 0.7 -2.4 0.3 2.2	-2.2 -0.3 -2.2 -2.3 -5.1	-0.7 -0.3 -2.2 -5.1 -1.6
π('')	0.025 0.045 0.047 0.058 0.058	0.053 0.133 0.133 0.000	$\begin{array}{c} \\ 0.011 \\ 0.021 \\ 0.025 \\ 0.045 \end{array}$	0.032 0.044 0.026 0.032 0.032	0.017 0.030 0.016 0.202 0.010	0.013 0.012 0.010 0.003
MK Type	K0 III M3.5 IIIab K2.5 IIIa K0 III-IV A0 II:n(shell?)	B3 IV K1 IIIb A0 Va B8 III B7 Vpe (shell)	B3 IV K1 III B9 II A2 IV-V + A4:V: A0 Vann	A0 IVp (weak 4481) K1.5 IIIb F2 II-III G9 III F2 IV-V	K3 II + B9.5 V B9.5 III K3 II A7 Vnn F6-G1 Ib	M0 III B9.5 III K0: II: + A5: V:n F8 Ib B2.5 V
B-V	1.00 1.56 1.38 0.94 -0.03	-0.17 1.04 0.00 -0.11 0.00	-0.22 1.18 -0.05 0.08 0.01	-0.09 1.19 0.35 0.32 0.32	$\begin{array}{c} 1.13 \\ -0.03 \\ 1.52 \\ 0.22 \\ 0.90 \end{array}$	$\begin{array}{c} 1.57 \\ -0.07 \\ 0.79 \\ 0.68 \\ -0.20 \end{array}$
>	2.99 3.11 2.70 3.26 1.85	3.51 2.81 0.03 3.17 3.4v	2.02 3.51 3.24 2.60 2.99	3.44 3.32 3.32 3.07 3.36	3.08 2.87 2.72 0.77 3.5v	3.47 3.23 3.08 2.20 1.94
89.5 Dec	-30 25 -36 46 -29 50 - 2 54 -34 23	-45 58 -25 26 +38 46 -27 00 +33 21	-26 19 -21 07 +32 40 -29 54 +13 51	- 4 54 -27 41 -21 02 +67 39 + 3 06	$\begin{array}{r} +27 56 \\ +45 06 \\ +10 35 \\ +8 50 \\ +0 59 \end{array}$	$\begin{array}{c} +19 \ 28 \\ - \ 0 \ 51 \\ -14 \ 49 \\ +40 \ 13 \\ -56 \ 46 \end{array}$
R.A. 19	18 05.1 18 16.9 18 20.3 18 20.8 18 20.8	18 26.2 18 27.3 18 36.6 18 45.0 18 49.7	18 54.6 18 57.1 18 58.5 19 01.9 19 04.9	19 05.7 19 06.3 19 09.1 19 12.6 19 25.0	19 30.3 19 44.6 19 45.8 19 50.3 19 51.9	19 58.3 20 10.8 20 20.4 20 21.8 20 21.8
Star Name	γ ² Sgr η Sgr A δ Sgr η Ser ε Sgr	α Tel λ Sgr α Lyr φ Sgr β Lyr	σ Sgr ξ² Sgr γ Lyr ζ Sgr AB ζ Aql A	λ Aql τ Sgr π Sgr ABC δ Dra δ Aql	β Cyg A δ Cyg AB γ Aql α Aql η Aql	γ Sge θ Aql β Cap A γ Cyg α Pav

tar Name	R.A. 19	89.5 Dec	>	B-V	MK Type	π(")	M(V)	D(ly)	μ(")	RV(km/s)	Remarks
x Ind x Cyg 3 Pav 7 Cep	20 36.8 20 41.1 20 44.0 20 45.1 20 45.8	-47 20 +45 15 -66 14 +61 48 +33 56	3.11 1.25 3.42 3.43 2.46	1.00 0.09 0.16 0.92 1.03	K0 III CN-1 A2 Ia A6 IV K0 IV K0 III	0.046 0.000 0.035 0.076 0.057	-7.2 -7.2 1.5 3.1 0.2	120 1500 79 43 57	0.090 0.005 0.041 0.827 0.484	-1 -5 V +10 -87 -11 SB	Deneb
ς Cyg α Cep β Cep β Aqr ε Peg	21 12.5 21 18.3 21 28.5 21 31.0 21 43.7	+30 11 +62 32 +70 31 - 5 37 + 9 49	3.20 2.44 3.2v 2.91 2.4v	0.99 0.22 -0.22 0.83 1.53	G8 IIIa Ba 0.6 A7 Van B1 III G0 Ib K2 Ib	0.027 0.068 0.014 0.006 0.006	-0.8 2.0 -4.4 -4.0	200 48 1000 710 470	0.052 0.159 0.016 0.020 0.030	+17 SB -10 V -8 SB +7 +5 V	var: 3.16-3.27, 0.2d; B: 7.8, 13" Alderamin var: 0.1-3.5 (flare in 1972) Enif
δ Cap γ Gru α Aqr α Gru θ Peg	21 46.5 21 53.3 22 05.2 22 07.6 22 09.7	$\begin{array}{r} -16 \ 11 \\ -37 \ 25 \\ - \ 0 \ 22 \\ -47 \ 01 \\ + \ 6 \ 09 \end{array}$	2.9v 3.01 2.96 1.74 3.53	0.29 0.12 0.98 0.13 0.08	A3mF2 IV: B8 IV-Vs G2 Ib B7 Vn A2mA1 IV-V	0.087 0.013 0.012 0.057 0.057	1.5 -1.2 -4.0 -1.1	37 230 680 57 82	0.394 0.104 0.016 0.198 0.198	-6 SB -2 V? +8 V? +12 -6 SB2	var: 2.83–3.05, 1d; occ.bin: 3.2 + 5.2 Sadalmelik Al Nair Baham
ς Cep α Tuc δ Cep A ζ Peg β Gru	22 10.5 22 17.8 22 28.8 22 40.9 22 42.0	$\begin{array}{c} +58 & 09 \\ -60 & 19 \\ +58 & 22 \\ +10 & 47 \\ -46 & 56 \end{array}$	3.35 2.86 3.5v 3.40 2.1v	1.57 1.39 0.60 -0.09 1.60	K1.5 Ib K3 II F5-G2 Ib B8.5 III M5 III	0.017 0.026 0.011 0.013 0.023 0.008	-4.0 0.0 -5.1 0.1 -1.0	750 100 140	0.015 0.071 0.012 0.080 0.138	-18 SB +42 SB -15 SB +7 V? +2	Cepheid variable: 3.48–4.34, 5.4d Var: 2.0–2.3
η Peg ε Gru ι Cep μ Peg δ Aqr	22 42.5 22 47.9 22 49.3 22 49.5 22 49.5 22 54.1	$\begin{array}{c} +30 \ 10 \\ -51 \ 22 \\ +66 \ 09 \\ +24 \ 33 \\ -15 \ 53 \end{array}$	2.94 3.49 3.52 3.48 3.48 3.48	0.86 0.08 1.05 0.93 0.05	G8 II + F0 V A2 Va K0 III G8 III A3 V: (weak 4481)	0.017 0.044 0.041 0.040 0.038	-2.1 1.0 0.2 0.3 1.2	330 97 140 140 85	0.025 0.126 0.137 0.152 0.152	+4 SB 0 V -12 +14 +18 V	Matar Skat
α PsA β Peg α Peg γ Cep	22 57.1 23 03.3 23 04.2 23 38.9	-29 41 +28 02 +15 09 +77 34	1.16 2.4v 2.49 3.21	0.09 1.67 -0.04 1.03	A3 Va M2 II–III A0 III–IV K1 III–IV	0.149 0.022 0.038 0.068	2.0 -2.0 0.7 1.5	22 220 74 48	0.373 0.236 0.073 0.168	+7 +9 V -4 SB -42	Fomalhaut var: 2.31–2.74 Eomalhaut Markab Alrai

THE NEAREST STARS

BY ALAN H. BATTEN

Measuring the distances of stars is one of the most difficult and important jobs of the observational astronomer. As Earth travels round the Sun each year, the apparent positions of nearby stars—against the background of more distant ones—change very slightly. This change is the *annual parallax*. Even for the closest star to our Sun, Proxima Centauri, it is only about three-quarters of an arc-second: that is, the apparent size of a penny viewed from rather more than 5 km distance. A graphic way of conveying the distances to stars is to speak of a *light-year*, the distance (about ten million million km) that light travels in a year. The first astronomers to measure parallax spoke in this way, but modern astronomers prefer to speak of a *parsec*—the distance at which a star would have a parallax of exactly one arc-second. One parsec is equal to about 3.26 light-years. The distance of a star in parsecs is simply the reciprocal of its parallax expressed (as in the table) in arc-seconds.

Attempts to determine annual parallax have played an important role in the history of astronomy. One convincing determination of the parallax of a star would have provided Galileo with the proof of the heliocentric theory he so desperately needed, but it was beyond the capabilities of his telescopes. Two unsuccessful attempts led to important discoveries of other things. James Bradley (1693–1762), who showed that parallaxes must certainly be less than 2" and probably less than 1", discovered the aberration of light. William Herschel (1738–1822) believed the best chance of measuring parallax was offered by double stars – which he at first believed to be only optical pairs – and so made the measurements that proved the existence of *binary stars* (his own term) in which the components revolve around their mutual centre of mass.

It is well known that three men, F. W. Bessel (1785–1846), F. G. W. Struve (1793–1864) and Thomas Henderson (1798–1844), succeeded almost simultaneously (in the 1830s) in measuring convincing parallaxes for 61 Cygni, α Lyrae and α Centauri respectively. For different reasons, each man delayed publication of his result and some arguments about priority are still heard. Undoubtedly, Bessel's paper was published first (1838): contemporaries credited him with being the first to measure a parallax successfully, and posterity has – for the most part – confirmed that judgment. Bessel received the Royal Astronomical Society's Gold Medal in 1841, specifically for his achievement. Sir John Herschel's address on this occasion is often quoted, but it bears repetition:

I congratulate you and myself that we have lived to see the great and hitherto impassable barrier to our excursions into the sidereal universe; that barrier against which we have chafed so long and so vainly ... almost simultaneously overleaped at three different points. It is the greatest and most glorious triumph that practical astronomy has ever witnessed. Perhaps I ought not to speak so strongly – perhaps I should hold some reserve in favour of the bare possibility that it may all be an illusion – and that further researches, as they have repeatedly before, so may now fail to substantiate this noble result. But I confess myself unequal to such prudence under such excitement. Let us rather accept the joyful omens of the time and trust that, as the barrier has begun to yield, it will speedily be effectually prostrated. Such results are among the fairest flowers of civilization.

Herschel's hope for the speedy prostration of the barrier was not fulfilled. Only a few stars have parallaxes large enough to be detected by even the most skilful visual observers. Until photography reached the stage at which it could be used for accurate positional measurements, the number of known parallaxes grew very slowly. Even today, the direct measurement of stellar parallax is impossible beyond about 50 to 100 parsecs (150 to 300 light-years), except for a few visual binaries whose radial velocities have also been observed. All our knowledge of greater distances depends on inference and indirect estimates. We may soon overleap another barrier, however. Astrometric measurements from space promise greater accuracy and should enable us to extend the radius within which we can determine distances directly. Yet it is ironical that the results that so excited Herschel are now obtained by routine observations, to which only very few astronomers are prepared to dedicate their lives.

The accompanying table lists all the stars known to be within a distance of just over 5 parsecs (17 light-years) from the Sun. The table is based on one published in Volume 8 of the *Landolt-Bornstein* tabulations by Professor W. Gliese. It contains, however, two additional objects, one of which was drawn to my attention by Professor Gliese and the other (L143-23) whose parallax was first published in 1986 by Ianna and Bessell (no relation to Bessel!) in a paper brought to my attention by Dr. R. S. Harrington.

All the parallaxes given here are uncertain by several units in the last decimal; some are uncertain in the second decimal. It is thus inevitable that the order of stars of nearly equal parallaxes will change, either because of new results or because different compilers evaluate differently the quality of individual determinations of parallax that make up the means recorded here.

The table gives the name of each star, its coordinates for 2000, its parallax π , its distance in light-years, its spectral type, proper motion (seconds of arc per year), position angle of the proper motion (measured from north through east), total space velocity relative to the Sun (km s^{-1} , where known, with the sign of the radial velocity), apparent (V) and absolute (M_v) visual magnitudes. A colon (:) after a tabular entry indicates that the value is uncertain. The 1985 revision of the table provided an opportunity to improve the presentation of the spectral types. Dr. R. F. Wing classified all the stars in the old table on the MK system, except the white dwarfs, the stars of type K3 or earlier (whose spectral types are given in the Bright Star Catalogue), the Sun, and those whose parallaxes are less than 0".2. He kindly provided his data in advance of publication and I adopted his classifications, except that I retained the e, indicating the presence of emission lines in the spectrum. Classifications given for the white dwarfs (indicated by D) are taken from Gliese's table. I know of no spectral types for the newcomers LP 731-58 and L143-23, but their colours correspond to early and late M-type, respectively. In general, I have used the same names for stars as in earlier versions of the table. I have, however, given the two components of Σ 2398 their B.D. number, and changed the designation of α Centauri C to Proxima. This latter change emphasizes that Proxima is indeed somewhat closer to us than α Centauri itself. Some readers may enjoy working out the true spatial separation between Proxima and its brighter companions.

The table contains 65 stars. Of these, 35 are single (including the Sun, whose planets are not counted), 24 are found in 12 double systems, and six in the two triple systems o^2 Eridani and α Centauri (with Proxima). There is some evidence for unseen companions of low mass associated with nine of the stars. The list gives an idea of the frequencies of different kinds of stars in our part of the Galaxy. Only four of the stars are brighter than the Sun; most are very much fainter and cooler. No giants or very hot massive stars are found in the solar neighbourhood.

Not all astronomers agree about all the suspected unseen companions. The existence of some is well established while that of others is inferred from perturbations not much larger than the errors of observation. Does the Sun have a stellar companion? Such a companion must be faint—or we would already have detected it—and would have very small proper motion and radial velocity since it would be travelling through space with the Sun. Faint stars with small proper motions are unlikely to be selected for parallax measurement. Thus we may never know for sure whether we have a companion or not.

		2000									
Name	α		δ	π	D	Sp.	μ	θ	W	v	M_{ν}
a	hm	•	,	"	1.y.		"/a	0	km/s		
Sun	1 1 20		4.1	0.770		G2V	2.05	0.00		-26.72	4.85
Proxima	14 30	-02	41	0.772	4.2	M5.5Ve	3.85	282	-29	11.05	15.49
	14 40	-00	50	./50	4.5		3.08	281	-32	-0.01	4.3/
D Barnard's*	17 59	+04	34	545	60	MARV	10.21	256	-140	1.55	3./1
Wolf 359	10 56	1+07	01	421	77	M5.8Ve	4 70	235	+54	13 53	16 65
BD+36°2147*	11 03	+35	58	397	8.2	M2.1Ve	4.78	187	-102	7.50	10.50
L-726-8A	01 39	-17	57	.387	8.4	1	3.36	80	+50	12.52	15.46
В						}M5.6Ve{	[+52	13.02	15.96
Sirius A	06 45	-16	43	.377	8.6	AlVm	1.33	204	-19	-1.46	1.42
B	10 50		50			DA				8.3:	11.2:
Ross 154	18 50	-23	50	.345	9.4	M3.6Ve	0.72	104	-11	10.45	13.14
KOSS 248	23 42	+44	10	.314	10.4	M4.9Ve	1.60	1/0	-85	12.29	14.78
Ross 128	11 49	+00	28 48	.303	10.8	MA 1V	0.98	152	+22 -26	3./3	0.14
61 Cvg A	21 07	+38	45	294	111 1	K3 5Ve	5 22	52	-106	5 22	7 56
B*		1.50				K4.7Ve	0.22	52	100	6.03	8.37
€ Ind	22 03	-56	47	.291	11.2	K3Ve	4.70	123	-86	4.68	7.00
BD+43°44A	00 18	+44	01	.290	11.2	M1.3Ve	2.90	82	+49	8.08	10.39
В						M3.8Ve			+51	11.06	13.37
L789-6	22 39	-15	19	.290	11.2		3.26	46	-80	12.18	14.49
Procyon A	0/ 39	+05	13	.285	11.4	F5IV-V	1.25	214	-21	0.37	2.64
BD+50°1015A	18 /3	+ 50	28	202	116	DF M2 OV	2 20	225	20+	10.7	13.0
BD+39 1913A	10 45	1 7 39	30	.202	11.0	M3.0V	2.29	323	+30	0.90	11.15
CD-36°15693	23 06	-35	52	279	11 7	MI 3Ve	6 90	70	+117	7 35	9 58
G51-15	08 30	+26	47	278	11.7	M6.6V	1.27	242	117	14 81	17 03
τCet	01 44	-15	56	.277	11.8	G8V	1.92	297	-37	3.50	5.72
BD5°1668*	07 26	05	14	.266	12.3	M3.7V	3.77	171	+72	9.82	11.94
L725-32	01 12	-17	00	.261	12.5	M4.5Ve	1.32	62	+37	12.04	14.12
CD-39°14192	21 17	-38	52	.260	12.5	K5.5Ve	3.46	251	+66	6.66	8.74
Kapteyn's	05 12	-45	01	.256	12.7	M0.0V	8.72	131	+293	8.84	10.88
Kruger oUA	22 28	+5/	42	.253	12.9	{M3.3Ve	0.86	246	-31	9.85	11.87
BD-12°4253	16 30	-12	30	247	13.2	M3 5V	1 18	183	26	10.11	13.5
Ross 614A	06 29	-02	49	246	13.3	1 ^{113.3}	1 00	133	$+31^{20}$	11 10	13 12
В	00 29	"-			15.5	}M4.5Ve{	1.00	155	1 31	14.	16.
van Maanen's	00 49	+05	23	.232	14.1	DG	2.99	155	+82	12.37	14.20
Wolf 424A	12 33	+09	01	.230	14.2	345 24.5	1.76	279	-37	13.16	14.97
B			• •			JM5.5Vel				13.4	15.2
CD-37°15492	00 06	-37	21	.225	14.5	M2.0V	6.11	112	+131	8.56	10.32
L1139-10		+13	03	.224	14.0	M4.5Ve	2.09	149	10	12.26	14.01
L 143-23	10 11	-62	13	221	14.7	KJ.UVE	1.45	230	-40	12 02	0.52
LP731-58	10 48	-11	20	219	14.0		1.05	160		15.52	17 30
CD-46°11540	17 29	-46	54	.216	15.1	M2.7V	1.06	147		9.37	11.04
G158-27	00 07	-07	33	.214	15.2	M5.5:	2.04	204		13.74	15.39
CD-49°13515	21 34	-49	00	.214	15.2	M1.8V	0.81	184	+20	8.67	10.32
CD-44°11909*	17 37	-44	20	.213	15.3	M3.9V	1.16	217		10.96	12.60
BD+68°946*	17 36	+68	21	.213	15.3	M3.3V	1.31	196	-37	9.15	10.79
G208–44 A* ₽	19 54	+44	25	.211	15.5	M5.	0.74	143		13.41	15.03
BD-15%290	22 53	-14	16	200	15.6	M3 OV	1 14	124	+27	10.17	11 77
o ² Eri A	04 15	-07	39	207	15.0	KIV	4 08	213	-102	4 43	6.01
B	0. 10	0,	57		10.7	DA	4.07	212	-96	9.52	11.10
С						M4.3Ve			(-45)‡	11.17	12.75
BD+20°2465*	10 20	+19	52	.206	15.8	M3.3Ve	0.49	264	+16	9.43	11.00
L145-141	11 46	-64	50	.206	15.8	DC	2.68	97		11.50	13.07
/U Oph A	18 05	+02	30	.203	16.1	KOVe	1.12	167	-27	4.22	5.76
D BD+43°4205*	22 17	+44	20	200	16.2	K4Ve M5e	0.02	226	_20	0.00	11.7
Altair	19 51	+08	52	198	16.5	A7V	0.65	230	-20 -30	0.76	2 24
AC+79°3888	11 48	+78	42	193	16.9	M4:	0.89	57	-121	10.80	12 23
G9-38A	08 58	+19	45	.192	17.0		0.89	267		14.06	15.48
В	_									14.92	16.34
BD+15°2620	13 46	+14	54	.192	17.0	M1.7Ve	2.30	129	+59	8.49	9.91

*Suspected unseen companion. †Radial velocity is zero. ‡Radial velocity only.

DOUBLE AND MULTIPLE STARS By Charles E. Worley

Many stars can be separated into two or more components by use of a telescope. The larger the aperture of the telescope, the closer the stars which can be separated under good seeing conditions. With telescopes of moderate size and good optical quality, and for stars which are not unduly faint or of large magnitude difference, the minimum angular separation in seconds of arc is given by 120/D, where D is the diameter of the telescope's objective in millimetres.

The following lists contain some interesting examples of double stars. The first list presents pairs whose orbital motions are very slow. Consequently, their angular separations remain relatively fixed and these pairs are suitable for testing the performance of small telescopes. In the second list are pairs of more general interest, including a number of binaries of short period for which the position angles and separations are changing rapidly.

In both lists the columns give, successively: the star designation in two forms; its right ascension and declination for 1980; the combined visual magnitude of the pair and the individual magnitudes; the apparent separation and position angle for 1989.0; and the period, if known. (The position angle is the angular direction of the fainter star from the brighter, measured counterclockwise from north.)

Many of the components are themselves very close visual or spectroscopic binaries. (Other double stars appear in the tables of Nearest Stars and Brightest Stars. For more information about observing these stars, see the articles by: J. Ashbrook in *Sky and Telescope*, **60**, 379 (1980); J. Meeus in *Sky and Telescope*, **41**, 21 and 89 (1971); and by C. E. Worley in *Sky and Telescope*, **41**, 21 and 89 (1971); and by C. E. Worley in *Sky and Telescope*, **49**, 2010; J. The latter two articles have been reprinted by Sky Publishing Corp., 49 Bay State Road, Cambridge, Mass. 02238 under the titles *Some Bright Visual Binary Stars* and *Visual Observing of Double Stars*, each \$1.95 U.S.—Ed.)

			R.A. Dec.						P.A.	Sep.	P	
	Star	A.D.S.	h	198 m	so.0 _°	,	comb.	A	В	°19	89.0	(app.) years
λ	Cas	434	00	30.7	+54	26	4.9	5.5	5.8	186	0.6	640
α	Psc	1615	02	01.0	+02	40	4.0	4.3	5.3	279	1.9	930
33	Ori	4123	05	30.2	+03	16	5.7	6.0	7.3	28	1.9	
ΟΣ	156	5447	06	46.3	+18	13	6.1	6.8	7.0	234	0.5	1100
Σ	1338	7307	09	19.7	+38	17	5.8	6.5	6.7	269	1.1	400
35	Com	8695	12	52.3	+21	21	5.1*	5.2	7.4	172	1.1	500
Σ	2054	10052	16	23.6	+61	44	5.6	6.0	7.2	353	1.1	
¢'	Lyr†	11635	18	43.7	+39	38	5.1	5.4	6.5	353	2.6	1200
€ ²	Lyr†	11635	18	43.7	+39	38	4.4	5.1	5.3	87	2.3	600
π	Aql	12962	19	47.7	+11	45	5.6	6.0	6.8	108	1.4	-
61	Cyg	14636	21	05.5	+38	34	4.8	5.2	6.0	148	29.9	722
0Σ	500	16877	23	36.5	+44	20	5.9	6.4	7.1	0	0.5	
η	Cas	671	00	47.7	+57	44	3.5*	3.5	7.2	312	12.4	480
Σ	186	1538	01	54.8	+01	45	6.0	6.8	6.8	57	1.3	170
γ	And AB	1630	02	02.4	+42	16	2.1*	2.1	5.1	63	9.7	
γ_	And BC	1630	02	02.4	+42	16	5.1	5.5	6.3	106	0.6	61
0Σ	65	2799	03	49.2	+25	32	5.2	5.8	6.2	211	0.4	62
α	СМа	5423	06	44.3	-16	40	-1.4	-1.4	8.5	14	5.4	50
α	Gem	6175	07	33.3	+31	55	1.6	2.0	2.8	80	3.0	500
ζ	Cnc AB	6650	08	11.1	+17	43	5.0	5.6	5.9	194	0.6	60
ζ	Cnc AC	6650	08	11.1	+17	43	5.2	5.4	7.3	77	5.9	1150
σź	UMa	7203	09	08.6	+67	13	4.8*	4.8	8.2	358	3.5	1100
γ	Leo	7724	10	18.9	+19	57	1.8	2.1	3.4	124	4.4	620
ξ	UMa	8119	11	17.1	+31	39	3.8	4.3	4.8	70	1.5	60
γ	Vir	8630	12	40.7	-01	21	2.8	3.5	3.5	288	3.1	170
Ę	Boo	9343	14	40.1	+13	49	3.8	4.5	4.5	303	1.0	125
ξ	Boo	9413	14	50.4	+19	12	4.5	4.7	6.8	326	7.1	150
ζ	Her	10157	16	40.6	+31	38	2.8	2.9	5.5	90	1.6	35
T	Oph	11005	18	01.9	-08	11	4.7	5.2	5.9	280	1.8	280
70	Oph	11046	18	04.5	+02	32	4.0	4.2	6.0	240	1.6	88
δ	Cyg	12880	19	44.4	+45	04	2.9*	2.9	6.3	228	2.4	830
4	Aqr	14360	20	50.4	-05	53	6.0	6.4	7.2	15	0.9	190
τ	Cyg	14787	21	13.9	+37	57	3.7	3.8	6.4	39	0.5	50
μ	Cyg	15270	21	43.2	+28	39	4.5	4.8	6.1	306	1.6	500
5	Aqr	159/1	22	27.8	00	08	3.6	4.3	4.5	209	1.9	850
<u>2</u>	3050	17149	23	58.5	+33	57	5.8	6.5	6.7	321	1.6	350

*There is a marked colour difference between the components.

[†]The separation of the two pairs of ϵ Lyr is 208".

VARIABLE STARS By Janet A. Mattei

Variable stars provide information about many stellar properties. Depending upon their type, variables can tell the mass, radius, temperature, luminosity, internal and external structure, composition, and evolution of stars. The systematic observation of variable stars is an area in which an amateur astronomer can make a valuable contribution to astronomy.

For beginning observers, charts of the fields of four different types of bright variable stars are printed below. On each chart, the magnitudes (with decimal point omitted) of several suitable comparison stars are shown. A brightness estimate of the variable is made using two comparison stars, one brighter, one fainter than the variable. The magnitude, date, and time of each observation are recorded. When a number of observations have been made, a graph of magnitude versus date may be plotted. The shape of this "light curve" depends on the type of variable. Further information about variable star observing may be obtained from the American Association of Variable Star Observers, 25 Birch St., Cambridge, Massachusetts 02138-1205, U.S.A.

The first table on the next page is a list of long-period variables, brighter than magnitude 8.0 at maximum, and north of -20° . The first column (the Harvard designation of the star) gives the position for the year 1900: the first four figures give the hours and minutes of right ascension, the last two figures the declination in degrees (italicised for southern declinations). The column headed "Max." gives the mean maximum magnitude. The "Period" is in days. The "Epoch" gives the predicted date of the earliest maximum occurring this year; by adding multiples of the period to this epoch the dates of subsequent maxima may be found. These variables may reach maximum two or three weeks before or after the epoch and may remain at maximum for several weeks. This table is prepared using the observations of the American Association of Variable Star Observers.

The second table contains stars which are representative of some other types of variables. The data for the preparation of the predicted epoch of maximum or minimum are taken from the *General Catalog of Variable Stars*, Vols. I and II, 4th ed., for eclipsing binaries and RR Lyrae variables from *Rocznik Astronomiczny Obserwatorium Krakowskiego 1988*, International Supplement.

Variable	Max. m _v	Per d	Epoch 1989	Variable	Max. m _v	Per d	Epoch 1989
001755 T Cas	7.8	445	July 2	142539 V Boo	7.9	258	Apr. 17
001838 R And	7.0	409	June 10	143227 R Boo	7.2	223	Apr. 20
021143 W And	7.4	397	Nov. 20	151731 S CrB	7.3	361	Nov. 30
021403 o Cet	3.4	332	Nov. 14	154639 V CrB	7.5	358	June 23
022813 U Cet	7.5	235	Jan. 15	154615 R Ser	6.9	357	May 1
023133 R Tri	6.2	266	Apr. 15	160625 RU Her	8.0	484	Sept. 27
043065 T Cam	8.0	374	Jan. 20	162119 U Her	7.5	406	Nov. 13
045514 R Lep	6.8	432	July 14	162112 V Oph	7.5	298	Sept. 8
050953 R Aur	7.7	459	June 12	163266 R Dra	7.6	245	Aug. 3
054920 U Ori	6.3	372	Dec. 9	164715 S Her	7.6	307	Oct. 22
061702 V Mon	7.0	335	May 10	170215 R Oph	7.9	302	Apr. 18
065355 R Lyn	7.9	379	Oct. 23	171723 RS Her	7.9	219	Mar. 13
070122 R Gem	7.1	370	Sept. 25	180531 T Her	8.0	165	Mar. 25
070310 R CMi	8.0	338	Aug. 4	181136 W Lyr	7.9	196	May 12
072708 S CMi	7.5	332	Jan. 27	183308 X Oph	6.8	334	July 19
081112 R Cnc	6.8	362	Nov. 22	190108 R Aql	6.1	300	June 2
081617 V Cnc	7.9	272	Feb. 1	191017 T Sgr	8.0	392	Mar. 29
084803 S Hya	7.8	257	Apr. 28	1910/9 R Sgr	7.3	269	May 19
085008 T Hya	7.8	288	Sept. 9	193449 R Cyg	7.5	426	Apr. 5
093934 R LMi	7.1	372	July 7	194048 RT Cyg	7.3	190	Apr. 14
094211 R Leo	5.8	313	Apr. 7	194632 χ Cyg	5.2	407	Dec. 22
103769 R UMa	7.5	302	June 14	201647 U Cyg	7.2	465	Sept. 20
121418 R Crv	7.5	317	Jan. 7	204405 T Aqr	7.7	202	Feb. 22
122001 SS Vir	6.8	355	Jan. 2	210868 T Cep	6.0	390	July 8
123160 T UMa	7.7	257	May 16	213753 RU Cyg	8.0	234	Aug. 13
123307 R Vir	6.9	146	Apr. 1	230110 R Peg	7.8	378	June 4
123961 S UMa	7.8	226	Feb. 21	230759 V Cas	7.9	228	Feb. 23
131546 V CVn	6.8	192	Mar. 30	231508 S Peg	8.0	319	Jan. 26
132706 S Vir	7.0	378	July 2	233815 R Agr	6.5	387	Oct. 24
134440 R CVn	7.7	328	Nov. 1	235350 R Cas	7.0	431	
142584 R Cam	7.9	270	July 24	235715 W Cet	7.6	351	July 26
	1		1 7			1	1 1

LONG-PERIOD VARIABLE STARS

OTHER TYPES OF VARIABLE STARS

Va	riable	Max. m _v	Min. m _v	Туре	Sp. Cl.	Period d	Epoch 1989 U.T.
005381	U Cep	6.7	9.8	Ecl.	B8+gG2	2.49307	Jan. 1.80*
025838	ρ Per	3.3	4.0	Semi R	M4	33-55, 1100	
030140	β Per	2.1	3.3	Ecl.	B8+G	2.86731	
035512	λTau	3.5	4.0	Ecl.	B3	3.952952	Jan. 2.63*
060822	η Gem	3.1	3.9	Semi R	M3	233.4	
061907	T Mon	5.6	6.6	δCep	F7-K1	27.024649	Jan. 14.54
065820	ζ Gem	3.6	4.2	δCep	F7-G3	10.15073	Jan. 4.74
154428	R Cr B	5.8	14.8	R Cr B	cFpep		
171014	α Her	3.0	4.0	Semi R	M5	50–130, 6 yrs.	_
184205	R Sct	5.0	7.0	RVTau	G0e-K0p	144	
184633	βLyr	3.4	4.3	Ecl.	B8 -	12.93681†	Jan. 2.12*
192242	RR Lyr	6.9	8.0	RR Lyr	A2-F1	0.566839	Jan. 1.39
194700	η Aql	3.5	4.3	δCep	F6-G4	7.176641	Jan. 4.90
222557	δCep	3.5	4.4	δCep	F5-G2	5.366341	Jan. 6.08
		1	1		J	1	1

*Minimum.

†Changing period.

BRIEF DESCRIPTION OF VARIABLE TYPES

Variable stars are divided into four main classes: Pulsating and eruptive variables where variability is intrinsic due to physical changes in the star or stellar system; eclipsing binary and rotating stars where variability is extrinsic due to an eclipse of one star by another or the effect of stellar rotation. A brief and general description about the major types in each class is given below.

I. Pulsating Variables

Cepheids: Variables that pulsate with periods from 1 to 70 days. They have high luminosity and the amplitude of light variation ranges from 0.1 to 2 magnitudes. The prototypes of the group are located in open clusters and obey the well known period-luminosity relation. They are of F spectral class at maximum and G to K at minimum. The later the spectral class of a Cepheid the longer is its period. Typical representative: δ Cephei.

 $R\bar{R}$ Lyrae Type: Pulsating, giant variables with periods ranging from 0.05 to 1.2 days with amplitude of light variation between 1 and 2 magnitudes. They are usually of A spectral class. Typical representative: RR Lyrae.

RV Tauri Type: Supergiant variables with characteristic light curve of alternating deep and shallow minima. The periods, defined as the interval between two deep minima, range from 30 to 150 days. The amplitude of light variation may be as much as 3 magnitudes. Many show long term cyclic variation of 500 to 9000 days. Generally the spectral classes range from G to K. Typical representative: R Scuti. Long period—Mira Ceti variables: Giant variables that vary with amplitudes from 2.5 to 5 magnitudes or more. They have well defined periodicity, ranging from 80 to 1000 days. They show characteristic emission spectra of late spectral classes of M, C, and S. Typical representative: o Ceti (Mira).

Semiregular Variables: Giants and supergiants showing appreciable periodicity accompanied by intervals of irregularities of light variation. The periods range from 30 to 1000 days with amplitudes not more than 1 to 2 magnitudes in general. Typical representative: R Ursae Minoris.

Irregular Variables: Stars that at times show only a trace of periodicity or none at all. Typical representative: RX Leporis.

II. Eruptive Variables

Novae: Close binary systems consisting of a normal star and a white dwarf that increase 7 to 16 magnitudes in brightness in a matter of 1 to several hundreds of days. After the outburst, the star fades slowly until the initial brightness is reached in several years or decades. Near maximum brightness, the spectrum is generally similar to A or F giants. Typical representative: CP Puppis (Nova 1942).

Supernovae: Brightness increases 20 or more magnitudes due to a gigantic stellar explosion. The general appearance of the light curve is similar to novae. Typical representative: CM Tauri (Supernova of A.D. 1054 and the central star of the Crab Nebula).

R Coronae Borealis Type: Highly luminous variables that have non-periodic drops in brightness from 1 to 9 magnitudes, due to the formation of "carbon soot" in the stars' atmosphere. The duration of minima varies from a few months to years. Members of this group have F to K and R spectral class. Typical representative: R Coronae Borealis.

U Geminorum Type: Dwarf novae that have long intervals of quiescence at minimum with sudden rises to maximum. Depending upon the star, the amplitude of eruptions range from 2 to 6 magnitudes, and the duration between outbursts ten to thousands of days. Most of these stars are spectroscopic binaries with periods of few hours. Typical representative: SS Cygni.

Z Camelopardalis Type: Variables similar to U Gem stars in their physical and spectroscopic properties. They show cyclic variations interrupted by intervals of

constant brightness (stillstands) lasting for several cycles, approximately one third of the way from maximum to minimum. Typical representative: Z Camelopardalis.

III. Eclipsing Binaries

Binary system of stars with the orbital plane lying near the line of sight of the observer. The components periodically eclipse each other, causing decrease in light in the apparent brightness of the system, as is seen and recorded by the observer. The period of the eclipses coincides with the period of the orbital motion of the components. Typical representative: β Persei (Algol).

IV. Rotating Variables

Rapidly rotating stars, usually close binary systems, which undergo small amplitude changes in light that may be due to dark or bright spots on their stellar surface. Eclipses may also be present in such systems. Typical representative: R Canum Venaticorum.

THE STAR OF THE YEAR—P CYGNI

P Cygni, the remarkable, especially luminous blue supergiant, is our Star of the Year. When it was discovered in August 1600 by the Dutch astronomer and mathematician Willem Blaeuw of Amsterdam, this now 5th magnitude naked-eye star was in outburst and appeared as a 3rd magnitude star. From its discovery until 1715 its brightness fluctuated drastically between 3rd and 6th magnitudes. Since then it has remained around 5th magnitude, with small amplitudes of variation as long as 18 years and as short as 0.5 days (M. De Groot, 1986, JAAVSO, 15, 12).

Because of its sudden brightening in the 17th century, P Cygni is sometimes included in the list of novae and referred to as "Nova Cygni #1." However, it is not an ordinary nova. C.P. Gaposchkin in her book, *The Galactic Novae*, refers to P Cygni as "a bright star which underwent something akin to a shell activity when it brightened to 3rd magnitude in 1600." The evidence for the expanding shell appears in its interesting spectra where strong emission lines are bordered by blue-shifted sharp absorption components (the so-called P Cygni profile) and implies mass loss and more rapid expansion of the outer regions of the shell than the inner.

P Cygni has been in the visual observing program of the AAVSO for decades to look for reoccurences of long-term, large amplitude variations. One observation per week by observers with small telescopes or binoculars is sufficient to monitor its behavior.

P Cygni is an excellent object for photometrists with small-aperture telescopes to monitor. In fact, it is only through continuous photoelectric observations made every clear night that we are able to study its short-term, small-amplitude variations.

Figure 2 is a finder chart both for visual observers and for photometrists. P Cygni is located near $20^{h}15^{m}$, + 38° . 22 Cygni and 36 Cygni, the comparison and check stars to be used by photometrists, are shown with four-digit magnitudes. The V/(B-V)/(U-B) values for 22 Cygni and 36 Cygni are 4.949/-0.092/-0.523 and 5.594/0.048/0.028, respectively.

The compilation of photoelectric observations in 1985 and 1986 from amateur and professional astronomers (J. Percy *et al.*, 1988, *Astron. Astrophys.*, 191, 248) shows that P Cygni varies irregularly by about 0.2 magnitude in the V on time scales ranging from a few days to a few months, with a characteristic time scale of 35 to 40 days. The analysis of the AAVSO visual observations by the same authors suggests that although there is no strict periodicity or regularity, there is some evidence for a long-term variation with a range of 0.2 magnitude.

Figure 1 shows the UBV photoelectric light curve for 1985 (AAVSO Photoelectric Photometry Newsletter, 7, No. 2) used in the Percy *et al.* study. As may be seen from this figure, the largest amplitude of variation occurs in V, whereas the (B-V) and

(U-B) color variations are much smaller in amplitude. The cause(s) of variation is not yet very clear — complex pulsation or rotation of the system or even the existence of a companion has been suggested. Visual monitoring will alert the astronomical community to increased activity in P Cygni. Long-term photoelectric monitoring will not only help to find the cause of variation, but correlations between photometric and spectroscopic observations may also help to find the connection between episodes of shell ejection and mass loss in this fascinating variable.

Figure 1. Photoelectric light curve of **P** Cygni for 1985 by AAVSO photometrists (W. E. Clark, H. J. Landis, R. Milton, and R. C. Reisenweber) and astronomers at the University of Toronto, the Hvar Observatory in Yugoslavia, the Ondrejov Observatory in Czechoslovakia, and the Konkoly Observatory in Hungary (AAVSO Photoelectric Photometry Newsletter, 7, No. 2, 1987).

Figure 2. Finding chart for **P** Cygni, with comparison stars suitable for visual and photoelectric observation. 22 Cygni and 36 Cygni, shown with 4-digit magnitudes, are the comparison and check stars, respectively, for photoelectric observations.

STAR CLUSTERS

BY ANTHONY MOFFAT

The study of star clusters is crucial for the understanding of stellar structure and evolution. For most purposes, it can be assumed that the stars seen in a given cluster formed nearly simultaneously from the same parent cloud of gas and dust; thus, the basic factor which distinguishes one star from another is the quantity of matter each contains. Comparing one cluster with another, it is essentially only the age and the chemical composition of their stars that differ. But what makes one cluster appear different from another in the sky is mainly the degree of concentration and regularity, the spread in magnitude and colour of the member stars, all of which vary mainly with age, and the total number of stars. Extremely young clusters are often irregular in shape with clumps of newly formed stars, pervaded by lanes of obscuring dust and bright nebulosity (e.g. the Orion Nebula around the Trapezium Cluster), while the oldest clusters, if they were fortunate enough not to have already dissipated or been torn apart by external forces, tend to be symmetric in shape, with only the slower-burning, low-mass stars remaining visible; the massive stars will have spent their nuclear fuel and passed to the degenerate graveyard of white dwarfs, neutron stars, or black holes depending on their original mass.

The star clusters in the lists below were selected as the most conspicuous. Two types can be recognized: *open* and *globular*. Open clusters often appear as irregular aggregates of tens to thousands of stars, sometimes barely distinguishable from random fluctuations of the general field; they are concentrated toward the Galactic disk and generally contain stars of chemical abundance like the Sun. They range in age from very young to very old.

Sometimes we observe loose, extended groups of very young stars. When precise methods of photometry, spectroscopy and kinematics are applied, we see that these stars often have a common, but not necessarily strictly coeval, origin. Such loose concentrations of stars are referred to as *associations*. Dynamically, they are generally unbound over time scales of the order of ten million years, being subject to the strong tidal forces of passing clouds and the background Galaxy. Often, they contain sub-concentrations of young open clusters (e.g. the double cluster h and χ Persei of slightly different ages despite their proximity, in the association Per OB1, which stretches over some 6° on the sky), with a strong gradient in age as the star formation process rips through them from one edge to another. In view of their sparse nature, we do not consider it appropriate here to list any of the over 100-odd catalogued associations in the Galaxy.

Globular clusters on the other hand are highly symmetric, extremely old and rich agglomerations of up to several million stars, distributed throughout the Galactic halo but concentrated toward the centre of the Galaxy. Compared to the Sun and other disk stars, they tend to be much less abundant in elements heavier than hydrogen and helium.

The first table includes all well-defined Galactic open clusters with diameters greater than 40' and/or integrated magnitudes brighter than 5.0, as well as the richest clusters and some of special interest. The apparent integrated photographic magnitude is from Collinder, the angular diameter is generally from Trumpler, and the photographic magnitude of the fifth-brightest star, m_5 , is from Shapley, except where in italics, which are new data. The distance is mainly from Becker and Fenkart (*Astr. Astrophys. Suppl.* 4, 241 (1971)). The earliest spectral type of cluster stars, $B_5 = 70$, A0 = 400, A5 = 1000, F0 = 3000 and F5 = 10000.

OPEN CLUSTERS

NGC or other†	R.A. 1980 h m	Dec. 1980,	Int. m _{pg}	Diam.	m5	Dist. 1000 1.y.	Sp	Remarks
188 752 869 884 Perseus	00 42.0 01 56.6 02 17.6 02 21.0 03 21	+85 14 +37 35 +57 04 +57 02 +48 32	9.3 6.6 4.3 4.4 2.3	14 45 30 30 240	14.6 9.6 9.5 9.5 5	5.0 1.2 7.0 8.1 0.6	F2 A5 B1 B0 B1	Oldest known h Per χ Per, M supergiants Moving cl.; α Per
Pleiades Hyades 1912 1976/80 2099 2168 2232 2244 2287 2362 2422 2437 2451 2516 2546 2545 2632 ICC391 ICC395	03 45.9 04 19 05 27.3 05 34.4 05 51.1 06 07.6 06 25.5 06 31.3 06 39.9 06 46.2 07 18.0 07 34.7 07 40.9 07 44.7 07 58.0 08 11.8 08 39.0 08 39.7 08 40.4 08 49 3	$\begin{array}{c} +24 & 04 \\ +15 & 35 \\ +35 & 49 \\ -05 & 24 \\ +32 & 32 \\ +24 & 21 \\ -04 & 44 \\ +04 & 53 \\ +09 & 54 \\ -20 & 43 \\ -24 & 54 \\ -14 & 27 \\ -14 & 27 \\ -14 & 46 \\ -37 & 55 \\ -60 & 51 \\ -37 & 35 \\ +20 & 04 \\ -52 & 59 \\ -48 & 07 \\ +11 & 54 \\ \end{array}$	$\begin{array}{c} 1.6\\ 0.8\\ 7.0\\ 2.5\\ 6.2\\ 5.6\\ 4.1\\ 5.2\\ 4.1\\ 5.0\\ 3.8\\ 4.3\\ 6.6\\ 3.7\\ 3.3\\ 5.0\\ 3.9\\ 2.6\\ 4.6\\ 7.4\end{array}$	120 400 18 50 24 29 20 27 30 32 7 30 32 7 30 27 37 50 45 90 45 20	4.2 3.9 9.7 5.5 9.7 9.0 7 8.0 8.8 9.4 9.8 6 10.1 7 7.5 3.5 10.1	0.41 0.15 4.6 1.3 4.2 2.8 1.6 5.3 2.4 2.2 5.4 1.6 5.4 1.0 1.2 2.7 0.59 0.5 2.9	B6 A2 B5 O5 B8 B5 B1 O5 O8 B3 B8 B5 B8 B0 A0 B4 B2	M45, best known Moving cl.**, in Taurus M38 Trapezium, very young M37 M35 Rosette, very young S Mon M41 τ CMa M46 Praesepe, M44
3114 IC2602 Tr 16 3532 3766	10 02.0 10 42.6 10 44.4 11 05.5 11 35.2	$\begin{array}{r} -60 & 01 \\ -64 & 17 \\ -59 & 36 \\ -58 & 33 \\ -61 & 30 \end{array}$	4.5 1.6 6.7 3.4 4.4	37 65 10 55 12	7 6 10 8.1 8.1	2.8 0.5 9.6 1.4 5.8	B5 B1 O3 B8 B1	θ Car η Car and Nebula
Coma 4755 6067 6231 Tr 24 6405 6475 6494 6523 6611 IC4725 IC4756 6705 Mel 227 IC1396 7790	12 24.1 12 52.4 16 11.7 16 52.6 16 55.6 17 38.8 17 45.7 17 52.6 17 52.6 17 52.6 17 52.6 17 52.6 17 52.6 17 52.6 17 52.6 18 17.8 18 30.5 18 30.5 18 30.5 18 30.5 18 30.5 18 30.5 18 30.5 18 33.2 20 08.2 21 38.3 23 57.4	$\begin{array}{c} +26 & 13 \\ -60 & 13 \\ -54 & 10 \\ -41 & 46 \\ -40 & 38 \\ -32 & 12 \\ +05 & 44 \\ -34 & 48 \\ -19 & 01 \\ -24 & 23 \\ -13 & 48 \\ -19 & 16 \\ +05 & 26 \\ +06 & 18 \\ -79 & 23 \\ +57 & 25 \\ +61 & 06 \\ \end{array}$	2.9 5.2 6.5 3.5 3.5 4.6 5.4 6.2 5.4 6.2 5.4 6.8 5.2 5.4 5.2 5.1 7.1	300 12 16 60 26 50 50 27 45 8 35 50 12.5 60 60 4.5	5.5 7 10.9 7.5 7.3 8.3 7 10.2 7 10.6 9.3 8.5 12 9 8.5 11.7	0.3 6.8 4.7 5.8 5.2 1.5 1.1 0.8 1.4 5.5 2.0 1.4 5.6 0.8 2.3 10.3	A1 B3 B3 O9 O5 B4 B8 B5 B8 O5 O7 B3 A3 B8 B9 O6 B1	Very sparse κ Cru, "jewel box" G, K supergiants O supergiants, WR stars M6 M7 M23 M8, Lagoon Neb. M16, nebula M25, Cepheid U Sgr M11, very rich Tr 37 Cepheids CEa, CEb and CF Cas

[†]IC = Index Catalogue; Tr = Trumpler; Mel = Melotte. **Basic for distance determination.

¥

The table below includes all globular clusters with a total apparent photographic magnitude brighter than about 7.5. The data are taken from a compilation by Arp (*Galactic Structure*, ed. Blaauw and Schmidt, U. Chicago 1965), supplemented by H. S. Hogg's Bibliography (*Publ. David Dunlap Obs.* **2**, No. 12, 1963). The apparent diameter given contains 90% of the stars, except values in italics which are from miscellaneous sources. The concentration class is such that I is the most compact, XII is least. The integrated spectral type varies mainly with the abundances, and m(25) refers to the mean blue magnitude of the 25 brightest stars excluding the 5 brightest, which are liable to fluctuate more. The number of variables known in the cluster is also given. A more detailed, recent catalogue of fundamental data for galactic globular clusters can be found in reviews by Harris and Racine (*Annual Review of Astronomy and Astrophysics*, 17, 241, 1979) and by Webbink (*IAU Symposium No. 113*, p. 541, 1985).

NGC	M or other	R.A. 1980 h m	Dec. 1980	Int. m _{pg}	Diam.	Conc.	Int. Sp. T.	m(25)	No. Var.	Dist. 1000 1.y.
104 † 1851* 2808 5139† 5272†	47 Tuc ω Cen 3	00 23.1 05 13.3 09 11.5 13 25.6 13 41.3	$\begin{array}{rrrr} -72 & 11 \\ -40 & 02 \\ -64 & 42 \\ -47 & 12 \\ +28 & 29 \end{array}$	4.35 7.72 7.4 4.5 6.86	44 11.5 18.8 65.4 9.3	III II VIII VI	G3 F7 F8 F7 F7 F7	13.54 15.09 13.01 14.35	11 3 4 165 189	16 46 30 17 35
5904 6121 6205 6218 6254	5 4 13 12 10	15 17.5 16 22.4 16 41.0 16 46.1 16 56.0	$\begin{array}{rrrr} +02 & 10 \\ -26 & 28 \\ +36 & 30 \\ -01 & 55 \\ -04 & 05 \end{array}$	6.69 7.05 6.43 7.58 7.26	10.7 22.6 12.9 21.5 16.2	V IX V IX VII	F6 <i>G0</i> F6 F8 G1	14.07 13.21 13.85 14.07 14.17	97 43 10 1 3	26 14 21 24 20
6341 6397 6541† 6656† 6723	92 22	17 16.5 17 39.2 18 06.5 18 35.1 18 58.3	$\begin{array}{rrrrr} +43 & 10 \\ -53 & 40 \\ -43 & 45 \\ -23 & 56 \\ -36 & 39 \end{array}$	6.94 6.9 7.5 6.15 7.37	12.3 19 23.2 26.2 11.7	IV IX III VII VII	F1 F5 F6 F7 G4	13.96 12.71 13.45 13.73 14.32	16 3 1 24 19	26 9 13 10 24
6752 6809 7078* 7089	55 15 2	19 09.1 19 38.8 21 29.1 21 32.4	$\begin{array}{rrrr} -60 & 01 \\ -30 & 59 \\ +12 & 05 \\ -00 & 55 \end{array}$	6.8 6.72 6.96 6.94	41.9 21.1 9.4 6.8	VI XI IV II	F6 F5 F2 F4	13.36 13.68 14.44 14.77	1 6 103 22	17 20 34 40

GLOBULAR CLUSTERS

*Bright, compact X-ray sources were discovered in these clusters in 1975. †These clusters contain dim X-ray sources.

AN EXAMPLE: THE HYADES — A FAMILIAR STAR CLUSTER

The closest sizeable star cluster to us is the famous Hyades cluster, best visible in the winter evening sky as forming the head of Taurus the bull. The brightest star in the direction of the Hyades is the flaming eye of the bull, the bright orange giant, Aldebaran. However, this association is an artifact of our location in space, for Aldebaran is only 40% as far away and is not a member of the cluster (cf., The Brightest Stars section).

Although the number of stars in the Hyades visible to the naked eye is a couple of dozen, more than three hundred stars ranging down to apparent magnitude 18 have been identified. These stars are more numerous in the vicinity of the face of the bull, but they are spread across the entire constellation of Taurus. The cluster is moderately old, probably several hundred million years. There are no hot, young stars nor any visible nebulosity.

The distance to the Hyades is fundamental in providing the connecting link between the geometric methods for determining distances of nearby stars and the photometric methods used for more distant objects. The distance to the Hyades, about 150 light-years, has been determined by several methods: trigonometric parallaxes of its individual members, the streaming parallax method, dynamical parallaxes of binary stars, and fitting the Hyades' main sequence to the theoretical Zero Age Main Sequence (ZAMS) from stellar models. The stars of the Hyades are moving as a group relative to the Sun. They were closest to the Solar System perhaps a million years ago. Now, as they recede into the galactic void, the directions of their proper motions converge to a point in the sky east of Betelgeuse. (For more information, see *Sky and Telescope*, February 1988, p.138).

The Hyades are interesting for other reasons too. Recently, for example, Einstein satellite data have revealed that more than half of its stars are detectable X-ray sources. Studies like this help greatly in our basic understanding of stars, something best done in star clusters.

Below is a colour-magnitude diagram for the Hyades cluster (G. L. Hagen, *Publ. D. Dunlap Obs.*, 4, 31, 1970). Apparent visual magnitude is plotted vertically (brighter stars toward the top), and the colours are redder (temperatures cooler) as one moves from left to right. The main diagonal distribution lies close to the ZAMS. At the distance of the Hyades, our Sun would be located at V = 8.0, B-V = 0.63, right in the centre of this distribution (Can you use the information at the top of pages 18 and 170 to confirm these coordinates?). Note that the stars visible to the naked eye are only those near the top of the distribution.

A BLACK HOLE CANDIDATE: CYGNUS X-1

Located near Eta Cygni is a very ordinary-looking star of 9th magnitude. In a catalogue along with thousands of other stars, it is listed as HDE 226868. Spectroscopic studies indicate that it is a 09.7Iab star, a very luminous, hot supergiant located several thousand light-years from the Sun. Furthermore, it is a single-line spectroscopic binary, having a 5.6 day period as it orbits around its nearby, unseen companion. In addition, astronomers have known since the early 1970's that this star coincides with one of the strongest galactic X-ray sources in the sky: Cygnus X-1 (C. T. Bolton, *Nature*, 235, 271, 1972). The X-rays extend to quantum energies of 100 keV and higher, corresponding to temperatures exceeding a billion degrees, and vary on time scales as short as tens of milliseconds. The X-rays appear to be generated as material from the supergiant falls onto its nearby, invisible companion.

The data indicate that the unseen companion has a mass in the range of 10 to 16 times that of our Sun. The fact that it is not visible and is associated with intense, rapidly-varying X-rays indicates that it is not an ordinary star and must be very compact. The General Theory of Relativity predicts that an object of this mass and size cannot be supported by any known mechanism: not by thermal pressure (as in its visible companion), not by electron degeneracy pressure (as in a white dwarf), and not by nucleon degeneracy pressure (as in a neutron star). The object can only be a black hole: a totally-collapsed entity around which the fabric of spacetime has closed upon itself.

The arguments are compelling, but indirect. The most one can say is that the companion to HDE 226868 is probably the best candidate for a stellar black hole in our galaxy. (For additional information, see *Sky and Telescope*, 75, 28, 1988).

At 9th magnitude, the supergiant HDE 226868 is visible in any small telescope. Since it is less than half a degree from the 4th magnitude, yellow star Eta Cygni, it is easy to locate (Eta Cygni is the star in the neck of the swan, next to the "C" in CYGNUS on the September all-sky star chart at the back of this Handbook). Any low magnification will more than encompass the entire field shown in the finder chart below. North is upward, Eta Cygni is at the lower right, and HDE 226868 is indicated by the small arrow. The chart magnitude limit is about 13. Although HDE 226868 is a blue supergiant, in telescopes with sufficient aperture to cause colour to appear, this star appears orange because of heavy reddening by intervening dust. Don't mistake the blue star immediately north of HDE 226868 for the latter! (RLB)

NEBULAE GALACTIC NEBULAE By William Herbst

The following objects were selected from the brightest and largest of the various classes to illustrate the different types of interactions between stars and interstellar matter in our galaxy. *Emission regions* (HII) are excited by the strong ultraviolet flux of young, hot stars and are characterized by the lines of hydrogen in their spectra. *Reflection nebulae* (Ref) result from the diffusion of starlight by clouds of interstellar dust. At certain stages of their evolution stars become unstable and explode, shedding their outer layers into what becomes a *planetary nebula* (P1) or a *supernova remnant* (SN). Protostellar nebulae (PrS) are objects still poorly understood; they are somewhat similar to the reflection nebulae, but their associated stars, often variable, are very luminous infrared stars which may be in the earliest stages of stellar evolution. Also included in the selection are three *extended complexes* (Comp) of special interest for their rich population of dark and bright nebulosities of various types. In the table S is the optical surface brightness in magnitude per square second of arc of representative regions of the nebula, and m* is the magnitude of the associated star.

		5	α 19	80 ð		C:	S		Dist.	
NGC	м	Con	h m	• /	Туре	Size	sq"	*	l.y.	Remarks
1435 1535		Tau Eri	03 46.3 04 13.3	+24 01 -12 48	Ref Pl	15 0.5	20 17	4 12	0.4	Merope nebula
1952 1976 2070	1 42	Tau Ori Dor	05 33.3 05 34.3 05 38.7	$+22 05 \\ -05 25 \\ -69 06$	SN HII HII	5 30 20	19 18 —	16v 4 13	4 1.5 200	"Crab" + pulsar Orion nebula Tarantula Neb.
ζOri 2068	78	Ori Ori	05 39.8 05 45.8	-01 57 +00 02	Comp Ref	2° 5	20		1.5 1.5	Incl. "Horsehead"
2244 2261		Mon Mon	06 31.3 06 38.0	+22 36 +04 53 +08 44	HII PrS	50 2	21	7 12v	3 4	Rosette neb. Hubble's var. neb.
2392		Gem	07 28.0	+2057	Pl Ref	0.3	18	10	10	Clown face neb.
3132		Vel	10 06.2	-40 19	Pl	1	17	10	-	Eight-Burst
3372		Car Car	10 56.7	$\begin{vmatrix} -38 & 32 \\ -59 & 35 \end{vmatrix}$	ĤI	80	_	6v	9	Carina Neb.
3503 3587	97	Car UMa Cru	11 00.5 11 13.6 12 50	$ \begin{array}{c} -60 & 37 \\ +55 & 08 \\ -63 \\ \end{array} $	Ref Pl Dark	3 3 6°	<u>-</u> 21	$11 \\ 13 \\ -$	9 12 0.5	Owl nebula Coal Sack
5189 ρOph		Mus Oph	13 32.4 16 24.4	-65 54 -23 24	Comp	150 4°	-	10	0.5	Bright + dark neb.
6514 6523 6543	20 8	Sgr Sgr Dra	18 01.2 18 02.4 17 58 6	$\begin{vmatrix} -23 & 02 \\ -24 & 23 \\ +66 & 37 \end{vmatrix}$	HII HII Pl	15 40 04	19 18 15	11	3.5 4.5 3.5	Trifid nebula Lagoon nebula
6618 6720	17 57	Sgr Lyr	18 19.7 18 52.9	$-16\ 12$ +33 01	HII Pl	20 1.2	19 18	15	35	Horseshoe neb. Ring nebula
6726 6853	27	CrA Vul	19 00.4 19 58.6	-3656 +2240	PrS Pl	5 7	20	7 13	0.5 3.5	Dumb-bell neb.
ο888 γCyg 6960/95		Cyg Cyg Cyg	20 11.6 20 21.5 20 44.8	+38 21 +40 12 +30 38	Comp SN	6° 150		-	2.5	HII + dark neb. Cygnus loop
7000 7009 7027		Cyg Aqr	20 58.2 21 03.0 21 06 4	+44 14 -11 28 +42 09	HII Pl Pl	100 0.5	22 16	12	3.5 3	N. America neb. Saturn nebula
7129 7293		Cyg Cep Aqr	21 42.5 22 28.5	+42 09 +65 00 -20 54	Ref Pl	3 13	21 22	10 13	2.5	Small cluster Helix nebula

::

THE MESSIER CATALOGUE BY ALAN DYER

In the late 1700's Charles Messier compiled a list of deep-sky objects to aid prospective comethunters. Some of these objects he discovered himself; some were first seen by other astronomers of the day. Messier's Catalogue provides a selection of the brightest and best deep-sky wonders north of declination 35° S. The Messier numbers do not follow a neat sequence across the sky. Rather, they are numbered in the order he "discovered" them. Messier never did produce a list with entries re-numbered in order of right ascension, though that was his intention.

In our version of Messier's Catalogue, we've listed the objects by season for the evening observer, grouping the objects within their respective constellations. The <u>constellations</u> are then listed roughly in order of increasing right ascension, i.e. constellations further to the east and which rise later in the night are further down the list. This is to help plan the sequence of an evening's observing and to help novice observers learn which Messiers belong to the various constellations.

The identity of some Messier objects is controversial. Some believe that M91 and M102 are mistaken observations of M58 and M101 respectively. M104 to M109 were found by a colleague, Pierre Mechain, and reported to Messier for inclusion in his Catalogue. NGC 205, one of the companion galaxies to M31, was apparently found by Messier but never included in the Catalogue. Modern day observers have dubbed this object M110. In our list, we have included 110 entries, including two objects that some have suggested as alternative candidates for M91 and M102.

Modern-day Messier hunters often wonder what telescopes Messier himself used. The largest were 20-cm and 19-cm reflectors. However, their speculum metal mirrors had the equivalent light-gathering power of a modern 8 to 10-cm telescope. He also used a number of 90-mm refractors.

The columns contain: Messier's number (M); the constellation; the object's New General Catalogue (NGC) number; the type of object; its epoch 2000 co-ordinates (compatible with *Sky Atlas 2000.0* and *Uranometria*); and the visual magnitude. (Data taken from *Sky Catalogue 2000.0*)

OC = open cluster, GC = globular cluster, PN = planetary nebula, EN = emission nebula, RN = reflection nebula, SNR = supernova remnant, G = galaxy, with the type of galaxy listed. Objects marked '!!' are spectacular showpieces. The 'Seen' column is for checking off the Messiers. The most difficult for northern observers are M83 and the objects in southern Sagittarius and Scorpius.

Seen	Μ	Con	NGC	Туре	R.A. (20	00) Dec	mv	Remarks
The	e W	inte	r Sk	у	h m	• •		
	1 45	Tau Tau	1952 —	SNR OC	05 34.5 03 47.0	+22 01 +24 07	8.4 1.2	!! famous Crab Nebula supernova remnant !! Pleiades; use low power; look for nebulosity
 	36 37 38	Aur Aur Aur	1960 2099 1912	OC OC OC	05 36.1 05 52.4 05 28.7	+34 08 +32 33 +35 50	6.0 5.6 6.4	best at low power; bright but scattered group !! finest of 3 Auriga clusters; very rich look for the small cluster NGC 1907 ¹ / ₂ ° S
 	42 43 78	Ori Ori Ori	1976 1982 2068	EN EN RN	05 35.4 05 35.6 05 46.7	05 27 05 16 +00 03	≈4 ≈9 ≈8	!! Orion Nebula ! ; a magnificent object detached part of Orion Nebula; in same field featureless reflection nebula
	7 9	Lep	1904	GC	05 24.5	-24 33	8.0	20-cm telescope needed to resolve
	35	Gem	2168	ос	06 08.9	+24 20	5.1	!! look for small cluster NGC 2158 1/4° SW
	41	СМа	2287	ос	06 47.0	-20 44	4.5	4° S of Sirius; bright but coarse cluster
	50	Mon	2323	ос	07 03.2	08 20	5.9	between Sirius and Procyon; use low power
	46 47 93	Pup Pup Pup	2437 2422 2447	OC OC OC	07 41.8 07 36.6 07 44.6	-14 49 -14 30 -23 52	6.1 4.4 6.2	!! contains planetary nebula NGC 2438 coarse cluster; 1.5° W of M46 compact, bright cluster; fairly rich
	48	Hya	2548	ос	08 13.8	-05 48	5.8	former 'lost' Messier object; sparse group

R.A.S.C. members who have seen all 110 objects on this list are eligible for a Messier Certificate. Contact your local Centre or R.A.S.C. National Office for details.

	Seen	М	Con	NGC	Туре	R.A	. (20	00) Dec	mγ	Remarks
	The		nrin	a Sk	v					
				5 0 4	3	h	m	• •		
		44	Cnc	2632	00	08	40.1	+19 59	3.1	!! Beehive Cluster: use low power & wide field
		67	Cnc	2682	õČ	08	50.4	+11 49	6.9	one of the oldest star clusters
		40	UMa			12	22.4	+58 05	8.0	double star Winnecke 4; separation of 50"
		81	UMa	3031	G-Sb	09	55.6	+69 04	6.8	!! bright spiral; M82 ¹ /2° N
		82	UMa	3034	G-Irr	09	55.8	+69 41	8.4	!! the 'exploding' galaxy; look for structure
		97	UMa	3587	PN	11	14.8	+55 01	11.2	!! Owl Nebula; appears brighter than 11 ^m 2
		101	UMa	5457	G-Sc	14	03.2	+54 21	7.7	!! Pinwheel Galaxy; face-on spiral; diffuse
		108	UMa	3556	G-SC		11.5	+55 40	10.0	hearly edge-on; very close to M9/
		109	UMa	3992	0-30	11	57.0	+33 23	9.0	barred spiral near y OMa
		65	Leo	3623	G-Sb	11	18.9	+13 05	9.3	!! bright elongated spiral
		66	Leo	3627	G-Sb	111	20.2	+12 59	9.0	!! M65 & NGC 3628 in same field
		95	Leo	3351	G-SBb	10	44.0	+11 42	9.7	bright barred spiral
		96	Leo	3368	G-Sbp	10	46.8	+11 49	9.2	M95 in same field
		105	Leo	3379	G-E1	10	47.8	+12 35	9.3	very near M95 and M96
		53	Com	5024	GC	13	12.9	+18 10	7.7	15-cm telescope needed to resolve
		64	Com	4826	G-Sb	12	56.7	+21 41	8.5	!! Black Eye Galaxy; 'eye' needs large aperture
	•••••	85	Com	4382	G-Ep	12	25.4	+18 11	9.3	bright elliptical shape
		88	Com	4501	G-Sb	12	32.0	+14 25	9.5	bright multiple-arm spiral
		91	Com	4548	G-SBb	12	35.4	+14 30	10.2	some lists say M91 is M58, not NGC 4548
	•••••	98	Com	4192	G-Sb	12	13.8	+14 54	10.1	nearly edge-on spiral near the star 6 Comae B.
		100	Com	4254	G-Sc	12	18.8	+14 25	9.8	nearly face-on spiral near M98
		100	Com	4321	G-30	12	22.9	+13 49	9.4	race-on spiral with startike nucleus
		10	Vir	1472	G.EA	112	20.8	+08 00	84	very bright elliptical
		58	Vir	4570	G-SB	112	27.0	+11 40	0.4	bright barred eniral: M50 and M60 1° East
		59	Vir	4621	G-E3	12	42.0	+11 39	9.8	bright elliptical paired with M60
		60	Vir	4649	G-E1	12	43.7	+11 33	8.8	bright elliptical with M59 and NGC 4647
		61	Vir	4303	G-Sc	12	21.9	+04 28	9.7	face-on two-armed spiral
		84	Vir	4374	G-E1	12	25.1	+12 53	9.3	M86 and many NGC's nearby; lots to explore!
		86	Vir	4406	G-E3	12	26.2	+12 57	9.2	in richest part of Coma-Virgo galaxy cluster
		87	Vir	4486	G-E1	12	30.8	+12 24	8.6	the one with the famous jet and black hole
		89	Vir	4552	G-E0	12	35.7	+12 33	9.8	resembles M87 but smaller
		90	Vir	4569	G-Sb	12	36.8	+13 10	9.5	bright spiral; near M89
		104	Vir	4594	G-Sb	12	40.0	-11 37	8.3	!! Sombrero Galaxy; look for dust lane
					_					
		3	CVn	5272	GC	13	42.2	+28 23	6.4	!! contains many variable stars
		1 21	CVn	5194/5	G-Sc	13	29.9	+47 12	8.1	!! Whirlpool Galaxy; superb in big telescope
	•••••	03	CVn	5055	G-Sb	13	15.8	+42 02	8.6	!! Sunflower Galaxy; bright, elongated
		106	CVn	4/30	G-Sbp	112	30.9 10.0	+41 0/	8.1	Very bright and very comet-like
		100	C.11	42.50	0-300	1 **	17.0	147 10	0.5	ingo ongin spilu
		68	Hva	4590	GC	12	39.5	-26 45	8.2	15-cm telescope needed to resolve
		83	Hva	5236	G-Sc	13	37.0	-29 52	10.1	large and diffuse; tough from northern latitude
						1				
		102	Dra	5866	G-E6p	15	06.5	+55 46	10.0	or is M102 = M101? (look for 5907 nearby)
					-					
		5	Ser	5904	GC	15	18.6	+02 05	5.8	!! one of the finest globulars
		L	I							
	Τh	e S	u m m	er S	kу					
		13	Unr	6205		16	417	+36 28	50	"Hercules Cluster 1 : NGC 6207 1/6° NE
		6	Har	6341	20	117	17.1	130 20	65	9° NE of M13: fine object but often overlooked
		1 12		0.541		1.''	17.1	145 00	1	
		9	Onh	6333	GC	17	19.2	-18 31	7.9	smallest of Ophiuchus globulars
		1 10	Onh	6254	GC	16	57.1	-04 06	6.6	rich cluster; M12 3° NW
		1 12	Oph	6218	GC	16	47.2	-01 57	6.6	loose globular cluster
•		14	Oph	6402	GC	17	37.6	-03 15	7.6	20-cm telescope needed to resolve
		19	Oph	6273	GC	17	02.6	-26 16	7.2	oblate globular; M62 4° South
		62	Oph	6266	GC	17	01.2	-30 07	6.6	unsymmetrical; in rich field
		107	Oph	6171	GC	16	32.5	-13 03	8.1	small, faint globular
		I	1	I	I	1			1	

Seen	М	Con	NGC	Туре	R ./	A. (20	000) D	ec	mv	Remarks
Sum	mer S	ky cor	tinued							
					ь	-	0			
1	4	Sec. 1	6121	0.0	16	23.6	26	32	50	bright globular near Antares
	6	Sco	6405		17	40.1	_32	13	42	11 Butterfly Cluster best at low power
	7	Sco	6475		17	53.0	_34	40	33	I excellent in binoculars or rich-field telescope
	80	Sco	6093	GC	16	17.0	-22	59	72	very compressed globular
			0075							tery compressed Brooding
	16	Ser	6611	EN+OC	18	18.8	-13	47	6.0	Eagle Nebula with open cl.; use nebula filter
						1010			0.0	
	8	Sgr	6523	EN	18	03.8	-24	23	5.8	!! Lagoon Nebula with open cl. NGC 6530
	17	Sgr	6618	EN	18	20.8	-16	11	≈7	!! Swan or Omega Nebula ! : use nebula filter
	18	Sgr	6613	OC	18	19.9	-17	08	6.9	sparse cluster: 1° S of M17
	20	Sgr	6514	E/RN	18	02.6	-23	02	≈ 8.5	!! Trifid Nebula; emission & reflection nebula
	21	Sgr	6531	oc	18	04.6	-22	30	5.9	0.7° NE of M20; sparse cluster
	22	Sgr	6656	GC	18	36.4	-23	54	5.1	spectacular from southern latitude
	23	Sgr	6494	oc	17	56.8	-19	01	5.5	bright, loose cluster
	24	Ser		_	18	16.9	-18	29	4.5	rich star cloud: contains open cl. NGC 6603
	25	Ser	14725	00	18	31.6	-19	15	4.6	bright but sparse cluster
	28	Sor	6626	GC	18	24.5	_24	52	69	compact globular near M22
	54	Sor	6715	GC	18	55 1	_30	20	77	not easily resolved
	55	Sor	6809	GC	10	40.0	_30	58	7.0	hright loose globular
	60	Sar	6627		10	21 4	20	21	7.7	small noor globular
	70	Sar	6691		10	12.0	-32	10	0.1	small globular 2° E of M60
	75	Sgr	6964		10	43.2	-32	10	0.1	small and distant globular 50 000 L V away
	15	Sgr	0804	U.	20	00.1	-21	22	0.0	sinan and distant globular, 59 000 L. I. away
	11	5	6705		10	51.1	06	14	60	II Wild Duck Clusters perhaps the best error of
	26	SCL	6/05		10	31.1	-00	10	5.0	hight appres cluster; perhaps the best open cl.
	20	301	0094	u	10	43.2	-09	24	8.0	oright, coarse cluster
	56	T	6770		10	166	. 20	11	0.0	within a rich starfield
	57	Lyr	6700		19	10.0	+30	11	0.2	Within a fich starfield
	51	Lyr	0720	PN	10	33.0	+33	02	9.0	1. King Neoua 1; 15 central star very tough
	71	See	6939	GC	10	52.9	. 19	17	02	loose globuler: looks like an open cluster
	/1	Sge	0050		13	55.6	+ 10	4/	0.5	loose globular, looks like all open cluster
	27	V1	6952	DN	10	50.6	. 22	12	01	II Dumbhell Nebula L: superb object
	21	Yu.	0055	114	10	39.0	722	75	0.1	
	20	Cura	6013		20	22.0	+38	32	66	small poor open cluster 2º S of a Cugni
	30	Cyg	7002		21	20.0	+30	26	16	very sparse cluster: use low power
	39	Cyg	1092	J u	21	32.2	++0	20	4.0	very sparse cluster, use low power
TL				la						
1 0 0	e A	utun	nn S	ку						
	2	1 4	7090		21	22 6	00	40	65	20 cm talescope peoded to receive
	72	Agr	6091		20	52.5	-00	22	0.5	poor NGC 7000 the Seturn Nahula
	72	Aqr	6981		20	55.5	-12	32	9.4	near NGC 7009, the Saturn Nebula
	15	Aqr	0994	l u	20	38.9	-12	38	-	group of 4 stars only; an asterism
	15	Dan	7070	GC	21	20.0	, 10	10	64	rich compact globular
	15	reg .	10/8	GC	21	30.0	+12	10	0.4	rich, compact globular
	20	Car	7000	GC	1 21	40.4	22	11	7.0	toughast object in one pickt Massier manthem
	50	Cap	/099	UC	21	40.4	-23	11	1.5	toughest object in one-inght Messier maration
	52	C	7654	000	1 22	24.2	. 61	25	6	usung sigh glugten foint Dubble Mab georbu
	102	Cas	/034		25	24.2	+01	33	0.9	young, fich cluster, faint Bubble Neb. hearby
	105	Cas	281	UC	101	33.2	+00	42	/.4	5 NGC clusters nearby
	21	44	004	0.01		40.7	. 41	16	24	H Andrewede Cal - 48 wides lasts for dust lands
	21	And	224	G-30		42.7	+41	10	3.4	11 Andromeda Gal.; 4 wide; look for dust lanes
	52	And	221	G-E2	00	42.7	+40	52	8.2	closest companion to M31
	110	And	205	G-E0	00	40.4	+41	41	8.0	more distant companion to M31
	22	_ .								
	33	Tri	598	G-SC	01	33.9	+30	39	5.7	large, diffuse spiral; requires dark sky
					I					
	14	Psc	628	G-Sc	01	36.7	+15	47	9.2	taint, elusive spiral; difficult in small telescopes
								• •	1	
	17	Cet	1068	G-Sbp	102	42.7	-00	01	8.8	a Seytert galaxy; starlike nucleus
1									1	l
	34	Per	1039	OC	02	42.0	+42	47	5.2	best at very low power
	76	Per	650-1	PN	01	42.4	+51	34	11.5	Little Dumbbell; faintest Messier object
										1

NUMERICAL LISTING OF MESSIER OBJECTS

				-										
M	SKY	Con	<u>M</u>	SKY	Con	M	SKY	Con	<u>M</u>	SKY	Con	<u>M</u>	SKY	Con
1 2 3 4 5	WIN AUT SPR SUM SPR	Tau Aqr CVn Sco Ser	23 24 25 26 27	SUM SUM SUM SUM SUM	Sgr Sgr Sgr Sct Vul	45 46 47 48 49	WIN WIN WIN WIN SPR	Tau Pup Pup Hya Vir	67 68 69 70 71	Spr Spr Sum Sum Sum	Cnc Hya Sgr Sgr Sge	89 90 91 92 93	SPR SPR SPR SUM WIN	Vir Vir Com Her Pup
6 7 8 9 10	SUM SUM SUM SUM SUM	Sco Sco Sgr Oph Oph	28 29 30 31 32	SUM SUM AUT AUT AUT	Sgr Cyg Cap And And	50 51 52 53 54	WIN Spr Aut Spr Sum	Mon CVn Cas Com Sgr	72 73 74 75 76	AUT AUT AUT SUM AUT	Aqr Aqr Psc Sgr Per	94 95 96 97 98	SPR SPR SPR SPR SPR	CVn Leo UMa Com
11 12 13 14 15	SUM SUM SUM SUM AUT	Sct Oph Her Oph Peg	33 34 35 36 37	AUT AUT WIN WIN WIN	Tri Per Gem Aur Aur	55 56 57 58 59	SUM SUM SUM SPR SPR	Sgr Lyr Lyr Vir Vir	77 78 79 80 81	AUT WIN WIN SUM SPR	Cet Ori Lep Sco UMa	99 100 101 102 103	SPR SPR SPR SPR AUT	Com Com UMa Dra Cas
16 17 18 19 20	SUM SUM SUM SUM	Ser Sgr Sgr Oph Sgr	38 39 40 41 42	WIN SUM SPR WIN WIN	Aur Cyg UMa CMa Ori	60 61 62 63 64	SPR SPR SUM SPR SPR	Vir Vir Oph CVn Com	82 83 84 85 86	SPR SPR SPR SPR SPR	UMa Hya Vir Com Vir	104 105 106 107 108	SPR SPR SPR SUM SPR	Vir Leo CVn Oph UMa
21 22	Sum Sum	Sgr Sgr	43 44	Win Spr	Ori Cnc	65 66	Spr Spr	Leo Leo	87 88	Spr Spr	Vir Com	109 110	Spr Aut	UMa And

DEEP-SKY OBSERVING HINTS

In the 1960's and 70's, telescopes over 20-cm aperture were owned by only a handful of advanced observers. Today, 25-cm to 45-cm Dobson-mounted reflectors are common-place, and deep-sky observing has become the main pastime of many amateur astronomers.

However, owners of small aperture instruments shouldn't think they are shut out of deep-sky viewing. In a dark sky, an 8 to 10-cm telescope will show all the Messiers, and reveal hundreds of the brighter NGC objects. In fact, many large objects are best seen in fast (f/4-f/6) small aperture telescopes or in big binoculars. Contrary to popular belief, even slow f/ratio instruments (f/11-f/16) are useful; their only disadvantage is the difficulty of achieving a low-power wide-field. No matter what telescope you use, here are a few techniques for getting the most out of deep-sky exploring:

- Always plan each night's observing. Prepare a list of a dozen or so objects for that night. Hunt them down on star charts first during the day to become familiar with their location.
- Seek out dark skies. A black sky improves contrast and makes up for a lack of aperture.
- To preserve night vision, always use a dim flashlight for reading charts, preferably a red light.
- Avoid prolonged exposure to bright sunlight earlier in the day (such as a day at the beach). It will reduce your ability to dark adapt and make for very tired eyes at night.
- Don't depend on setting circles. Learn to find your way around the sky by star-hopping through the constellations. Besides, in a portable telescope setting circles will rarely be accurate.
- Use averted vision. Look to one side of an object to place it on a more sensitive part of the retina.
- Another technique for picking out faint objects is to jiggle the telescope (and the image) slightly.
- Don't be afraid to use high power. It often brings out small faint objects like planetary nebulas and galaxies, plus resolves detail in globulars, in small rich open clusters, and in bright galaxies.
- Try a nebula filter on emission and planetary nebulas. Even in a dark sky, they can dramatically enhance the view of these kinds of objects, though the degree of effect varies from object to object.
- Be comfortable. Sit down while at the eyepiece and be sure to dress very warmly.

- Take time to examine each object. Don't be in a rush to check off as many objects as possible each night. Make notes. Try drawing each object. It will help train your eye to see subtle detail.
- Collimate and clean your optics. A poorly maintained telescope will produce distorted star images, reduce the image contrast, and make it more difficult to see faint stars and other threshold objects.

THE FINEST N.G.C. OBJECTS BY ALAN DYER

The "New General Catalogue" of deep-sky objects was originally published by J.L.E. Dreyer in 1888, a work that expanded upon the earlier "General Catalogue" published by John Herschel in 1864. Supplementary "Index Catalogues" were published in 1895 and 1908. Together, the NGC and two IC's contain descriptions and positions of 13 226 galaxies, clusters and nebulas. (The NGC alone contains 7 840 entries. As a matter of interest NGC 1 is a 13th mag. galaxy in Pegasus.) In 1973, Jack Sulentic and William Tifft published *The Revised New General Catalogue* (RNGC) with updated data (printed by the University of Arizona Press). For more details about the NGC, see Helen Sawyer Hogg's article in the 1988 edition of the *R.A.S.C. Observer's Handbook*.

Most NGC objects are within reach of amateur telescopes. Indeed, the brightness and size of the best NGC's rivals those of the better known deep-sky targets of the Messier Catalogue (almost all of which are also in the NGC). To match the Messier Catalogue, this list contains 110 of the finest NGC objects visible from mid-northern latitudes. The arrangement is similar to that used in the Messier list. At least a 15-cm telescope will be required to complete the list.

The Wil Tirion Sky Atlas 2000.0, the sets of index card charts called AstroCards, or the Uranometria 2000.0 star atlas are recommended finder aids. For more information about these and many other deep-sky objects, see the 3-volume Burnham's Celestial Handbook and the series of Webb Society Deep-Sky Observer's Handbooks.

OC = open cluster, GC = globular cluster, PN = planetary nebula, EN = emission nebula, RN = reflection nebula, E/RN = combination emission and reflection nebula, DN = dark nebula, SNR = supernova remnant, G = galaxy (with the Hubble classification also listed). Sizes of objects are in minutes of arc, with the exception of planetary nebulas which are given in seconds of arc. (Most galaxies will appear smaller than size listed.) For open clusters, the number of stars (*) is also given. All magnitudes are visual. Entries marked with a '!!' are showpiece objects.

(Most data taken from Sky Catalogue 2000.0 Vol. 2. Where unavailable in Sky Catalogue, some visual magnitudes taken from Webb Society Handbooks, from Burnham's Celestial Handbook, or from Atlas Coeli Catalogue 1950.0.)

No.	NGC	Con	Type	R.A.	(200	0) De	ec	mv	Size	Remarks
Τh	e Au	t u m	n Sk	x y						
				h ı	n	o				
1	7009	Aqr	PN	21 0	4.2	-11 2	22	8.3	25"	!! Saturn Nebula; small bright oval
2	7293	Agr	PN	22 2	9.6	-20 4	48	6.5	770"	!! Helix Nebula; large, diffuse; use filter
3	7331	Peg	G-Sb	22 3	7.1	+34 2	25	9.5	10.7 x 4.0	!! large, bright spiral galaxy
		Ŭ								
4	7635	Cas	EN	23 2	0.7	+61 1	12	_	15 x 8	Bubble Neb.; very faint; $1/2^{\circ}$ SW of M52
5	7789	Cas	oc	23 5	7.0	+56 4	44	6.7	16	!! 300*; faint but very rich cluster
6	185	Cas	G-E0	00 3	9.0	+48 2	20	11.7	≈ 2 x 2	companion to M31; paired with NGC 147
7	281	Cas	EN	00 5	2.8	+56 3	36	—	35 x 30	!! large, faint nebulosity near η Cas.
8	457	Cas	OC	01 1	9.1	+58 2	20	6.4	13	80*; rich; one of the best Cas. clusters
9	663	Cas	OC	01 4	6.0	+61 1	15	7.1	16	80*; look for NGC's 654 and 659 nearby
10	IC 289	Cas	PN	03 1	0.3	+61	19	12.3	34"	dim oval smudge; use nebula filter
		1		•						_
11	7662	And	PN	23 2	5.9	+42 3	33	9.2	20"	!! Blue Snowball; annular at high power
12	891	And	G-Sb	02 2	2.6	+42 2	21	10	13.5 x 2.8	!! faint, classic edge-on with dust lane
13	253	Scl	G-Scp	00 4	7.6	-25 1	17	7.1	25.1 x 7.4	!! very large and bright but at low altitude
14	772	Ari	G-Sb	01 5	9.3	+19 (01	10.3	7.1 x 4.5	diffuse spiral galaxy
15	246	Cet	PN	00 4	7.0	-11 :	53	8.0	225"	faint (closer to 11 th); dark mottling
16	936	Cet	G-SBa	02 2	.7.6	-01 (09	10.1	5.2 x 4.4	near M77; NGC 941 in same field
17	869/84	Per	OC	02 2	20.0	+57 (08	≈ 4.4	30 / 30	!! Double Cluster; 350*; use low mag.
18	1023	Per	G-E7p	02 4	0.4	+39 (04	9.5	8.7 x 4.3	bright lens-shaped galaxy near M34
19	1491	Per	EN	04 ()3.4	+51	19	-	3.0 x 3.0	small, fairly bright emission nebula
20	1501	Cam	PN	04 (07.0	+60 :	55	12.0	52"	faint; dark centre; look for NGC 1502
										l
21	1232	Eri	G-Sc	03 (9.8	-20 3	35	9.9	7.8 x 6.9	face-on spiral; look for NGC 1300 nearby
22	1535	Eri	PN	04 1	4.2	-12 4	44	10.4	18"	bright planetary with blue-grey disk
	L	1		L						I

No.	NGC	Con	Type	R.A.	(20	00) Dec	mv	Size	Remarks
Th	e Wi	nte	r Sk	y					
23	1514	Tau	PN	04 ^h 09	9 ^m 2	+30° 47	10.8	114"	faint glow around 9 ^m 4 central star
24	1931	Aur	E/RN	05 31	1.4	+34 15	-	3.0 x 3.0	haze surrounding 4 close stars
25	1788	Ori	RN	05 06	6.9	-03 21		8.0 x 5.0	fairly bright but diffuse reflection nebula
26	1973+	Ori	E/RN	05 35	5.1	-04 44		40 x 25	near M42 and M43; often neglected
27	2022	Ori	PN	05 42	2.1	+09 05	12.4	18"	small, faint & distinct with annular form
28 29	2024 2194	Ori Ori	EN OC	05 40	0.7 3.8	-02 27 +12 48	8.5	30 x 30 10	80*; faint, rich; look for 2169 nearby
30 31	2371/2 2392	Gem Gem	PN PN	07 23 07 29	5.6 9.2	+29 29 +20 55	13.0 8.3	55" 13"	faint double-lobed planetary; use filter !! Clown-Face or Eskimo Nebula
32 33	2237+ 2261	Mon Mon	EN E/RN	06 32 06 39	2.3 9.2	+05 03 +08 44	var.	80 x 60 2 x 1	!! Rosette Neb.; very large; use neb. filter Hubble's Variable Nebula; comet-shaped
34	2359	СМа	EN	07 18	8.6	-13 12	-	8.0 x 6.0	bright; look for NGC 2360 & 2362 nearby
35 36	2440 2539	Pup Pup	PN OC	07 4 08 10	1.9 0.7	-18 13 -12 50	10.3 6.5	14" 22	almost starlike; irregular at high power 50*; rich cluster near M46 & M47
37 38	2403 2655	Cam Cam	G-Sc G-Sa	07 3 08 5	6.9 5.6	+65 36 +78 13	8.4 10.1	17.8 x 11.0 5.1 x 4.4	!! very large & bright; visible in binocs. bright ellipse with starlike nucleus
Th	e Sp	ring	g Sk	у					
39	2683	Lyn	G-Sb	08 5	2.7	+33 25	9.7	9.3 x 2.5	nearly edge-on spiral; very bright
40	2841	UMa	G-Sb	09 2	2.0	+50 58	9.3	8.1 x 3.8	!! classic elongated spiral; very bright
41	30/9	UMa	G-Sb		2.2	+55 41	10.6	7.6 x 1.7	edge-on spiral; NGC 2950 nearby
42	2977	UNA	G Sh	10 1	6.1	+41 23	10.0	54 × 15	adge on: some field as x LIMa
43	3941	UMa	G-50	11 5	29	+36 59	9.8	38 x 25	small bright elliptical
45	4026	UMa	G-S0	11 5	94	+50 58	10.7	51 x 14	lens-shaped edge-on near v UMa
46	4088	UMa	G-Sc	12 0	5.6	+50 33	10.5	5.8 x 2.5	nearly edge-on; NGC 4085 in same field
47	4157	UMa	G-Sb	12 1	1.1	+50 29	11.9	6.9 x 1.7	a thin sliver; NGC's 4026 & 4088 nearby
48	4605	UMa	G-SBcp	12 4	0.0	+61 37	9.6	5.5 x 2.3	bright, distinct edge-on spiral
49	3115	Sex	G-E6	10 0	5.2	07 43	9.2	8.3 x 3.2	Spindle Galaxy; bright, elongated
50	3242	Hya	PN	10 2	4.8	-18 38	8.6	16"	!! Ghost of Jupiter; small and bright
51	3003	LMi	G-Sc	09 4	8.6	+33 25	11.7	5.9 x 1.7	faint elongated streak
52	3344	LMi	G-Sc	10 4	3.5	+24 55	9.9	6.9 x 6.5	diffuse face-on spiral
53	3432	LMi	G-SBm	10 5	2.5	+36 37	11.3	6.2 x 1.5	nearly edge-on; faint flat streak
54	2903	Leo	G-Sb	09 3	2.2	+21 30	8.9	12.6 x 6.6	!! very large, bright elongated spiral
55	3384	Leo	G-E/	10 4	8.3	+12 38	9.9	5.9 x 2.6	same field as M105 and NGC 3389
50	2607	Leo	G-50		15.8 4 0	-10 02	100	9.5 x 3.0	NGC's 2605 & 2608 in some field
58	3628	Leo	G-EI G-Sb	11 2	20.3	+13 36	9.5	14.8 x 3.6	large edge-on; same field as M65 & M66
59 60	4111	CVn	G-S0	12 0)7.1 5.6	+43 04	10.8	4.8 x 1.1	bright lens-shaped edge-on spiral
61	4244	CVn	G-S	12 1	7.5	+37 49	102	16.2 x 2.5	!! large distinct edge-on spiral
62	4449	CVn	G-Irr	122	8.2	+44 06	9.4	5.1 x 3.7	bright rectangular shape
63	4490	CVn	G-Sc	12 3	80.6	+41 38	9.8	5.9 x 3.1	bright spiral; 4485 (Cocoon Gal.) in field
64	4631	CVn	G-Sc	12 4	2.1	+32 32	9.3	15.1 x 3.3	!! very large, bright edge-on; no dust lane
65	4656/7	CVn	G-Sc	12 4	14.0	+32 10	10.4	13.8 x 3.3	in field with 4631; 4657 is the companion
66	5005	CVn	G-Sb	13 1	0.9	+37 03	9.8	5.4 x 2.7	bright elongated spiral near α CVn
67	5033	CVn	G-Sb	13 1	13.4	+36 36	10.1	10.5 x 5.6	large oright spiral near NGC 5005
	I	I	L	L				<u> </u>	Spring Sky continued on next page

Spring Sky continued Image of the state state of the state of the state state state of the state of the	No.	NGC	Con	Туре	R.A. (20	00) Dec	mv	Size	Remarks
	Spri	ng Sky	contir	ued	•				
$ \begin{array}{c} 36 \\ 36 \\ 36 \\ 36 \\ 37 \\ 37 \\ 37 \\ 37 \\$	68	4274	Com	G.Sh	12h10m8	120° 37'	10.4	69 + 28	NGC's 4278 / 83 / 86 in same field
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	60	4414	Com	G-Sc	12 264	± 31 13	10.4	36 + 22	bright spiral with starlike nucleus
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70	4404	Com	G-E1	12 20.4	+25 47	0.2	48 + 38	small bright elliptical
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	71	4559	Com	G.Sc	12 36.0	123 41	0.8	105 x 4 9	large spiral with coarse structure
12 323 123 323 112 323 112 323 112 323 112 323 112 323 112 323 112 323 112 323 112 323 112 323 323 112 323 323 323 112 323 <th< td=""><td>72</td><td>4565</td><td>Com</td><td>G.Sh</td><td>12 363</td><td>+27 50</td><td>9.0</td><td>16.2 x 2.8</td><td>Il superb edge on spiral with dust lane</td></th<>	72	4565	Com	G.Sh	12 363	+27 50	9.0	16.2 x 2.8	Il superb edge on spiral with dust lane
74 4038,9 Crv G-Sc 12 0.1 -18 52 10.7 -3 x 2 'Antennae' or 'Ratnil' interacting galaxies small and bright; with 13 ^m central star 75 4361 Vir G-Sb 12 15.9 +13 09 9.9 8.3 x 2.2 nearly edge-on; with NGC's 4206 & 4222 77 4388 Vir G-Sb 12 2.8 +12 40 11.0 5.1 x 1.4 with MA& & 61 m Markarian schain 78 4317 Vir G-Sc 12 2.4.0 00 71 9.3 x 3.9 paired with NGC's 4206 & 4222 74 4355 Vir G-Sc 12 2.4.0 07 42 9.6 7.5 x 2.3 bineewen two? marks: the 'Lost' Galaxy mear M49 and 3/4' No fNC 4526 84 4507 Vir G-Sc 12 4.0 -0.8 40 9.5 3.5 x 2.7 flattest galaxy known; 4754 in same field 84 5546 Boo GC 14 9.5 4.6 3.5 x 2.7 flattest galaxy known; 4754 in same field 86 56463 Boa GC 14 9.5 10.4	73	4725	Com	G-Sb	12 50.5	+25 30	9.0	11.0 x 7.9	very bright, large spiral
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	74 75	4038/9 4361	Crv Crv	G-Sc PN	12 01.9 12 24.5	-18 52 -18 48	10.7 10.3	≈ 3 x 2 45"	'Antennae' or 'Rattail' interacting galaxies small and bright; with 13 ^m central star
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	76	1216	Vir	G 8h	12 15 0	+13 00	00	83 - 22	nearly edge_on; with NGC's 4206 & 4222
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	70	4210	VII	0-30 C CL	12 13.9	+13 09	9.9	0.3 x 2.2	with M94 & 96 in Markarian's shain
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	70	4200	VIT	G-SD	12 23.8	+12 40	10.1	3.1×1.4	with M84 & so in Markarian's chain
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	/8	4430	VIF	G-Sap	12 27.8	+13 01	10.1	9.3 X 3.9	paired with NGC 4435 to form The Eyes
	79	4517	Vir	G-SC	12 32.8	+00 07	10.5	10.2 x 1.9	faint edge-on spiral
	80	4520	Vir	G-E/	12 34.0	+07 42	9.6	7.6 x 2.3	between two / stars; the Lost Galaxy
	81	4333	VIT	G-Sc	12 34.3	+08 12	9.8	6.8 x 5.0	near M49 and 3/4° N of NGC 4526
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	82	430//8	Vir	G-Sc	12 36.5	+11 15	≈ II 0 (4.6 x 2.1	Stamese Twins' interacting galaxies
84 47.62 Vir G-SB0 I2 52.9 +11 10.2 87 x 1.6 Initiatest galaxy known; 4/54 in same field 85 5746 Vir G-Sb 14 44.9 +01 57 10.6 7.9 x 1.7 Initest galaxy known; 4/54 in same field 86 5466 Boo GC 14 05.5 +28 32 9.1 11.0 loose Class XII; like rich open cl.; faint 87 5907 Dra G-Sb 17 49.4 +70.09 10.2 6.2 x 2.3 line edge-on with dust lane; near 5866 bright elongated spiral 88 6543 Dra PN 17 58.6 +66 8 8 18" cat's Eye Nebula; with 11 ^m central star 90 6210 Her PN 16 44.5 +23 49 9.3 14" very starlike blue planetary 91 6369 Oph PN 17 29.3 -23 46 10.4 30" Little Ghost; look for NGC 6309 nearby 92 6572 Oph PN 18 12.1 +06 34	83	4699	Vir	G-Sa	12 49.0	-08 40	9.6	3.5 x 2.7	small & bright; look for NGC 4697 3° N
85 5/46 Vir G-Sb 14 44.9 +01 57 10.6 7.9 x 1.7 Fine edge-on spiral near 109 Virginis 86 5466 Boo GC 14 0.5.5 +28 32 9.1 11.0 loose Class XII; like rich open cl.; faint 87 5907 Dra G-Sb 15 15.9 +56 19 10.4 12.3 x 1.8 !! fine edge-on with dust lane; near 5866 88 6543 Dra G-Sb 17 49.4 +70 09 10.2 62.x 2.3 line edge-on with dust lane; near 5866 90 6210 Her PN 16 44.5 +23 49 9.3 14" very starlike blue planetary 91 6369 Oph PN 18 12.1 +06 51 9.0 8" s" 92 6572 Oph PN 18 2.7 +06 34 4.6 27 small globular; look for IC 1295 in field pale version of M97; fairly bright 94 6712 Sct GC 18 53.1 -08 42 <t< td=""><td>84</td><td>4762</td><td>Vir</td><td>G-SB0</td><td>12 52.9</td><td>+11 14</td><td>10.2</td><td>8.7 x 1.6</td><td>flattest galaxy known; 4754 in same field</td></t<>	84	4762	Vir	G-SB0	12 52.9	+11 14	10.2	8.7 x 1.6	flattest galaxy known; 4754 in same field
86 5466 Boo GC 14 05.5 +28 32 9.1 11.0 loose Class XII; like rich open cl.; faint 87 5907 Dra G-Sb 15 15.9 +56 19 10.4 12.3 x 1.8 11 fine edge-on with dust lane; near 5866 89 6543 Dra G-Sb 17 58.6 +66 38 8.8 18" very starlike blue planetary 90 6210 Her PN 16 44.5 +23 49 9.3 14" very starlike blue planetary 91 6369 Oph PN 17 29.3 -23 46 10.4 30" Little Ghost; look for NGC 6309 nearby tiny bright blue oval sparse wid field cluster; IC 4756 nearby 93 6633 Oph OC 18 27.7 +06 34 4.6 27 sparse wid field cluster; IC 4756 nearby 94 6712 Sct GC 18 53.1 -08 28 2.2 7.2 small globular; look for IC 1295 in field 95 6781 Aql PN 19 48.4	85	5746	Vir	G-Sb	14 44.9	+01 57	10.6	7.9 x 1.7	fine edge-on spiral near 109 Virginis
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	86	5466	Boo	GC	14 05.5	+28 32	9.1	11.0	loose Class XII; like rich open cl.; faint
88 6503 6543 Dra G-Sb PN 17 49.4 $+70$ 09 10.2 10.2 6.2 $2.2.3$ 18" bright elongated spiral Cat's Eye Nebula; with 11 ^m central star The Summer Sky 90 6210 Her PN 16 44.5 $+23.49$ 9.3 14" very starlike blue planetary 91 6369 6633 Oph PN 17 29.3 -23.46 10.4 30° Little Ghost; look for NGC 6309 nearby tiny bright blue oval sparse wide field cluster; IC 4756 nearby 93 6633 Oph PN 17 29.3 -23.46 10.4 30° Little Ghost; look for NGC 6309 nearby tiny bright blue oval sparse wide field cluster; IC 4756 nearby 94 6712 Sct GC 18 27.7 $+06$ 31 1.8 109° pale version of M97; fairly bright 96 6819 Cyg OC 19 44.8 50.31 93.30° 150° ; faint but rich cluster in Milky Way 97 6826 Cyg SNR 20 1.3 -20 20×10 150° ; faint bu	87	5907	Dra	G-Sb	15 15.9	+56 19	10.4	12.3 x 1.8	!! fine edge-on with dust lane: near 5866
89 6543 Dra PN 17 58.6 +66 38 8.8 18" Car's Eye Nebula; with 11 ^m central star The Summer Sky 90 6210 Her PN 16 44.5 $+23$ 49 9.3 $14"$ very starlike blue planetary 91 6369 Oph PN 17 29.3 -23 46 $30"$ Little Ghost; look for NGC 6309 nearby tiny bright blue oval sparse wide field cluster; IC 4756 nearby 92 6572 Oph PN 18 27.7 $+06$ 34 4.6 27 small globular; look for IC 1295 in field 94 6712 Sct GC 18 53.1 -08 28.2 7.2 small globular; look for IC 1295 in field 95 6781 Aql PN 19 18.4 $+06$ 33 11.8 $109"$ pale version of M97; fairly bright 96 6819 Cyg OC 19 41.3 $+0$ 17 73 5 <t< td=""><td>88</td><td>6503</td><td>Dra</td><td>G-Sb</td><td>17 49.4</td><td>+70 09</td><td>10.2</td><td>6.2 x 2.3</td><td>bright elongated spiral</td></t<>	88	6503	Dra	G-Sb	17 49.4	+70 09	10.2	6.2 x 2.3	bright elongated spiral
The Summer Sky90 6210 HerPN16 44.5 $+23$ 49 9.3 $14"$ very starlike blue planetary91 6369 OphPN 17 29.3 -23 46 10.4 $30"$ Little Ghost; look for NGC 6309 nearby93 6633 OphOC 18 27.7 $+06$ 34 4.6 27 sparse wide field cluster; IC 4756 nearby94 6712 SctGC 18 53.1 -08 42 8.2 7.2 small globular; look for IC 1295 in field95 6781 AqlPN 19 18.4 $+06$ 33 11.8 $109"$ pale version of M97; fairly bright96 6819 CygOC 19 41.3 $+40$ 11 7.3 5 150° ; faint but rich cluster in Milky Way97 6826 CygSNR ? 20 45.7 $+30$ 43 -70 x 110° 98 6888 CygSNR ? 20 45.7 $+30$ -70 x 110° 70×6 110° North American; use filter ?1007000CygEN 20 58.8 $+42$ -120×100 110° 15° 150° ; small; dark neb. B86 in same field1017027CygSNR 20 45.7 $+30$ 43 -70×6 110° 110° 520 58° 1007000CygEN 20 58.8 <	89	6543	Dra	PN	17 58.6	+66 38	8.8	18"	Cat's Eye Nebula; with 11 ^m central star
9163210121171818199317101010916369OphPN1729.3-234610.430"Little Ghost; look for NGC 6309 nearby936633OphOC1827.7+06344.627sparse wide field cluster; IC 4756 nearby946712SctGC1853.1-08428.27.2small globular; look for IC 1295 in field956781Aq1PN1918.4+063311.8109"pale version of M97; fairly bright966819CygOC1941.3+40117.35150*; faint but rich cluster in Milky Way976826CygNR?2012.0+3821-20 x 10986888CygSNR?2012.0+3821-78 x 81007000CygSNR2056.4+3143-78 x 81017027CygSNR2058.8+4420-120 x 1001026445SgrPN1749.2-20 0111.834"1036520SgrOC1930.6+20 168.83.21056802VulOC1930.6+20 168.83.21056802VulOC1930.6+20 168.83.2	Th 90	e Su	m m (er Sl Ipn	k y 16 44 5	+23 49	03	14"	verv starlike blue planetarv
916369 6572 93Oph 6533 OphPN17 18 12.1 12.1 10618 12.1 		0210	1.0.1		10 44.5	125 45	1.5		for y summe once pronounly
926572OphPN1812.1 $+06$ 51 9.0 8"tiny bright blue oval936633OphOC18 27.7 $+06$ 34 4.6 27 sparse wide field cluster; IC 4756 nearby946712SctGC18 53.1 -08 42 8.2 7.2 small globular; look for IC 1295 in field956781Aq1PN19 18.4 $+06$ 33 11.8 $109"$ pale version of M97; fairly bright966819CygOC19 41.3 $+40$ 11 7.3 5 150^* ; faint but rich cluster in Milky Way976826CygSNR? 20 12.0 $+38$ 1 $ 20$ 10 986888CygSNR? 20 12.0 $+38$ 1 $ 70 \times 6$ $!!$ Veil Nebula; west half; use filter99 a6960CygSNR 20 45.7 $+30$ 43 $ 78 \times 8$ $!!$ Veil Nebula; west half; use filter !99 b6992/5CygSNR 20 55.4 $+31$ 43 $ 78 \times 8$ $!!$ Veil Nebula; west half; use filter !100 7000 CygSNR 20 58.8 $+44$ 20 $ 120 \times 100$ 111 7027 CygPN 17 49.2 -20 11.8 $34"$ 102 6445 SgrPN 17 49.2 -20 11.8 <	91	6369	Oph	PN	17 29.3	-23 46	10.4	30"	Little Ghost; look for NGC 6309 nearby
936633 6712Oph SctOC1827.7+06344.627sparse wide field cluster; IC 4756 nearby946712SctGC1853.1-08428.27.2small globular; look for IC 1295 in field956781AqlPN1918.4+063311.8109"pale version of M97; fairly bright966819CygOC1941.3+40117.35150*; faint but rich cluster in Milky Way976826CygPN1944.8+50319.830"Crescent Nebula; faint; use nebula filter986888CygSNR ?2012.0+3821-20 x 10Crescent Nebula; faint; use nebula filter ?!99 a6960CygSNR ?2056.4+3143-78 x 8!! Veil Nebula: west half; use filter ?!1007000CygEN2058.8+4420-120 x 100!! North American; use filter & low mag.1017027CygPN1749.2-20 0111.834"560*; small; dark neb. B86 in same field1026445SgrPN1749.2-20 0111.834"60*; small; dark neb. B86 in same field1036520SgrOC1930.6+20 168.83.2at east end of Brocchi's cluster Cr 3991056802VulOC1930.6+20 16 </td <td>92</td> <td>6572</td> <td>Oph</td> <td>PN</td> <td>18 12.1</td> <td>+06 51</td> <td>9.0</td> <td>8"</td> <td>tiny bright blue oval</td>	92	6572	Oph	PN	18 12.1	+06 51	9.0	8"	tiny bright blue oval
946712SctGC1853.1 -08 428.27.2small globular; look for IC 1295 in field956781AqlPN1918.4 $+06$ 3311.8109"pale version of M97; fairly bright966819CygOC1941.3 $+40$ 117.35150*; faint but rich cluster in Milky Way976826CygPN1944.8 $+50$ 319.830"150*; faint but rich cluster in Milky Way986888CygSNR ?2012.0 $+38$ 21 $-$ 20 x 10?rescent Nebula; faint; use nebula filter ?99 a6960CygSNR ?2056.4 $+31$ $ 78 \times 8$?! Veil Nebula: west half; use filter ?1007000CygSNR2056.4 $+31$ $ 78 \times 8$?! Veil Nebula: west half; use filter ?1017027CygPN ?2107.1 $+42$ 14 10.4 $15^{"}$ "Ivoth American; use filter & low mag.1026445SgrPN17 49.2 -20 11 11.8 $34"$ small, bright and annular; near M231036520SgrOC19 30.6 $+20$ 16 8.8 3.2 at east end of Brocchi's cluster Cr 3991056802VulOC19 30.6 $+20$ 16 8.8 3.2 at east end of Brocchi's cluster Cr 3991066940VulOC <td< td=""><td>93</td><td>6633</td><td>Oph</td><td>oc</td><td>18 27.7</td><td>+06 34</td><td>4.6</td><td>27</td><td>sparse wide field cluster; IC 4756 nearby</td></td<>	93	6633	Oph	oc	18 27.7	+06 34	4.6	27	sparse wide field cluster; IC 4756 nearby
956781AqlPN1918.4+063311.8109"pale version of M97; fairly bright966819CygOC1941.3+40117.35150*; fairl but rich cluster in Milky Way976826CygPN1944.8+50319.830"!! Blinking Planetary; 10"4 central star986888CygSNR ?2012.0+3821-20 x 10Crescent Nebula; faint; use nebula filter99 b6992/5CygSNR 2056.4+3143-70 x 6!! Veil Nebula: east half; use filter !1007000CygEN2058.8+4420-120 x 100!! Veil Nebula: east half; use filter !1017027CygPN ?2107.1+421410.415""!! North American; use filter & low mag.10264455SgrPN1749.2-200111.834"small, bright and annular; near M231036520SgrOC1803.4-27548.161046818SgrPN1944.0-14099.917"Little Gem; annular; NGC 6822 ³ /4° S1056802VulOC1930.6+20168.83.2at east end of Brocchi's cluster Cr 3991066940VulOC2031.4+60387.8880*; very rich; NGC 69	94	6712	Sct	GC	18 53.1	-08 42	8.2	7.2	small globular; look for IC 1295 in field
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	95	6781	Aql	PN	19 18.4	+06 33	11.8	109"	pale version of M97; fairly bright
99 a6960CygSNR2045.7+304370 x 6!! Veil Nebula: west half; use filter !99 b6992/5CygSNR2056.4+314378 x 8!! Veil Nebula: east half; use filter !1007000CygEN2058.8+4420120 x 100!! North American; use filter & low mag.1017027CygPN ?2107.1+421410.415"unusual proto-planetary nebula1026445SgrPN1749.2-200111.834"60*; small; dark neb. B86 in same field1046818SgrPN1944.0-14099.917"Little Gem; annular; NGC 6822 $^3/4^\circ$ S1056802VulOC1930.6+20168.83.2at east end of Brocchi's cluster Cr 3991066940VulOC2031.4+60387.8880*; very rich; NGC 6946 in same field1086946CepG-Sc2031.4+608.911.0 x 9.880*; very rich; NGC 6946 in same field1086946CepRN2144.4+66108 x 7faint diffuse face-on spiral near 69391097129CepRN2144.4+66108 x 7faint reflect. neb. around several stars10040CepPN0013.0+7232<	96 97 98	6819 6826 6888	Cyg Cyg Cyg	OC PN SNR ?	19 41.3 19 44.8 20 12.0	+40 11 +50 31 +38 21	7.3 9.8	5 30" 20 x 10	150*; faint but rich cluster in Milky Way !! Blinking Planetary; 10 ^m 4 central star Crescent Nebula; faint; use nebula filter
99 b 6992/5 Cyg SNR 20 56.4 $+31$ 43 $-$ 78 x 8 !! Veil Nebula: east half; use filter ! 100 7000 Cyg EN 20 56.4 $+31$ 43 $-$ 78 x 8 !! Veil Nebula: east half; use filter ! 100 7000 Cyg EN 20 58.8 $+44$ 20 $-$ 120 x 100 !! North American; use filter & low mag. 101 7027 Cyg PN 21 07.1 $+42$ 14 10.4 15" "North American; use filter & low mag. 102 6445 Sgr PN 17 49.2 -20 01 11.8 34" small, bright and annular; near M23 60*; small; dark neb. B86 in same field 103 6520 Sgr PN 19 44.0 -14 09 9.9 17" Little Gem; annular; NGC 6822 $^{3}/_{4}^{\circ}$ S 105 6802 Vul OC 19 30.6 $+20$ 16 8.8 3.2 at east end of Brocchi's cluster Cr 399 60*; fairly rich cluster in Milky Way 00 20 34.6 <td>99 a</td> <td>6960</td> <td>Cvg</td> <td>SNR</td> <td>20 45.7</td> <td>+30 43</td> <td></td> <td>70 x 6</td> <td>!! Veil Nebula: west half: use filter !</td>	99 a	6960	Cvg	SNR	20 45.7	+30 43		70 x 6	!! Veil Nebula: west half: use filter !
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	99 h	6992/5	Cvo	SNR	20 56 4	+31 43	_	78 x 8	!! Veil Nebula: east half: use filter !
1007000CygPN ?2197.1+421410.415"Invoid 1 Anoten and the constraint of the field1017027CygPN ?2107.1+421410.415"unusual proto-planetary nebula1026445SgrPN1749.2-200111.834"small, bright and annular; near M231036520SgrOC1803.4-27548.1660*; small; dark neb. B86 in same field1046818SgrPN1944.0-14099.917"Little Gem; annular; NGC 6822 $^3/4^{\circ}$ S1056802VulOC1930.6+20168.83.2at east end of Brocchi's cluster Cr 3991066940VulOC2031.4+60387.881076939CepOC2031.4+60387.881086946CepG-Sc2031.4+6098.911.0 x 9.81097129CepRN2144.4+6610-8 x 7faint diffuse face-on spiral near 693910040CepPN0013.0+723210.237"unusual red planetary; 11% central star	100	7000	Cva	EN	20 58 8	+44 20		120 x 100	"North American: use filter & low mag
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	101	7027	Cyg	PN?	21 07.1	+42 14	10.4	15"	unusual proto-planetary nebula
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	102	6445	Sgr	PN	17 49.2	-20 01	11.8	34"	small, bright and annular; near M23
104 6818 Sgr PN 19 44.0 -14 09 9.9 $17"$ Little Gem; annular; NGC 6822 ${}^{3}/_{4}{}^{\circ}$ S 105 6802 Vul OC 19 30.6 $+20$ 16 8.8 3.2 at east end of Brocchi's cluster Cr 399 106 6940 Vul OC 20 34.6 $+28$ 18 6.3 31 at east end of Brocchi's cluster Cr 399 107 6939 Cep OC 20 31.4 $+60$ 38 7.8 8 80*; very rich; NGC 6946 in same field 108 6946 Cep G-Sc 20 34.8 $+60$ 9 8.9 11.0×9.8 faint, diffuse face-on spiral near 6939 109 7129 Cep RN 21 44.4 $+66$ 10 $$ 8×7 faint reflect, neb. around several stars 110 40 Cep PN 00 13.0 $+72$ 32 10.2 $37"$ unusual red planetary; 11 ^{m6} central star	103	6520	Sgr	OC	18 03.4	-27 54	8.1	6	60*; small; dark neb. B86 in same field
$ \begin{array}{ccccccccccccccccccccccccc$	104	6818	Sgr	PN	19 44.0	-14 09	9.9	17"	Little Gem; annular; NGC 6822 ³ /4 ^o S
107 6939 Cep OC 20 31.4 +60 38 7.8 8 80*; very rich; NGC 6946 in same field 108 6946 Cep G-Sc 20 34.8 +60 9 8.9 11.0 x 9.8 faint, diffuse face-on spiral near 6939 109 7129 Cep RN 21 44.4 +66 10 8 x 7 faint reflect. neb. around several stars 110 40 Cep PN 00 13.0 +72 32 10.2 37" unusual red planetary; 11 ^m 6 central star	105 106	6802 6940	Vul Vul	oc oc	19 30.6 20 34.6	+20 16 +28 18	8.8 6.3	3.2 31	at east end of Brocchi's cluster Cr 399 60*; fairly rich cluster in Milky Way
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	107	6030	Cer		20 31 4	+60 38	78	8	80* very rich: NGC 6946 in same field
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100	6016	Car	Geo	20 24 9	160 00	20	110-00	faint diffuse face on spiral near 6030
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	7120	Car	PN	21 14 4	166 10		8 - 7	faint reflect neb around several stors
$\frac{110}{40} \frac{40}{100} \frac{100}{100} \frac{110}{100} \frac{110}{100} \frac{100}{100} \frac{100}$	110	129	Cep	DN		172 22	102	27"	unusual red planetary: 11M6 central star
	110	40	Cep	LI4	00 15.0	T12 32	10.2	31	unusual foi planolai y, 1170 contral stal

• For an excellent observing project, try tackling both the Messier and NGC lists. It may take up to 2 or 3 years to complete them both, but it provides a satisfying goal to work toward in your observing, along with an answer to that persistent question, "What do I look at tonight?"

DEEP-SKY CHALLENGE OBJECTS BY ALAN DYER AND ALISTER LING

For those who wish to venture beyond the NGC, here is a selection of 45 "challenge" targets. Most will require a 25 to 45-cm telescope. However, for detecting challenge objects, the quality of the sky, quality of the optics, use of an appropriate filter, and the observer's experience is often more important than sheer aperture. Don't be afraid to tackle some of these with a smaller telescope.

Objects are listed in order of right ascension. Abbreviations are the same as in the Messier and NGC lists. Two columns have been added: one lists the Chart where you'll find that object in the Uranometria 2000.0; the last column suggests the minimum aperture needed to see that object. (Most data taken from Sky Catalogue 2000. Vol. 2. Some visual magnitudes from other sources.)

No	Object	Con	Туре	R.A. (2000)	Dec	mv	Size	Chart #	Min. Aperture
1	NGC 7822 large, faint en	Cep	E/RN	00 ^h 03 ⁿ 1 'eeF': al	ng +68 so look	8° 37' for E	— R nebul	60 x 30 a Ced 214 (as	# 15 soc'd with	30 cm cluster Berkley 59) 1° S
2	IC 59 faint emission	Cas	E/RN	00 56. osity pairs	7 +6 ed with	1 04 IC 63	verv clo	10 x 5 se to y Cas.: 1	# 36 requires cle	20-25 cm an optics: rated as 'pF'
3	NGC 609 faint patch at	Cas low pov	OC ver; high	01 37.2 power nee	2 +64 eded to	4 33 resolv	11.0 e this ric	3.0 ch cluster (als	# 16 so look for	25–30 cm Trumpler 1 cluster 3° S)
4	IC 1795 brightest part	Cas of a cor	EN nplex of	02 24. nebulosity	7 +6 7 that in	1 54 Icludes	 5 IC 180	27 x 13 5 and IC 184	# 17 3; use a neb	20 cm pula filter
5	Maffei I heavily redde	Cas ned gala	G-E3 xy; very	02 36. faint; requ	3 +59 ires larg	9 39 ge apei	≈ 14 ture and	5 x 3 black skies; i	# 38 nearby Mafi	30 cm fei II probably invisible
6	NGC 1049 Class V glob	For ular in d	GC warf 'Fo	02 39. max Syste	7 –34 sm'Loo	429 Cal Gro	11.0 oup gala	0.6 xy 630 000 L	# 354 .Y. away; g	25-30 cm alaxy itself invisible ?
7	NGC 1275 Perseus A ex	Per	G-Pec galaxy; t	03 19. rightest n	8 +4 nember	1 31 of Ab	11.6 ell 426	2.6 x 1.9 gal. cl. 300 m	# 63 illion L.Y.	20-25 cm away; see Webb Vol. 5
8	1432/35 Pleiades nebu	Tau losity (a	RN Ilso inclu	03 46. les IC 349	1 +2); brigl	3 47 htest au	round M	30 x 30 erope; require	# 132 s transpare	10–15 cm nt skies and clean optics
9	IC 342 large and diff	Cam use face	G-SBc -on spiral	03 46. ; member	8 +6 of UM	8 06 a-Can	≈ 12 n cloud	17 x 17 (Kemble's Ca	# 18 scade of sta	20-30 cm rs also on this chart)
10	NGC 1499 California Ne	Per bula; ve	EN ry large a	04 00. nd faint; 1	7 +3 1se a wi	6 37 ide-fie	Id telesc	145 x 40 ope or big bin	# 95 oculars plu	8–12.5 cm RFT s H-Beta filter
11	NGC 1554/5 Hind's Variat	Tau le Neb.	RN small re	04 21. flect. neb.	8 +1 around	932 19 ^m -	 13 ^m var.	var. star T Tau; u	#133 se high poy	20 cm ? ver; difficulty varies
12	IC 405 Flaming Star	Aur Neb. as	E/RN soc'd wit	05 16. 1 runaway	2 +3 star A	4 16 E Auri	gae; see	30 x 19 Burnham's H	# 97 [andbk p. 2	20 cm 85 (also look for IC 410)
13	IC434/B33 B33 is the Ho	Ori	E/DN Nebula,	05 40. a dark nel	9 -0 5. super	2 28 impos	ed on a	60 x 10 very faint emi	# 226 ssion neb. 1	15–20 cm in dark sky! C 434; use H-Beta filter
14	Sh 2-276 Barnard's Loo	Ori op; SNR	EN or inters	05 48 ellar bubl	+0 ble?; dif	1 fficult	to detect	600 x 30 ! due to size; u	# 226 ise filter and	10-15cm RFT d sweep with wide field
15	Abell 12 also called Pl	Ori € 198 –(PN 5.1; faint;	06 02. not plotte	4 +0 21 on U	9 39 ranom	≈ 13 etria but	37" t is on NW ed	#181 ge of µ Ori	25-30 cm onis; OIII filter required
16	IC 443 faint superno	Gem va remn	SNR ant very	06 16.	9 +2 Gem.:	2 47 use fil	ter (also	50 x 40 look for NG	# 137 C 2174 and	25–30 cm Sh 2–247 on this chart)
17	J 900 Jonckheere 9	Gem	PN ht starlike	06 25.	9 +1'	7 47 ed as F	12.2 K 194 +	8" -2.1 in Uranor	# 137 metria: use	20 cm OIII filter & high power
18	IC 2177. Eagle Nebula	Mon large.	E/RN faint: con	07 05. tains brig	1 –1 ht patch	0 42 nes Gu		120 x 40 0°28'), NGC 2	# 273 2327 (-11°)	. 20–30 cm 18') & Ced 90 (–12°20')
19	PK205 +14.1 Medusa Nebu	Gem	PN bell 21: m	07 29. uch large	0 +1 r than n	3 15 lotted	≈ 13 in Uran	≈ 700" ometria: impr	# 184 essive in la	20-25 cm rge aperture w/ OIII filter
20	NGC 2419 at 200 000 L	Lyn Y. away	GC the mos	07 38. t distant 1	1 +3 Viilky V	8 53 Vay gl	10.4 obular fe	4.1 or amateur tel	# 100 escopes; v.	15-20 cm small & faint; Class II

204

:::

No	Object	Con	Туре	R.A.	(20	00) De	m _v	Size	Chart #	Min. Aperture
21	PK164 +31.1 extremely fai	Lyn nt with t	PN wo small	07 ^h 5 compo	57 ^m 8	+53° 2 ; use OI	5' ≈ 14 I filter; so	400" metimes cont	# 43 fused with r	25 cm nearby NGC 2474-75
22	Leo I	Leo	G-E3	100	8.4	+12 18	9.8	10.7 x 8.3	# 189	30 cm
	dwarf elliptic	al; satell	ite of Mi	Iky Wa	y; ver	y low su	face brig	htness; 0.3° N	of Regulus	s !; requires clean optics
23	Abell 1367	Leo	G's	11 4	4.0	+19 5'	13-16	≈ 60	# 147	30–40 cm
	cluster of som	ne 30 or	more gal	axies w	vithin	a 1 degr	te field ne	ar 93 Leonis;	see Webb 1	Handbook Vol. 5, p. 139
24	NGC 3172	UMi	G_?	11 5	i0.2	+89 0'	13.6	0.7 x 0.7	# 2	25 cm
	'Polarissima	Borealis	' close	est gala	xy to	the Nort	h Celestia	Pole; small,	faint and ot	herwise unremarkable
25	NGC 4236	Dra	G-SBb	12 1	6.7	+69 21	9.6	18.6 x 6.9	# 25	20–25 cm
	very large, di	m barred	spiral; a	diffuse	glow	(NGC	9.5 on C	hart #108 a si	milar large	diffuse face-on)
26	Mrk 205	Dra	Quasar	12 2	1.6	+75 18	14.5	stellar	# 9	30 cm
	Markarian 20	5; a fain	t star on S	SW edg	e of N	IGC 431	9; plotted	as a radio sou	trce; centre	of red-shift controversy
27	3C 273 at 2 to 3 billio	Vir on L.Y.	Quasar away one	12 2 of the	9.1 most	+02 03 distant o	bjects vis	stellar ible in amateu	# 238 ur telescope	25-30 cm s; magnitude variable
28	NGC 4676 'The Mice' or	Com VV 22	G's 1— two c	12 4 lassic i	6.2 nterac	+30 44	14.1p	≈ 2 x 1 faint; double	# 108 nature dete	25 cm extable at high power
29	Abell 1656	Com	G's	13 (0.1	+27 58	3 12–16	≈ 60	# 149	25-30 cm
	Coma Bereni	ces gal.	cl.; very	rich; 4(00 mil	lion L.Y	. away; bi	rightest memb	per NGC 48	89; see Webb Vol. 5
30	NGC 5053	Com	GC	13 1	6.4	+17 42	9.8	10.5	# 150	10–20 cm
	faint and very	loose g	lobular 1	° SE of	M53	require	9.8 s large ape	erture to resolv	ve; difficult	in hazy skies; Class XI
31	NGC 5897	Lib	GC	15 1	7.4	–21 0	8.6	12.6	# 334	15–20 cm
	large, faint ar	d loose	globular;	mag. 1	0.9 ir	Atlas C	oeli Catal	ogue; require	s large aper	ture to resolve; Class XI
32	Abell 2065	CrB	G's	15 2	2.7	+27 43	s ≈ 16	≈ 30	#154	50 cm in superb sky!
	Corona Borea	lis gal.	cluster; p	erhaps	the m	ost diffie	cult object	for amateur t	elescopes;	1.5 billion L.Y. away
33	NGC 6027	Ser	G's	15 5	9.2	+20 4:	$5 \approx 15$	≈ 2 x 1	# 155	40 cm
	Seyfert's Sext	et (6027	A–F); c	ompact	grou	2 of 6 sm	all and ve	ry faint galax	ies; see Bu	mham's Handbk p. 1793
34	B 72	Oph	DN	172	23.5	-23 3	3	30	# 338	8–12.5 cm RFT
	Barnard's dari	k S-Neb	ula or 'Ti	ne Snak	ce'; op	acity of	6/6; 1.5° 1	NNE of θ Oph	niuchi; area	rich in dark nebulas
35	NGC 6791	Lyr	OC	192	20.7	+37 5	9.5	16	# 118	20-25 cm
	large, faint bu	it very r	ich open	cluster	with :	300 stars	a faint s	mear in small	er instrume	nts; Type II 3 r
36	PK 64 +5.1	Cyg	PN	19 3	4.8	+30 3	l 9.6	8"	# 118	20 cm
	Campbell's H	ydrogen	Star; vei	y brigh	11 but -	very star	like; also	catalogued as	star BD +3	0°3639
37	M 1-92	Cyg	RN	19 3	6.3	+29 3	3 11.0	12" x 6"	# 118	25–30 cm
	Minkowski 9	2 or Foc	otprint Ne	bula; b	right,	starlike	reflection	neb.; double	at high ma	g.; assoc'd star invisible
38	NGC 6822	Sgr	G-Irr	19 4	14.9	-14 4	3 ≈ 11	10.2 x 9.5	# 297	10–15 cm
	Barnard's Gal	axy; me	mber of t	he Loca	al Gro	up; large	but very	low surface b	rightness; re	equires transparent skies
39	IC 4997 bright but sta	Sge rlike pla	PN netary; th	20 2 ne chall	20.2 enge	+16 4	5 10.9 the disk !:	2" blink the fiel	# 163 ld with and	20 cm without a nebula filter
40	IC 1318 complex of n	Cyg ebulosit	EN y around	202 γCygn	26.2 i; mul	+40 3 titude of	patches i	large n rich starfield	# 84 d; use a ver	8–15 cm RFT y wide field plus filter
41	PK 80 -6.1	Cyg	PN ?	21 ()2.3	+36 4	2 13.5	16"	# 121	25 cm
	the 'Egg Neb	ula'; a v	ery small	proto-j	planet	ary nebu	la; can ow	mers of large	telescopes d	letect polarization ?
42	IC 1396	Cep	EN	21 3	9.1	+57 3)	170 x 140	# 57	10–12.5 cm RFT
	extremely lar	ge and d	iffuse are	a of en	hission	n nebulo	sity; use n	ebula filter an	d very wide	field optics in dark sky
43	IC 5146 Cocoon Nebu	Cyg ila; faint	E/RN and diffu	21 f	53.5 H-Be	+47 1 ta filter:	5 at the end	12 x 12 of the long fil	# 86 lamentary d	20–25 cm ark nebula Barnard 168
44	NGC 7317-20 Stephan's Ou	Peg intet: 0.	G's 5° SSW (22 3	36.1 2 7331	+33 5'	7 13-14 pick out	each $\approx 1'$ 3 or 4 (also le	# 123	25-30 cm mpanions' to 7331)
45	Jones 1	Peg	PN	23 3	85.9	+30 2	3 12.1	332"	# 124	25-30 cm
	plotted as PK	104 -29	9.1 (from	Perek	& Kol	noutek c	talogue) i	n Uranometri	a; large dim	glow; OIII filter required

GALAXIES: BRIGHTEST AND NEAREST

BY BARRY F. MADORE

External galaxies are generally of such low surface brightness that they often prove disappointing objects for the amateur observer. However it must be remembered that many of these galaxies were discovered with very small telescopes and that the enjoyment of their discovery can be recaptured. In addition the central concentration of light varies from galaxy to galaxy making a visual classification of the types possible at the telescope. Indeed the type of galaxy as listed in the first table is in part based on the fraction of light coming from the central bulge of the galaxy as compared to the contribution from a disk component. Disk galaxies with dominant bulges are classified as Sa; as the nuclear contribution declines, types of Sb, Sc, and Sd are assigned until the nucleus is absent at type Sm. Often the disks of these galaxies show spiral symmetry, the coherence and strength of which is denoted by Roman numerals I through V, smaller numbers indicating well-formed global spiral patterns. Those spirals with central bars are designated SB while those with only a hint of a disk embedded in the bulge are called S0. A separate class of galaxies which possess no disk component are called ellipticals and can only be further classified numerically by their apparent flattening: E0 being apparently round, E7 being the most flattened.

Environment appears to play an important role in the determining of the types of galaxies we see at the present epoch. Rich clusters of galaxies such as the system in Coma are dominated by ellipticals and gas-free S0 galaxies. The less dense clusters and groups tend to be dominated by the spiral, disk galaxies. Remarkably, in pairs of galaxies the two types are much more frequently of the same Hubble type than random selection would predict. Encounters between disk galaxies may in some cases result in the instabilities necessary to form the spiral structure we often see. M51, the Whirlpool and its companion NGC 519S are an often-cited example of this type of interaction. In the past when the Universe was much more densely packed, interactions and collisions may have been sufficiently frequent that entire galaxies merged to form a single large new system; it has been suggested that some elliptical galaxies formed in this way.

The following table presents the 40 brightest galaxies taken from the Revised Shapley-Ames Catalog. As well as their designations, positions, and types, the table lists the total blue magnitudes, major and minor axis lengths (to the nearest minute of arc), one modern estimate of their distances in thousands of parsecs, and finally their radial velocities corrected for the motion of our Sun about the galactic centre.

:::

NGC/IC (Other)	α/δ (1983)	Туре	B _T ma × mi	Distance Corrected Radial Vel.
55	00 ^h 14 ^m 04 ^s -39°17.1'	Sc	8.22 mag 25 × 3 arc min	3 100 kpc + 115 km/s
205 M110	00 39 27 +41 35.7	SØ/E5pec	8.83 8 × 3	730 +49
221 M32	00 41 49 +40 46.3	E2	9.01 3 × 3	730 +86
224 M31	00 41 49 +41 10.5	Sb I–II	4.38 160 × 40	730 -10
247	00 46 19 -20 51.2	Sc III–IV	9.51 18 × 5	3 100 +604
253	00 46 46 -25 23.0	Sc	8.13 22 × 6	4 200 + 504
SMC	00 52 10 -72 55.3	Im IV–V	2.79 216 × 216	60 +359
300	00 54.05 -37 46.7	Sc III	8.70 20 × 10	2 400 +625
598 M33	01 32 55 +30 34.0	Sc II–III	6.26 60 × 40	670 +506
628 M74	01 35 49 +15 41.6	Sc I	9.77 8 × 8	17 000 +507
1068 M77	02 41 49 -00 05.2	Sb II	9.55 3 × 2	25 000 +510
1291	03 16 42 -41 11.3	SBa	9.42 5 × 2	15 000 +512
1313	03 18 04 -66 33.6	SBc III–IV	9.37 5 × 3	5 200 +261
1316 Fornax A	03 22 03 -37 16.1	Sa (pec)	9.60 4 × 3	30 000 +1713
LMC	05 23 45 -69 46.3	SBm III	$\begin{array}{c} 0.63\\ 432\times432\end{array}$	50 +34
2403	07 35 13 +65 38.2	Sc III	8.89 16 × 10	3 600 +299
2903	09 31 02 +21 34.4	Sc I–III	9.50 11 × 5	9 400 +472
3031 M81	09 54 11 +69 08.9	Sb I–II	7.86 16 × 10	3 600 +124
3034 M82	09 54 24 +69 45.5	Amor- phous	9.28 7 × 2	3 600 +409
3521	11 04 57 +00 03.5	Sb II–III	9.64 7 × 2	13 000 +627

THE 40 OPTICALLY BRIGHTEST SHAPLEY-AMES GALAXIES

NGC/IC (Other)	α/δ (1983)	Туре	B _T ma × mi	Distance Corrected Radial Vel.
3627	11 19 22	Sb II	9.74	12 000
M66	+13 05.0		8 × 3	+ 593
4258 M106	12 18 07 +47 24.1	Sb II	8.95 20 × 6	10000 + 520
4449	12 27 24 +44 11.4	Sm IV	9.85 5 × 3	5 000 + 250
4472	12 28 55	E1/SØ	9.32	22 000
M49	+08 05.8		5 × 4	+822
4486	12 29 58	ЕФ	9.62	22 000
M87	+12 29.2		3 × 3	+1136
4594	12 39 07	Sa/b	9.28	17 000
M104	-11 31.8		7 × 2	+873
4631	12 41 18 +32 38.0	Sc	9.84 12 × 1	12 000 +606
4649	12 42 49	SØ	9.83	22 000
M60	+11 38.7		4 × 3	+1142
4736	12 50 06	Sab	8.92	6 900
M94	+41 12.9		5 × 4	+ 345
4826	12 55 55	Sab II	9.37	7 000
M64	+21 46.5		8 × 4	+350
4945	13 04 28 -49 22.5	Sc	9.60 12 × 2	7 000 +275
5055	13 15 04	Sbc II-III	9.33	11 000
M63	+42 07.4		8 × 3	+550
5128	13 24 29	SØ (pec)	7.89	6 900
Cen A	-42 35.7		10 × 3	+251
5194	13 29 10	Sbc I–II	8.57	11 000
M51	+47 17.2		12 × 6	+541
5236	13 36 02	SBc II	8.51	6 900
M83	-29 46.8		10 × 8	+275
5457	14 02 39	Sc I	8.18	7 600
M101	+54 26.4		22 × 22	+372
6744	19 08 09 -63 53.0	Sbc II	9.24 9 × 9	13 000 +663
6822	19 43 59 -14 50.8	Im IV–V	9.35 20 × 10	680 +15
6946	20 34 30 +60 05.9	Sc II	9.68 13 × 9	6 700 + 336
7793	23 56 57 -32 41.1	Sd IV	9.65 6 × 4	4 200 +241

::

The nearest galaxies, listed below, form what is known as our Local Group of Galaxies. Many of the distances are still quite uncertain.

Name	α (198	33.0) δ	B _T	Туре	Distance (kpc)
M31 = NGC 224	00 ^h 41 ^m .8	+41°11′	4.38	Sb I–II	730
Galaxy				Sb/c	
M33 = NGC 598	01 32.9	+30 34	6.26	Sc II–III	670
LMC	05 23.8	-69 46	0.63	SBm III	50
SMC	00 52.2	-72 55	2.79	Im IV–V	60
NGC 6822	19 44.0	-14 51	9.35	Im IV–V	520
IC 1613	01 03.9	+0202	10.00	Im V	740
M110 = NGC 205	00 39.5	+41 36	8.83	SØ/E5 pec	730
M32 = NGC 221	00 41.8	+40 46	9.01	E2	730
NGC 185	00 38.0	+48 15	10.13	dE3 pec	730
NGC 147	00 32.3	+48 25	10.36	dE5	730
Fornax	02 39.2	-34 36	9.1	dE	130
Sculptor	00 59.0	-33 47	10.5	dE	85
Leo Ì	10 07.6	+12 24	11.27	dE	230
Leo II	11 12.6	+22 15	12.85	dE	230
Draco	17 19.8	+57 56		dE	80
Ursa Minor	15 08.6	+67 16		dE	75
Carina	06 47.2	-50 59		dE	170
And I	00 44.6	+37 57	13.5	dE	730
And II	01 15.5	+33 21	13.5	dE	730
And III	00 34.5	$+36\overline{25}$	13.5	dE	730
LGS 3	01 02.9	+21 48		?	730

THE NEAR-BY GALAXIES: OUR LOCAL GROUP

GALAXIES WITH PROPER NAMES BY JAMES T. HIMER AND BARRY F. MADORE

The following table contains the catalogue designations and positions of galaxies known to have proper names which usually honour the discoverer (e.g. McLeish's Object), identify the constellation in which the galaxy is found (e.g. Andromeda Galaxy), or describe the galaxy in some easily remembered way (e.g. Whirlpool Galaxy).

Galaxy Name	Other Designations	B195	0.0	-	J 20C	0.0	-	Notes
Ambartsumian's Knot Andromeda Galaxy Andromeda I Andromeda II Andromeda II Andromeda IV Anternea IV Anternea Ju Anternea Dearf Atons For Peace	NGC 3561. UGC 0524. ARP 105 M31. NGC 224. UGC 00454 Ring Tail. NGC 4038/39. ARP 244 DDO 210 NGC 7252. ARP 226	11 08.5 00 43.0 01 13.5 00 332.6 00 332.6 00 39.8 11 39.8 21 459.3 22 18.0	+ 28 58 + 428 58 + 37 40 + 33 09 + 336 14 + 336 14 + 336 14 - 138 35 - 138 35 - 138 35 - 138 35 - 24 56		11 11.2 00 42.7 00 45.7 01 16.3 00 45.5 00 42.5 12 01.9 11 19.6 11 19.6 22 20.8	+ + 28 + 28 + 28 + 28 + 28 + 28 + 28 +		Nilson (1973) Van Den Bergh (1981) Arp (1965)
Baade's Galaxies A & B Barbon's Galaxy Barron's Galaxy Barroi's Galaxy Barroi's Claw Bars Paw (Claw Bars Paw (Claw Bars Paw (Claw Bars Paw (Claw Burbidge Chain Burbidge Chain BW Tauri BW Tauri	MCG+07-02-018/19 Martan 328, 226, 497,042 Martan 328, 226, 497,042 Martan 268, 200 209 NGC 537, UGC 0474, ARP 6 M64, NGC 4826, UGC 08062 M81422, NGC 3031/4, UGC 05318/22 M81222, NGC 3031/4, UGC 05318/22 UGC 03087, MCC+01-17-009	00 47.1 23 35.2 13 35.2 08 092.1 22 009.7 12 54.2 09 51.6 00 45.0 04 30.5	+42 +42 +42 +42 +42 +42 +42 +445 +445 +4		00 49.9 23 37.7 19 44.9 19 44.9 13.2 22 02.7 13 56.7 12 56.7 00 47.5 00 47.5 01 33.2	++32 +30 +342 +46 +46 +23 +24 +22 +17 +22 +17 +17 +12 +12 +17 +17 +17 +17 +17 +17 +17 +17 +17 +17		Burnham (1978) 1 Nilson (1973)
Capricorn Dwarf Carafe Galaxy Carina Dwarf Carthael Galaxy Centaurus A	MCG-04-51-013, Palomar 12 Near NGC 1598 + 1595 MCG-06-02-022a MCG-512A ARP 153	21 43.7 04 26.6 06 40.4 00 35.0	-21 28 -48 01 -34 01 -47 45		21 46.5 04 28.0 06 41.6 00 37.4	-21 14 -47 54 -50 58 -33 44		Dixon (1980); 2 Hanes & Madore (1980) Hawarden et al (1979) Van Den Bergh (1981) Davies et al (1981)
circius Galaxy coddington's Nebula Copeland Septet Cygnus A	MCC 97-21 M. 200 81 IC 2574, UCC 05666, DD0 81 MCC+04-28-004/05/07-11, ARP 320, MCC 3745/46/28/50/51/53/54 MCC+07-41-003	14 09.3 10 24.7 11 35.2 19 57.7	+ 40 35 + 40 35		10 28.4 11 37.8 19 59.4	-65 20 +68 25 +21 59 +40 43		Dixon (1980); 2
Draco Dwarf Exclamation Mark Galaxy The Eyes	UGC 10822, DD0 208 NGC 4435/8, UGC 07574/5, ARP 120a,D	17 19.4 00 36.9 12 25.2	+57 58 -43 22 +13 19		17 20.2 00 39.3 12 27.7	+57 55 -43 06 +13 03		Nilson (1973)
Fath 703 Fornax A Fornax Dwarf Fourcade-Figueroa	NGC 5892 NGC 1316, ARP 154 MCG-06-07-001 154 MCG-07-28-004	15 10.9 03 20.8 02 37.8 13 31.8	-15 18 -37 23 -34 45 -45 18		15 13.7 03 22.7 02 39.9 13 34.8	-15 29 -37 12 -34 32 -45 33		Díxon (1980); 3 Sandage & Tammann (1981) Díxon (1980) Graham(1978)
The Garland Grus Quartet GR 8 (Gibson Reaves)	S. of MGC 3017 = UGC 05398 NGC 7552/82/90/99 UGC 08091, DD0 155	10 00.2 23 15.0 12 56.2	+68 55 -42 42 +14 29		10 04.2 23 17.8 12 58.7	+68 40 -42 26 +14 13		Maccacaro (1981); 4 Nilson (1973)
Hardcastle's Galaxy Helix Galaxy Hercules A Hoag's Object	MCG-05-31-039 NGC 2685, UGC 04666, ARP 336 MCG+01-43-006	13 10.2 08 51.7 16 48.7 15 15.0	-32 25 +58 55 +05 04 +21 46		13 13.0 08 55.6 16 51.2 15 17.2	-32 41 +58 44 +04 59 +21 35		Dixon (1980) Dixon (1980) Sky & Tel (1986)

210

:::

Holmberg I	UGC 05139, DD0 63	09 36.0	+71 25	09 40.5	11 12+	Nilson (1973)
Holmberg II	UGC 04305, DD0 50, ARP 268	08 14.1	76 0/+	5.91 80	+ / C 43	(2/31) 10211N
Holmberg III	UGC 04841 UGC 06837 DD0 186	13 57 0	+14 20	13 54 7	+14 14	Nilson (1973)
Holmberg V	UGC 08658	13 38.7	+54 35	13 40 6	+54 20	Nilson (1973)
Holmberg VI	NGC 1325a	03 22.7	-21 31	03 24.9	-21 20	
Holmberg VII	UGC 07739, DD0 137	12 32.2	+06 34	12 34.7	+06 17	Nilson (1973)
Holmberg VIII	UGC 08303, DDO 166	13 11.0	+36 28	13 13.3	+36 12	Nilson (1973)
Holmberg IX	UGC 05336, DDO 66	09 53.5	+69 17	09 57.6	+69 03	Nilson (1973)
Horologium Dwarf	Schuster's Spiral	03 57.0	-46 00	03 58.6	-45 25	Sky & Tel. (1977)
Hydra A	MCG-02-24-007	09 15.7	-11 53	1.81 60	-12 06	Dixon (1980
Integral Sign	UGC 03697, MCG+12-07-028	07 05.6	+71 55	07 11.4	+71 50	
Keenan's System	NGC 5216/16a/18, UGC 08528/9,	13 30.5	+62 59	13 32.2	+62 43	Dixon (1980); 5
Kowal's Object		19 27.0	-17 47	19 29.9	-17 41	Sky & Tel.(1979)
biol foot loost	Nithorita Mator	05 24 0	-60 AB	05 73 6	-60 45	IAU Circular 3385
	Regulus Dwarf, UGC 05470, DD0 74,	10 05.8	+12 33	10 08.5	+12 18	Nilson (1973)
Leo II	Harrington-Wilson #1 Leo B, UGC 06253, DDO 93,	11 10.8	+22 26	11 13.4	+22 10	Nilson (1973)
111	Harrington-Wilson #2 Les A LUCT 05364 DDD 60	00 56 4	+30 50	00 50 3	+30 45	Nileon (1973)
Lindsav-Shanlev Ring	Graham A	06 44.2	-74 12	06 42 8	-74 15	Dixon (1980)
Lost Galaxy	NGC 4535, UGC 06834	12 31.8	08 28	12 34.3	+08 11	Burnham (1978)
Welsish's Object		20.05.0	-66 22	7 00 02	-66.13	
Maffai 1	1674 34	07 37 6	+50 26	07 36 3	100 30	Divor (1980)
Maffei II	UGCA 39	02 38.2	+59 24	02 42.0	+59 37	Dixon (1980)
Malin 1		12 34.5	+14 36	12 37.0	+14 20	Bothun (1987)
Mayall's Object	MCG+07-23-019, ARP 148	1.01.1	+41 06	11 03.9	+40 50	Burbidge (1964)
Mice	NGC 4676a/b, UGC 07938/9, TC 910/20 ABP 242	12 43.7	+31 00	12 46.1	+30 44	Dixon (1980)
Minature Suiral	10 013/20, AKF 242 NGC 3028	2 94 11	+48 58	11 51 8	+48 41	van den Berch (1980)
Minkowsi's Object	ARP 133 (N.E. of NGC 541)	01 23.2	-01 36	01 25.8	-01 21	
Pancake	NGC 2685. UGC 04666. ARP 336	08 51.7	+58 55	08 55.6	+58 44	
Papillon	IC 708, UGC 06549	11 31.2	+49 20	11 33.9	+49 03	valee et al. (1979)
Pegasus Dwarf	UGC 12613, DD0 216	23 26.0	+14 27	23 28.5	+14 44	Nilson (1973)
Perseus A	NGC 1275/6, UGC 02669	03 16.5	+41 20	03 19.8	+41 31	Di×on (1980)
Pinwheel Galaxy	M33, NGC 598, Triangulum Galaxy	01 31.1	+30 24	01 33.9	+30 39	Burnham (1978)
	M99, NGC 4254, UGC 0/345 M101, NGC 5457, UGC 08981, ARP 26	14 01 5	+14 42	12 18.8	+14 25 +54 22	Burnham (1978) Astr Almanar (1987)
Pisces Cloud	NGC 379/80/82-85, UGC 00682/3/6-9,	01 04.7	+32 09	01 07.5	+32 25	Nilson (1973)
Pisces Dwarf	ARP 331 LGS 3	00 01.2	+21 37	00 03.8	+21 54	Van Den Bergh (1981)
Polarissima Australis	NGC 2573	02 38.2	-89 35	01 37	-89 21	
Polarissima Borealis	NGC 3172, ZWG 370.002	11 42.6	+89 24	11 50.3	+89 07	Sky & Tel. (1982), (1978)
Reinmuth 80	NGC 4517a. UGC 07685	12 29.9	+00 40	12 32.5	+00 23	Niison (1973): B
Reticulum Dwarf	Sersic 040.03	04 35.4	-58 56	04 36.2	-58 50	Dixon (1980); 7
Sagittarius Dwarf		19 27.1	-17 47	19 30.0	-17 41	Van Den Bergh (1981)
Sculptor Dwarf Sculptor Dwarf Irr.	MCG-06-03-015	00 57.8	-33 58 -34 51	01 00.2	-33 42 -34 34	Dixon (1980); 9

Seashell Galaxy	Companion to NGC 5291	13 44.5	-30 08	13 47.4	-30 23	Lausten et al (1977)
Serpens Dwarf Sextans A	UGC 09/92, Palomar 5 UGCA 205, MCG-01-26-030, DD0 75	5.80 01	-04 26	0.11 01	-04 41	Dixon (1980)
Sextans B	UGC 05373, DD0 70	09 57.4	+05 34	10 00.0	+05 19	Nilson (1973)
Sextans C	UGC 05439	10 03.0	+00 19	10 05.6	+00 04	Nilson (1973)
Seyfert's Sextet	Serpens Sextet, NGC 6027 + a-e,	15 57.0	+20 54	15 59.2	+20 46	Nilson (1973)
	000 10110	9 00 10	06 30-	01 05 1	-06 13	
	NGC 4507	12 32 9	-30 38	12 35 1	-39 55	
	MCG-02-33-015	12 46 8	-09 51	12 49 4	- 10 07	
Shaplev-Ames 4	UGC 08041	12 52.7	+00 23	12 55.2	+00 01	
Shapley-Ames 5	MCG-07-42-001	20 20.6	-44 09	20 24.0	-44 00	
Shapley-Ames 6		21 20.0	-45 59	21 23.2	+45 46	
Siamese Twins	NGC 4567/4568	12 34.0	+11 32	12 36.5	+11 15	
Silver Coin	Sculptor Galaxy, NGC 253, UGCA 13	00 45.1	-25 34	00 47.6	-25 18	
Small Megailanic Cloud	Nubecula Minor	00 51.0	-73 06	00 52.7	-72 50	
Snickers		06 25	+15	06 28	+15	Simonson (1975)
Sombrero Galaxy	M104, NGC 4594	12 37.3	-11 21	12 39.9	-11 37	
Spider	UGC 05829, DD0 84	10 39.8	+34 43	10 42.6	+34 27	
Spindle Galaxy	NGC 3115	10 02.8	-07 28	10 05.2	-07 42	
Stephan's Quintet	NGC 7317-20, UGC 12099-102,	22 33.7	+33 42	22 36.0	+33 58	
	ARP 319					
Sunflower Galaxy	M63, NGC 5055, UGC 08334	13 13.5	+42 17	13 15.8	+42 02	Burnham (1978) 4
Triangulum Galaxy	Pinwheel, M33, NGC 598, UGC 01117	01 31.1	+30 24	01 33.9	+30 39	
Ursa Minor Dwarf	UGC 09749, DDO 199	15 08.2	+67 23	15 08.8	+67 12	Nilson (1973)
Virga A	MB7, NGC 4486, UGC 07654, ARP 152	12 28.3	+12 40	12 30.8	+12 23	
Whirlpool Galaxy	Rosse's Galaxy, Question Mark Gal.	13 27.8	+47 27	13 29.9	+47 12	
Wild's Triplet Wolf-Lundmark-Melotte	MDI, NGC D124/5, UGC UB493/4, ANY 1 MGG-01-30-032/34, ARP 248 MGG-03-01-015, DD0 221	11 44.2 23 59.4	-03 31 -15 44	11 46.8	-03 49 -15 28	Dixon (1980) Dixon (1980)
			2		;	
Zwicky #2 Zwicky's Triplet	UGC 06955, DD0 105 UGC 10586, ARP 103	11 55.8 16 48.0	+38 20 +45 33	11 58.4 16 49.5	+38 03 +45 30	Nilson (1973) Nilson (1973)

212

ARP = Atlas of Peculiar Galaxies, Ap. J. Suppl., 14, 1.
DDO = David Dunlap Obs. Publ., van den Bergh, S., 1959, II, No. 5, 147.
MCG = Morphological Catalogue of Galaxies, Vorontsov-Velyaminov, B.A.
MCI = Uppsda General Catalogue of Galaxies, Nilson, P. 1973, Nova Acta
UGC = Uppsda General Catalogue of Galaxies, Ser. V:A, Vol. 1, Uppsala, Sweden.

:::

RADIO SOURCES

BY KEN TAPPING

This list gives examples of the various classes of radio sources to be found among the several thousand objects that have been catalogued. In addition, sources lying within the reach of small (amateur-built) radio telescopes are included. Where possible, the flux densities (S) at the frequencies 100, 500, and 1000 MHz are given. The flux unit is the "jansky" (Jy), where 1 Jy equals 10^{-26} W m⁻² Hz⁻¹.

For information on radio astronomy, see *Radio Astronomy*, by J. D. Kraus, (McGraw Hill, 1966). Radio maps of the sky can be found in *Sky and Telescope*, 63, 230 (1982). Amateur radio astronomy is discussed in *Astronomy*, 5, no. 12, 50 (1977), in a series of articles in *J. Roy. Ast. Soc. Canada*, 72, L5, L22, L38, ... (1978), and in *Sky and Telescope*, 55, 385 and 475, and 56, 28 and 114 (1978).

	α(2000)δ		
Source			S (at 100, 500, 1000 MHz) Remarks
3C10	00 ^h 25 ^m 3	+64°08′	180, 85, 56 Remnant of Tycho's Supernova of 1572
W3	02 25.4	+62 06	—, 80, 150 IC1795; Multiple HII region; OH source
Algol	03 07.9	+40 56	* Eclipsing binary star
3C84	03 19.8	+41 32	70, 25, 17 NGC 1275; Seyfert galaxy; m = 12.7, z = 0.018
Fornax-A	03 20.4	-37 22	900, 160, 110 NGC 1316; Galaxy; m = 10.1, z = 0.006
Pictor-A	05 19.9	-45 47	440, 140, 100 Galaxy; $m = 15.8$, $z = 0.034$
V371 Orionis	05 33.7	+01 55	* Red dwarf, flare star
Taurus-A	05 34.5	+22 01	1450, 1250, 1000 Crab Nebula; Remnant of 1054 Supernova
NP0532	05 34.4	+22 01	15, 0.5, 1 Crab Pulsar; Period = 0.0331 s
Orion-A	05 35.3	-05 25	90, 200, 360 Orion Neb.; HII region; OH, IR source
3C157	06 17.6	+22 42	360, 195, 180 IC443; Supernova remnant
VY CMa	07 23.1	-20 44	* Optical var.; IR, OH, H ₂ O source
Puppis-A	08 20.3	-42 48	650, 300, 100
Hydra-A	09 18.1	-12 05	390, 110, 65 Galaxy; m = 14.8, z = 0.052
3C273	12 29.1	+02 03	150, 57, 49 Strongest quasar; $m = 13.0$, $z = 0.158$

*Important but weak or sporadic radio source. Mean flux density ≤1 flux unit.

Source	α(2000)δ		S (at 100, 500, 1000 MHz) Remarks
Virgo-A	12 ^h 30 ^m 8	+12°23′	1950, 450, 300 M 87; Elliptical galaxy with jet
Centaurus-A	13 25.4	-43 02	8500, 2500, 1400 NGC 5128; Galaxy; m = 7.5, z = 0.002
3C295	14 11.4	+52 12	95, 60, 28 Galaxy; $m = 20.5$, $z = 0.461$
OQ172	14 45.3	+09 59	10, 4, 2 Quasar; $m = 18.4, z = 3.53$
Scorpius X1	16 19.9	-15 38	* X-ray, radio, and optical variable
Hercules-A	16 51.2	+05 01	800, 120, 65 Galaxy; $m = 18.5$, $z = 0.154$
Gal. Cen. Region	17 42.0	-28 50	4400, 2900, 1800 Strong, diffuse emission
Sagittarius-A	17 42.5	-28 55	100, 250, 200 Associated with Galactic Centre
Sagittarius-B2	17 47.3	-28 24	—, 10, 70 Contains many molecules
SS433	19 11.9	+04 58	* Compact object with high velocity jets
CP1919	19 21.6	+21 52	0.08, 0.03, 0.005(?) First pulsar discovered; P = 1.3375 s
PSR 1937 + 21	19 39.6	+21 35	5, 0.2(?), 0.04(?) millisecond pulsar; P = 0.001558 s
Cygnus-A	19 59.5	+40 44	15 500, 4000, 2100 Strong radio galaxy
Cygnus-X	20 22 . 6	+40 23	400, 150, 30 Complex region
BL-Lacertae	22 02.7	+42 17	, 5, 4 Radio galaxy; m = 14.0, z = 0.07
Cassiopeia-A	23 23.4	+58 49	25 000, 4500, 2800 Supernova remnant
Jupiter			Bursts at metre wavelengths
Moon			Thermal source (~220K)
Sun			20 000, 300 000, 900 000 Also intense bursts and strong, varying emissions.

*Important but weak or sporadic radio source. Mean flux density \$\le 1\$ flux unit.

:::
VARIABLE GALAXIES

Some peculiar galaxies (Seyfert galaxies, BL Lacertae objects, and quasars) have bright, star-like nuclei which vary in brightness by up to several magnitudes on a time scale of months to years. These variations can be studied by amateurs and students, especially using photographic techniques. The following table lists the brightest variable galaxies. For more information, see *Sky and Telescope* **55**, 372 (1978), which gives finder charts and comparison stars for the four brightest Seyfert galaxies (indicated with asterisks in the table).

Charts for finding the brightest quasar, 3C 273, are at the bottom of the page. Start with the right-hand chart which shows a "binocular size" field of view down to nearly 10th magnitude. The stars η Vir (Mag 3.9), 16 Vir (mag 5.0), and 17 Vir (mag 6.5) are labelled (η Vir is the star immediately east of the autumnal equinox on the MARCH or MAY star chart in the back of this Handbook). The two "bright" stars about 0.5° west of the small rectangle are of 7.6 magnitude (the small rectangle shows the area covered by the left-hand chart). On the left-hand chart, nine stars have their visual magnitudes indicated (on their west sides) to the nearest tenth of a magnitude, with the decimal point omitted. The position of 3C 273 is indicated by a small cross. With a red shift z = 0.158, 3C 273 is receding from us at 47 000 km/s, and is probably 2 or 3 billion light years from Earth, making it, by far, the intrinsically-brightest (output $\approx 10^{39}$ W), most-distant object that can be seen in a small telescope. (RLB)

Name	Туре	R.A. 19	Mag.		
NGC 1275* 3C 120 OJ 287 NGC 4151*	Seyfert? Seyfert BL Lac Seyfert	h m 3 16.5 4 30.5 8 52.0 12 08 0	° ' +41 20 +05 15 +20 18 +39 41	11-13 14-16 12-16	
3C 273 3C 345	Quasar Quasar	12 08.0 12 26.6 16 41.3	+39 41 +02 20 +39 54	12-13	
Mkn. 509* BL Lac NGC 7469*	BL Lac Seyfert	20 41.5 22 00.7 23 00.7	$ \begin{array}{r} -10 & 54 \\ +42 & 02 \\ +08 & 36 \end{array} $	12-13	

The maps on the next seven pages cover the entire sky. Stars are shown down to a magnitude of 4.5 or 5, i.e. those which are readily apparent to the unaided eye on a reasonably dark night.

The first six maps are drawn for 45° N latitude, but are useful for latitudes several degrees north or south of this. They show the hemisphere of sky visible to an observer at various times of year. Because the aspect of the night sky changes continuously with both longitude and time, while time zones change discontinuously with both longitude and time, while time zones change discontinuously with both longitude and time, while time zones change discontinuously with both longitude and time of year, it is not possible to state simply when, in general, a particular observer will find that his or her sky fits exactly one of the six maps. The month indicated below each map is the time of year when the map will match the "late evening" sky. On any particular night, successive maps will represent the sky as it appears every four hours later. For example, at 2 or 3 am on a March night, the May map should be used. Just after dinner on a January night, the November map will be appropriate. The center of each map is the zenith, the point directly overhead; the circumference is the horizon. To identify the stars, hold the map in front of you so that the part of the horizon which you are facing (west, for instance) is downward. (The four letters around the periphery of each map indicate compass directions.)

The southern sky map is centred on the south celestial pole, and extends to 20° S declination at its periphery. There is thus considerable overlap with the southern areas of the other maps. Note that the orientation of the various names is generally inverted compared to that on the first six maps. This was done in recognition that most users of this Handbook will be residents of the Northern Hemisphere, and will make use of the southern sky map when they go on infrequent trips to the tropics. Thus in "normal" use this map will be read in an area above its centre, unlike the first six maps which are normally read below their centres. The months indicated around the edge of the map may be used to orient it to each of the preceding six maps, and have the same "late evening" significance as explained above. Tick marks around the edge of the map indicate hours of right ascension, with hours 0, 3, 6, etc. labelled. Starting at the centre of the map, the series of small crosses along 0 h right ascension indicates southern declinations 90° , 80° , 70° , ..., 20° . With the aid of a drawing compass, an observer in the Northern Hemisphere can quickly locate a circle, centred on the south celestial pole, which represents the southern limit of his or her sky.

On all seven maps, stars forming the usual constellation patterns are linked by straight lines, constellation names being given in upper case letters. Three constellations (Horologium, Mensa, and Microscopium) consist of faint stars; hence no patterns are indicated and the names are placed in parentheses. The names in lower case are those of first magnitude stars, except Algol and Mira which are famous variable stars, and Polaris which is near the north celestial pole. Small clusters of dots indicate the positions of bright star clusters, nebulae, or galaxies. Although a few of these are just visible to the naked eye, and most can be located in binoculars, a telescope is needed for good views of these objects. The pair of wavy, dotted lines indicates roughly the borders of the Milky Way. Small asterisks locate the directions of the galactic centre (GC), the north galactic pole (NGP), and the south galactic pole (SGP). LMC, SMC, and CS signify, respectively, the Large Magellanic Cloud, the Small Magellanic Cloud, and the Coal Sack. Two dashed lines appear on each of the first six maps. The one with more dashes is the celestial equator. Tick marks along this indicate hours of right ascension, the odd hours being labelled. The line with fewer dashes is the ecliptic, the apparent annual path of the Sun across the heavens. Letters along this line indicate the approximate position of the Sun at the beginning of each month. Also located along the ecliptic are the vernal equinox (VE), summer solstice (SS), autumnal equinox (AE), and winter solstice (WS). The Moon and the other eight planets are found near the ecliptic, but since their motions are not related in a simple way to our year, it is not feasible to show them on a general set of star maps. (RLB)

JANUARY

MARCH

YAM

JULY

SEPTEMBER

NOVEMBER

THE SOUTHERN SKY

KEY TO LEFT-HAND MARGIN SYMBOLS

- **D** BASIC DATA
- t TIME
- \mathbf{M} the sky month by month
- 🛈 sun
- C MOON
- **P** PLANETS, SATELLITES, AND ASTEROIDS
- METEORS, COMETS, AND DUST
- 🗮 STARS
- :: NEBULAE

INDEX

Anniversaries and Festivals, 31 Asteroids, 150 Aurora, 61 Challenge Objects (deep sky), 204 Comets: In 1989, 161; Observing, 162 Constellations, 166 Coordinates and Terminology, 10 Cover Photograph, 4 Craters (on Earth), 159 Cygnus X-1, 195 Data, Astronomical and Physical, 16 Eclipses, 84 Galaxies: Brightest, 206; Named, 210; Nearest, 209; Variable, 215 Gegenschein, 164 Interplanetary Dust, 164 Julian Date, 28 Jupiter: General, 121; Configurations of Satellites, 33; Phenomena of Satellites, 133 Maps of the Night Sky, 216 Mars, 121 Mercury, 118 Messier's Catalogue, 197 Meteors, Fireballs, Meteorites, 157 Moon: Observation, 30; Map, 67; New Moon Dates, 70; Moonrise and Moonset, 70 (See also "Occultations") Nebulae, 196 Neptune, 128 NGC Objects, 201 Observatories and Planetaria, 8

Occultations: Lunar Total, 96; Lunar Grazing, 98; Planetary, 154 Planets: General, 113; Orbital and Physical Elements, 11; Pronunciation of Names, 114; Symbols 10 Pluto, 129 Precession, 19 Radio Sources, 213 Reporting of Discoveries, 6 Satellites: Data, 12; Pronunciation of Names, 115. (See also "Jupiter" and "Saturn") Saturn: General, 124; Ring System, 125; Configurations of Satellites, 146 Sky Phenomena Month-by-Month, 30 Stars: Finding List and Names, 168; Brightest, 169; Nearest, 181; Variable, 185; Double and Multiple, 184; Clusters, 191 Sun: Ephemeris, 56; Activity, 59; Sunrise and Sunset, 62 Symbols, 10 Telescopes: Parameters, 20; Exit Pupils, 21 Tides, 111 Time: General, 24; Zones, 26; Signals, 28; Sundial Correction, 58; Conversion to Standard, 62; Sidereal, 28, 29 Twilight: Table, 66; Diagram, 29 Uranus, 127 Venus, 119 Zodiacal Light, 164

CALENDAR

January			Fe	February						N	March								April							
1	Ť	w	Т	F	S	S	Μ	Т	w	Т	F	S	S	Μ	Т	W	Т	F	S	S	M	Т	W	Т	F	S
2	3	4	5	6	7				1	2	3	4				1	2	3	4							1
9	10	11	12	13	14	5	6	7	8	9	10	11	4	6	7	8	9	10	11	2	3	4	5	6	7	8
5	17	18	19	20	21	12	13	14	15	16	17	18	12	13	14	15	16	17	18	9	10	11	12	13	14	15
3 2	24	25	26	27	28	19	20	21	22	23	24	25	19	20	21	22	23	24	25	16	17	18	19	20	21	22
29 30 31	26	27	28					20	5 27	28	29	30	31		23	24	25	26	27	28	29					
															30											
,						Ju	ne						Jı	ılv						A	ugi	ıst				
ſ	т	w	т	F	S	S	М	Т	w	т	F	S	S	M	Т	w	Т	F	S	S	M	Т	w	Т	F	S
1	2	3	4	5	6					1	2	3							1			1	2	3	4	5
B	9	10	11	12	13	4	5	6	7	8	9	10	2	2 3	4	5	6	7	8	6	7	8	9	10	11	12
5	16	17	18	19	20	11	12	13	14	15	16	17	9	0 10	11	12	13	14	15	13	14	15	16	17	18	19
2 2	23	24	25	26	27	18	19	.20	21	22	23	24	10	5 17	18	19	20	21	22	20	21	22	23	24	25	26
9 :	30	31				25	26	27	28	29	30		23	3 24	25	26	27	28	29	27	28	29	30	31		
								30) 31																	
ptember October				N	November						December															
1	Т	w	Т	F	S	S	М	Т	W	Т	F	S	S	Μ	Т	w	Т	F	S	S	М	Т	w	Т	F	S
				1	2	1	2	3	4	5	6	7				1	2	3	4						1	2
4	5	6	7	8	9	8	9	10	11	12	13	14	:	56	7	8	9	10	11	3	4	5	6	7	8	9
1	12	13	14	15	16	15	16	17	18	19	20	21	12	2 13	14	15	16	17	18	10	11	12	13	14	15	16
8	19	20	21	22	23	22	23	24	25	26	27	28	19	20	21	22	23	24	25	17	18	19	20	21	22	23
5 2	26	27	28	29	30	29	30	31					20	5 27	28	29	30			24	25	26	27	28	29	30
	Ia I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	ary I T 2 3 5 17 3 24 3 31 I T 2 23 5 16 2 23 9 5 10 2 23 9 5 16 2 2330 teml T 4 5 112 12 319 5 5 26	I T W 1 T W 2 3 4 10 11 5 17 18 2 4 25 3 1 I T W 2 3 31 I T W 2 3 39 10 5 16 17 2 30 31 I T W 4 5 6 1 12 13 3 19 20 5 26 27	I T W T 2 3 4 5 9 10 11 12 5 17 18 19 2 4 25 26 9 31 I T W T 2 3 4 5 17 18 19 3 24 25 26 9 31 I T W T 2 3 4 3 9 10 11 5 16 17 18 2 23 24 25 9 30 31 cember I T W T 4 5 6 7 1 12 13 14 3 19 20 21 5 26 27 28	lary I T W T F 2 3 4 5 6) 10 11 12 13 5 17 18 19 20 3 24 25 26 27) 31 I T W T F I T W T F I T W T F 2 3 4 5 3 9 10 11 12 5 16 17 18 19 2 23 24 25 26 9 30 31 cember I T W T F 1 12 13 14 15 3 12 13 14 15 3 19 20 21 22 5 26 27 28 29	I T W T F S 2 3 4 5 6 7 9 10 11 12 13 14 5 17 18 19 20 21 2 4 25 26 27 28 3 1 7 1 T W T F S 2 3 4 5 6 3 1 7 1 T W T F S 2 3 4 5 6 3 9 10 11 12 13 5 16 17 18 19 20 2 3 24 25 26 27 9 30 31 tember 1 T W T F S 1 2 3 5 6 7 8 9 1 12 13 14 15 16 1 2 13 14 15 16 1 2 22 3 5 6 7 8 9 1 12 13 14 15 16 1 2 22 33 5 26 27 28 29 30	lary Fet I T W T F S S 2 3 4 5 6 7 S 2 1 11 12 13 14 5 5 17 18 19 20 21 12 3 2 25 26 27 28 19 9 31 26 7 Ju 1 T W T F S S 2 3 4 5 6 3 9 10 11 12 13 4 5 16 17 18 19 20 1 2 23 24 25 26 27 18 9 30 31 23 24 25 26 27 18 9 30 31 25 6 1 T W T F S S 1 2 3 24 25 26 27 18 9 30 31 25 6 1 T W T F S 1 2 1 2 1 2 1 2 1 2 1 2 1 3 14 15 16 1 5 1 2 13 14 15 16 1 2 1 2 13 14 15 16 1 2 1 2 13 22 2 2 26 27 28 29 30	lary Febru I T W T F S S M 2 3 4 5 6 7 9 10 11 12 13 14 5 6 5 17 18 19 20 21 12 13 3 24 25 26 27 28 19 20 9 10 11 22 13 26 27 7 June I T W T F S S M 1 2 3 4 5 6 3 9 10 11 12 13 4 5 5 2 16 17 18 19 20 11 12 2 23 24 25 26 27 18 19 9 30 31 25 26 2 3 4 5 6 7 18 19 20 1 1 12 13 4 5 16 1 5 16 17 18 19 20 11 12 2 3 24 25 26 27 18 19 9 30 31 25 26 21 2 13 14 15 16 15 16 1 2 13 14 15 16 15 16 3 19 20 21 22 23 22 23 22 23 3 12 25 26 27 28 29 30 29 30	lary Februar I T W T F S S M T 2 3 4 5 6 7 S M T 2 1 11 12 13 14 5 6 7 10 11 12 13 14 5 6 7 5 17 18 19 20 21 12 13 14 2 4 25 26 27 28 19 20 21 9 31 26 27 28 9 10 11 12 13 4 5 6 8 9 10 11 12 13 4 5 6 5 16 17 18 19 20 11 12 13 2 23 24 25 26 27 18 19 20 9 30 31 25 26 27 12 13 14 15 16 15 16 17 1 2 13 14 15 16 15 16 17 1 2 13 14 15 16 15 16 17 1 2 2 3 24 25 26 27 8 9 10 1 2 1 2 23 2 2 3 24 25 26 27 25 26 27 28 29 30 29 30 31	lary February I T W T F S S M T W 2 3 4 5 6 7 1 1 10 11 12 13 14 5 6 7 5 17 18 19 20 21 12 13 14 15 3 24 25 26 27 28 19 20 21 22 3 1 26 27 28 7 June I T W T F S S M T W 2 3 4 5 6 S M T W 2 3 4 5 6 S M T W 2 3 4 5 6 S M T W 1 2 3 4 5 6 S M T W 2 3 4 5 6 11 12 13 14 2 3 4 5 6 11 12 13 14 2 3 4 5 6 26 27 28 9 30 31 25 26 27 28 9 30 31 25 26 27 28 9 10 11 12 13 14 1 2 3 4 4 5 6 7 8 9 8 9 10 11 1 2 3 4 4 5 6 7 8 9 8 9 10 11 12 13 14 15 16 1 12 13 14 15 16 15 16 17 18 1 2 2 23 22 23 24 25 22 23 24 25 5 6 27 28 29 30 29 30 31	Hary February I T W T F S S M T W T 2 3 4 5 6 7 1 2 2 10 11 12 13 14 5 6 7 8 9 3 4 5 2 26 27 28 19 20 21 1 1 12 13 14 15 6 7 8 9 3 4 5 2 26 27 28 19 20 21 22 23 3 1 2 6 27 28 1 1 12 13 14 15 16 3 4 5 6 1 1 T W T F S S M T W T 1 2 3 4 5 6 1 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 3 10 11 12 13 4 5 6 7 8 2 3 24 25 26 27 18 19 20 2 3 24 25 26 27 18 19 20 21 22 3 0 31 2 3 4 5 6 1 2 3 4 5 5 6 7 8 9 8 9 10 11 12 1 2 3 4 5 5 8 9 10 11 12 1 2 3 4 5 5 8 9 10 11 12 1 2 3 14 15 16 15 16 17 18 19 3 19 20 21 22 23 22 23 24 25 26 3 19 20 21 22 23 22 23 24 25 26 3 19 20 21 22 23 <td>lary February I T W T F S S M T W T F 2 3 4 5 6 7 1 2 3 2 11 12 13 14 5 6 7 8 9 10 5 17 18 19 20 21 12 13 14 15 16 17 2 4 25 26 27 28 19 20 21 22 23 24 3 1 2 6 27 28 June June I T W T F S S M T W T F 3 9 10 11 12 13 4 5 6 7 8 9 1 1 2 3 4 5 6 1 2 3 9 10 11 12 13 4 5 6 7 8 9 1 6 17 18 19 20 11 12 13 14 15 16 2 3 24 25 26 27 18 19 20 21 22 23 2 3 0 31 25 26 27 28 29 30 1 1 2 3 14 15 16 15 16 17 18 19 20 1 2 3 4 5 6 8 9 10 11 12 13 1 2 3 4 5 6 8 9 10 11 12 13 1 2 3 4 5 6 8 9 10 11 12 13 1 2 3 4 5 6 8 9 10 11 12 13 1 2 3 14 15 16 15 16 17 18 19 20 3 12 13 14 15 16 15 16 17 18 19 20 3 19 20 21 22 23 22 23 22 23 22 23 22 23 24 25 26 27 3 19 20 21 22 23 22 30 29 30 31</td> <td>February I T W T F S S M T W T F S 2 3 4 5 6 7 1 2 3 4 0 10 11 12 13 14 5 6 7 8 9 10 11 5 7 18 19 20 21 12 13 14 15 16 17 18 2 4 25 26 27 28 19 20 21 22 23 24 25 0 31 2 3 4 5 6 June June June T W T F S 3 4 5 6 1 2 3 June June June 1 1 12 13 4 15 16 17 2 3 4 5 6 1 2 3 4 5 6 7 8 9 10 11 12 13 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 2 3 4 5 6 1 2 3 24 2 3 24 25 26 27 18 19 20 21 22 23 24 2 3 24 25 26 27 18 19 20 21 22 23 24 2 3 24 25 26 27 18 19 20 21 22 23 24 October S M T W T F S 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1</td> <td>Hary February M. I T W T F S S M T W T F S S M T W T F S S 2 3 4 5 6 7 1 2 3 4 1 2 3 4 10 11 12 13 14 5 6 7 8 9 10 11 5 5 17 18 19 20 21 12 13 14 15 16 17 18 12 2 4 25 26 27 28 19 20 21 22 23 24 25 15 3 1 26 27 28 26 June June June 1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 10 1 2 3 2 3 4 5 6 1 2 3 3 9 10 11 12 13 4 5 6 7 8 9 10 2 3 24 25 26 27 18 19 20 1 1 2 13 14 15 16 17 12 3 3 9 10 11 12 13 4 5 6 7 8 9 10 2 3 24 25 26 27 18 19 20 21 22 23 24 2 3 0 31 25 26 27 28 29 30 23 3 0 31 2 5 26 27 8 5 3 1 1 2 13 14 15 16 17 8 9 1 2 1 3 14 15 16 15 16 17 18 19 20 21 12 3 1 2 13 14 15 16 15 16 17 18 19 20 21 12 3 1 2 13 14 15 16 15 16 17 18 19 20 21 12 3 19 20 21 22 23 24 25 26 27 28 19 29 30 31 <</td> <td>Hary February Marg I T W T F S S M T W T F S S M 2 3 4 5 6 7 1 2 3 4 0 10 11 12 13 14 5 6 7 8 9 10 11 5 6 5 17 18 19 20 21 12 13 14 15 16 17 18 12 13 2 4 25 26 27 28 19 20 21 22 23 24 25 19 20 2 3 4 5 6 1 2 3 4 9 10 11 2 6 27 28 26 27 9 20 21 22 23 24 25 19 20 1 2 3 4 5 6 1 2 3 8 9 10 11 12 13 4 5 6 7 8 9 10 2 3 3 8 9 10 11 12 13 4 5 6 7 8 9 10 2 3 3 5 16 17 18 19 20 11 12 13 14 15 16 17 9 10 2 3 24 25 26 27 18 19 20 21 22 23 24 16 17 9 30 31 25 26 27 28 29 30 23 24 3 0 31 25 26 27 28 29 30 23 24 3 0 31 2 3 4 5 6 7 4 5 6 7 1 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 6 1 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 6 1 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 6 1 2 1 3 14 15 16 15 16 17 18 19 20 21 12 13 3 19 20 21 22 23 22</td> <td>Hary February March I T W T F S S M T W T F S S M T 2 3 4 5 6 7 1 2 3 4 0 10 11 12 13 14 5 6 7 8 9 10 11 5 6 7 5 17 18 19 20 21 12 13 14 15 16 17 18 12 13 14 2 4 25 26 27 28 19 20 21 22 23 24 25 19 20 21 0 31 26 27 28 26 27 28 June July T W T F S S M T W T F S 3 9 10 11 12 13 4 5 6 7 8 9 10 2 3 4 5 16 17 18 19 20 11 12 13 14 15 16 17 9 10 11 2 3 4 5 6 1 2 3 3 9 10 11 12 13 4 5 6 7 8 9 10 2 3 4 5 16 17 18 19 20 11 12 13 14 15 16 17 9 10 11 2 3 24 25 26 27 18 19 20 21 22 23 24 16 17 18 3 0 31 25 26 27 28 29 30 23 24 25 3 0 31 25 26 7 28 29 30 23 24 25 3 0 31 25 26 7 28 29 30 23 24 25 3 0 31 2 3 4 5 6 7 4 5 6 7 4 5 6 7 8 9 8 9 10 11 12 13 14 5 6 7 4 5 6 7 8 9 8 9 10 11 12 13 14 5 6 7 4 5 6 7 8 9 8 9 10 11 12</td> <td>Hary February March I T W T F S S M T W T F S S M T W I 2 3 4 1 I 2 3 4 5 6 7 1 2 3 4 1 1 0 10 11 12 13 14 5 6 7 8 9 10 11 5 6 7 8 5 17 18 19 20 21 12 13 14 15 16 17 18 12 13 14 15 16 17 18 12 13 14 15 2 4 25 26 27 28 19 20 21 22 23 24 25 19 20 21 22 26 27 28 26 27 28 26 27 28 29 June June July I 2 3 4 5 6 1 2 3 8 9 10 11 12 13 4 5 6 7 8 9 10 2 3 4 5 5 M T W I T W T F S S M T W T F S S M T W T F S S M T W S M T W 2 3 4 5 6 1 2 3 3 9 10 11 12 13 4 5 6 7 8 9 10 2 1 22 23 24 25 26 27 18 19 20 21 22 23 24 25 26 30 23 24 25 26 30 23 24 25 26 30 2 3 24 25 26 27 18 19 20 21 22 23 24 16 17 18 19 20 23 24 25 26 30 23 24 25 26 30 30 31 tember October November 1 2 3 4 5 6 7 1 12 13 14 15 16 17 18 19 20 21 1 2 13 14 15 14 15 16 17 18 19 20 21 1 2 13 14 15 16 17 18 19 20 21 1 2 13 14 15 16 17 18 19 20 21 1 2 13 14 15 16 17 18 19 20 21 12 13 14 15 16 17 18 19 20 21 12 13 14 15 16 17 18 19 20 21 12 13 14 15 16 17 18 19 20 21 12 13 14 15 16 17 18 19 20 21 12 13 14 15 16</td> <td>Hary February March I T W T F S S M T W T F S S M T W T F S S M T W T 2 3 4 5 6 7 1 2 3 4 1 2 0 10 11 12 13 14 5 6 7 8 9 9 10 11 5 6 7 8 9 5 17 18 19 20 21 12 13 14 15 16 17 18 12 13 14 15 16 2 4 25 26 27 28 19 20 21 22 23 24 25 19 20 21 22 23 2 3 1 26 27 28 26 27 28 26 27 28 29 30 June July I 2 3 4 5 6 S M T W T F S S M T W T 1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 9 10 11 12 13 4 5 6 7 8 9 9 10 11 12 13 2 3 4 5 6 1 2 3 4 5 6 7 8 9 9 10 11 12 13 14 15 16 17 9 9 10 11 12 13 2 3 4 5 26 27 19 20 21 22 23 24 24 25 26 27 18 19 20 12 12 12 12 12 13 16 17 18 19 20 2 3 24 25 26 27 18 19 20 21 22 23 24 23 24 25 26 27 30 31 25 26 27 28 29 30 23 24 25 26 27 3 0 31 25 26 7 28 9 9 9 10 11 12 13 14 5 6 7 8 9 1 2 2 3 4 5 6 7 4 5 6 7 8 9 9 10 11 12 13 14 5 6 7 8 9 1 2 2 1 2 2 1 2 2 1 2 2<td>Hary February March I T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S 2 3 4 5 6 7 1 2 3 4 1 2 3 1 2 3 2 10 11 12 13 14 5 6 7 8 9 10 11 5 6 7 8 9 10 11 5 6 7 8 9 10 11 5 17 18 19 20 21 12 13 14 15 16 17 18 12 13 14 15 16 17 18 12 13 14 15 16 17 2 4 25 26 27 28 19 20 21 22 23 24 25 19 20 21 22 23 24 3 1 26 27 28 26 27 28 26 27 28 29 30 31 June June July I T W T F S S M T W T F S S M T W T F 3 8 9 10 11 12 13 4 5 6 7 8 9 10 2 3 4 5 6 7 2 3 4 5 6 1 2 3 3 4 5 6 7 8 9 10 12 13 14 15 16 17 9 10 11 12 13 14 2 3 24 25 26 27 18 19 20 21 22 23 24 16 17 18 19 20 21 2 3 0 31 25 26 27 28 29 30 23 24 25 26 27 28 October November 1 2 1 3 14 15 16 17 18 19 20 21 1 2 3 14 15 16 17 3 4 5 6 7 8 9 9 10 11 12 13 14 5 6 7 8 9 10 1 2 13 14 15 16 17 18 19 20 21 12 13 14 15 16 17 3</td><td>Hary February March I T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S 2 3 4 5 6 7 1 2 3 4 1 2 3 4 1 2 3 4 10 11 12 13 14 5 6 7 8 9 10 11 5 6 7 8 9 10 11 5 6 7 8 9 10 11 5 7 18 19 20 21 12 13 14 15 16 17 18 12 2 3 24 25 19 20 21 22 23 24 25 19 20 21 22 23 24 25 2 4 25 26 27 28 19 20 21 22 23 24 25 26 27 28 26 27 28 26 27 28 29 30 31 7 June July July July July 1 T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S 3 9 10 11 12 13 4 5 6 7 8 9 10 2 3 4 5 6 7 8 10 11 12 13 14 15 2 3 4 25 26 27 18 19 20 21 22 23 24 26 27 28 29 30 23 24 25 26 27 28 2 3 4 25 26 27 18 19 20 21 22 23 24 26 27 28 29 30 23 24 25 26 27 28 3 0 31 25 26 27 28 29 30 23 24 25 26 27 28 29 30 31 October November 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 2 3 4 4 5 6 7 8 9 9 10 11 12 13 14 5 6 7 8 9 10 11 <</td><td>Hary February March A I T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S S M T W T F S S M T W T F S S S M T W T F S S M T W T F S S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S</td><td>Hary February March April I T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W</td><td>Hary February March April I T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y <t< td=""><td>HaryFebruaryMarchApril1TWTFSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWWTFSSMTWWWTFSSMTWWTWTSSMTWWTSSMTWWTSSMTWWTSSMTWWTSSMTWTSSMTWWTSSMTWWTSSSMTWTSSSMTWTSSMTWTSSMTWTSSMTWTSSMTWTSSMTWTSSSMTWWTSSSMTWTSSSM<</td><td>HaryFebruaryMarchApril1TWTFSMTWTFSSMTWTFSSMTWTFSSMTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTTWTTWTTWTTWTTWTTWTTWTTNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN<</td><td>HaryFebruaryMarchApril1TWTFSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMT<</td></t<></td></td>	lary February I T W T F S S M T W T F 2 3 4 5 6 7 1 2 3 2 11 12 13 14 5 6 7 8 9 10 5 17 18 19 20 21 12 13 14 15 16 17 2 4 25 26 27 28 19 20 21 22 23 24 3 1 2 6 27 28 June June I T W T F S S M T W T F 3 9 10 11 12 13 4 5 6 7 8 9 1 1 2 3 4 5 6 1 2 3 9 10 11 12 13 4 5 6 7 8 9 1 6 17 18 19 20 11 12 13 14 15 16 2 3 24 25 26 27 18 19 20 21 22 23 2 3 0 31 25 26 27 28 29 30 1 1 2 3 14 15 16 15 16 17 18 19 20 1 2 3 4 5 6 8 9 10 11 12 13 1 2 3 4 5 6 8 9 10 11 12 13 1 2 3 4 5 6 8 9 10 11 12 13 1 2 3 4 5 6 8 9 10 11 12 13 1 2 3 14 15 16 15 16 17 18 19 20 3 12 13 14 15 16 15 16 17 18 19 20 3 19 20 21 22 23 22 23 22 23 22 23 22 23 24 25 26 27 3 19 20 21 22 23 22 30 29 30 31	February I T W T F S S M T W T F S 2 3 4 5 6 7 1 2 3 4 0 10 11 12 13 14 5 6 7 8 9 10 11 5 7 18 19 20 21 12 13 14 15 16 17 18 2 4 25 26 27 28 19 20 21 22 23 24 25 0 31 2 3 4 5 6 June June June T W T F S 3 4 5 6 1 2 3 June June June 1 1 12 13 4 15 16 17 2 3 4 5 6 1 2 3 4 5 6 7 8 9 10 11 12 13 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 2 3 4 5 6 1 2 3 24 2 3 24 25 26 27 18 19 20 21 22 23 24 2 3 24 25 26 27 18 19 20 21 22 23 24 2 3 24 25 26 27 18 19 20 21 22 23 24 October S M T W T F S 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1	Hary February M. I T W T F S S M T W T F S S M T W T F S S 2 3 4 5 6 7 1 2 3 4 1 2 3 4 10 11 12 13 14 5 6 7 8 9 10 11 5 5 17 18 19 20 21 12 13 14 15 16 17 18 12 2 4 25 26 27 28 19 20 21 22 23 24 25 15 3 1 26 27 28 26 June June June 1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 10 1 2 3 2 3 4 5 6 1 2 3 3 9 10 11 12 13 4 5 6 7 8 9 10 2 3 24 25 26 27 18 19 20 1 1 2 13 14 15 16 17 12 3 3 9 10 11 12 13 4 5 6 7 8 9 10 2 3 24 25 26 27 18 19 20 21 22 23 24 2 3 0 31 25 26 27 28 29 30 23 3 0 31 2 5 26 27 8 5 3 1 1 2 13 14 15 16 17 8 9 1 2 1 3 14 15 16 15 16 17 18 19 20 21 12 3 1 2 13 14 15 16 15 16 17 18 19 20 21 12 3 1 2 13 14 15 16 15 16 17 18 19 20 21 12 3 19 20 21 22 23 24 25 26 27 28 19 29 30 31 <	Hary February Marg I T W T F S S M T W T F S S M 2 3 4 5 6 7 1 2 3 4 0 10 11 12 13 14 5 6 7 8 9 10 11 5 6 5 17 18 19 20 21 12 13 14 15 16 17 18 12 13 2 4 25 26 27 28 19 20 21 22 23 24 25 19 20 2 3 4 5 6 1 2 3 4 9 10 11 2 6 27 28 26 27 9 20 21 22 23 24 25 19 20 1 2 3 4 5 6 1 2 3 8 9 10 11 12 13 4 5 6 7 8 9 10 2 3 3 8 9 10 11 12 13 4 5 6 7 8 9 10 2 3 3 5 16 17 18 19 20 11 12 13 14 15 16 17 9 10 2 3 24 25 26 27 18 19 20 21 22 23 24 16 17 9 30 31 25 26 27 28 29 30 23 24 3 0 31 25 26 27 28 29 30 23 24 3 0 31 2 3 4 5 6 7 4 5 6 7 1 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 6 1 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 6 1 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 6 1 2 1 3 14 15 16 15 16 17 18 19 20 21 12 13 3 19 20 21 22 23 22	Hary February March I T W T F S S M T W T F S S M T 2 3 4 5 6 7 1 2 3 4 0 10 11 12 13 14 5 6 7 8 9 10 11 5 6 7 5 17 18 19 20 21 12 13 14 15 16 17 18 12 13 14 2 4 25 26 27 28 19 20 21 22 23 24 25 19 20 21 0 31 26 27 28 26 27 28 June July T W T F S S M T W T F S 3 9 10 11 12 13 4 5 6 7 8 9 10 2 3 4 5 16 17 18 19 20 11 12 13 14 15 16 17 9 10 11 2 3 4 5 6 1 2 3 3 9 10 11 12 13 4 5 6 7 8 9 10 2 3 4 5 16 17 18 19 20 11 12 13 14 15 16 17 9 10 11 2 3 24 25 26 27 18 19 20 21 22 23 24 16 17 18 3 0 31 25 26 27 28 29 30 23 24 25 3 0 31 25 26 7 28 29 30 23 24 25 3 0 31 25 26 7 28 29 30 23 24 25 3 0 31 2 3 4 5 6 7 4 5 6 7 4 5 6 7 8 9 8 9 10 11 12 13 14 5 6 7 4 5 6 7 8 9 8 9 10 11 12 13 14 5 6 7 4 5 6 7 8 9 8 9 10 11 12	Hary February March I T W T F S S M T W T F S S M T W I 2 3 4 1 I 2 3 4 5 6 7 1 2 3 4 1 1 0 10 11 12 13 14 5 6 7 8 9 10 11 5 6 7 8 5 17 18 19 20 21 12 13 14 15 16 17 18 12 13 14 15 16 17 18 12 13 14 15 2 4 25 26 27 28 19 20 21 22 23 24 25 19 20 21 22 26 27 28 26 27 28 26 27 28 29 June June July I 2 3 4 5 6 1 2 3 8 9 10 11 12 13 4 5 6 7 8 9 10 2 3 4 5 5 M T W I T W T F S S M T W T F S S M T W T F S S M T W S M T W 2 3 4 5 6 1 2 3 3 9 10 11 12 13 4 5 6 7 8 9 10 2 1 22 23 24 25 26 27 18 19 20 21 22 23 24 25 26 30 23 24 25 26 30 23 24 25 26 30 2 3 24 25 26 27 18 19 20 21 22 23 24 16 17 18 19 20 23 24 25 26 30 23 24 25 26 30 30 31 tember October November 1 2 3 4 5 6 7 1 12 13 14 15 16 17 18 19 20 21 1 2 13 14 15 14 15 16 17 18 19 20 21 1 2 13 14 15 16 17 18 19 20 21 1 2 13 14 15 16 17 18 19 20 21 1 2 13 14 15 16 17 18 19 20 21 12 13 14 15 16 17 18 19 20 21 12 13 14 15 16 17 18 19 20 21 12 13 14 15 16 17 18 19 20 21 12 13 14 15 16 17 18 19 20 21 12 13 14 15 16	Hary February March I T W T F S S M T W T F S S M T W T F S S M T W T 2 3 4 5 6 7 1 2 3 4 1 2 0 10 11 12 13 14 5 6 7 8 9 9 10 11 5 6 7 8 9 5 17 18 19 20 21 12 13 14 15 16 17 18 12 13 14 15 16 2 4 25 26 27 28 19 20 21 22 23 24 25 19 20 21 22 23 2 3 1 26 27 28 26 27 28 26 27 28 29 30 June July I 2 3 4 5 6 S M T W T F S S M T W T 1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 9 10 11 12 13 4 5 6 7 8 9 9 10 11 12 13 2 3 4 5 6 1 2 3 4 5 6 7 8 9 9 10 11 12 13 14 15 16 17 9 9 10 11 12 13 2 3 4 5 26 27 19 20 21 22 23 24 24 25 26 27 18 19 20 12 12 12 12 12 13 16 17 18 19 20 2 3 24 25 26 27 18 19 20 21 22 23 24 23 24 25 26 27 30 31 25 26 27 28 29 30 23 24 25 26 27 3 0 31 25 26 7 28 9 9 9 10 11 12 13 14 5 6 7 8 9 1 2 2 3 4 5 6 7 4 5 6 7 8 9 9 10 11 12 13 14 5 6 7 8 9 1 2 2 1 2 2 1 2 2 1 2 2 <td>Hary February March I T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S 2 3 4 5 6 7 1 2 3 4 1 2 3 1 2 3 2 10 11 12 13 14 5 6 7 8 9 10 11 5 6 7 8 9 10 11 5 6 7 8 9 10 11 5 17 18 19 20 21 12 13 14 15 16 17 18 12 13 14 15 16 17 18 12 13 14 15 16 17 2 4 25 26 27 28 19 20 21 22 23 24 25 19 20 21 22 23 24 3 1 26 27 28 26 27 28 26 27 28 29 30 31 June June July I T W T F S S M T W T F S S M T W T F 3 8 9 10 11 12 13 4 5 6 7 8 9 10 2 3 4 5 6 7 2 3 4 5 6 1 2 3 3 4 5 6 7 8 9 10 12 13 14 15 16 17 9 10 11 12 13 14 2 3 24 25 26 27 18 19 20 21 22 23 24 16 17 18 19 20 21 2 3 0 31 25 26 27 28 29 30 23 24 25 26 27 28 October November 1 2 1 3 14 15 16 17 18 19 20 21 1 2 3 14 15 16 17 3 4 5 6 7 8 9 9 10 11 12 13 14 5 6 7 8 9 10 1 2 13 14 15 16 17 18 19 20 21 12 13 14 15 16 17 3</td> <td>Hary February March I T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S 2 3 4 5 6 7 1 2 3 4 1 2 3 4 1 2 3 4 10 11 12 13 14 5 6 7 8 9 10 11 5 6 7 8 9 10 11 5 6 7 8 9 10 11 5 7 18 19 20 21 12 13 14 15 16 17 18 12 2 3 24 25 19 20 21 22 23 24 25 19 20 21 22 23 24 25 2 4 25 26 27 28 19 20 21 22 23 24 25 26 27 28 26 27 28 26 27 28 29 30 31 7 June July July July July 1 T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S 3 9 10 11 12 13 4 5 6 7 8 9 10 2 3 4 5 6 7 8 10 11 12 13 14 15 2 3 4 25 26 27 18 19 20 21 22 23 24 26 27 28 29 30 23 24 25 26 27 28 2 3 4 25 26 27 18 19 20 21 22 23 24 26 27 28 29 30 23 24 25 26 27 28 3 0 31 25 26 27 28 29 30 23 24 25 26 27 28 29 30 31 October November 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 2 3 4 4 5 6 7 8 9 9 10 11 12 13 14 5 6 7 8 9 10 11 <</td> <td>Hary February March A I T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S S M T W T F S S M T W T F S S S M T W T F S S M T W T F S S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S</td> <td>Hary February March April I T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W</td> <td>Hary February March April I T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y <t< td=""><td>HaryFebruaryMarchApril1TWTFSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWWTFSSMTWWWTFSSMTWWTWTSSMTWWTSSMTWWTSSMTWWTSSMTWWTSSMTWTSSMTWWTSSMTWWTSSSMTWTSSSMTWTSSMTWTSSMTWTSSMTWTSSMTWTSSMTWTSSSMTWWTSSSMTWTSSSM<</td><td>HaryFebruaryMarchApril1TWTFSMTWTFSSMTWTFSSMTWTFSSMTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTTWTTWTTWTTWTTWTTWTTWTTNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN<</td><td>HaryFebruaryMarchApril1TWTFSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMT<</td></t<></td>	Hary February March I T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S 2 3 4 5 6 7 1 2 3 4 1 2 3 1 2 3 2 10 11 12 13 14 5 6 7 8 9 10 11 5 6 7 8 9 10 11 5 6 7 8 9 10 11 5 17 18 19 20 21 12 13 14 15 16 17 18 12 13 14 15 16 17 18 12 13 14 15 16 17 2 4 25 26 27 28 19 20 21 22 23 24 25 19 20 21 22 23 24 3 1 26 27 28 26 27 28 26 27 28 29 30 31 June June July I T W T F S S M T W T F S S M T W T F 3 8 9 10 11 12 13 4 5 6 7 8 9 10 2 3 4 5 6 7 2 3 4 5 6 1 2 3 3 4 5 6 7 8 9 10 12 13 14 15 16 17 9 10 11 12 13 14 2 3 24 25 26 27 18 19 20 21 22 23 24 16 17 18 19 20 21 2 3 0 31 25 26 27 28 29 30 23 24 25 26 27 28 October November 1 2 1 3 14 15 16 17 18 19 20 21 1 2 3 14 15 16 17 3 4 5 6 7 8 9 9 10 11 12 13 14 5 6 7 8 9 10 1 2 13 14 15 16 17 18 19 20 21 12 13 14 15 16 17 3	Hary February March I T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S 2 3 4 5 6 7 1 2 3 4 1 2 3 4 1 2 3 4 10 11 12 13 14 5 6 7 8 9 10 11 5 6 7 8 9 10 11 5 6 7 8 9 10 11 5 7 18 19 20 21 12 13 14 15 16 17 18 12 2 3 24 25 19 20 21 22 23 24 25 19 20 21 22 23 24 25 2 4 25 26 27 28 19 20 21 22 23 24 25 26 27 28 26 27 28 26 27 28 29 30 31 7 June July July July July 1 T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S 3 9 10 11 12 13 4 5 6 7 8 9 10 2 3 4 5 6 7 8 10 11 12 13 14 15 2 3 4 25 26 27 18 19 20 21 22 23 24 26 27 28 29 30 23 24 25 26 27 28 2 3 4 25 26 27 18 19 20 21 22 23 24 26 27 28 29 30 23 24 25 26 27 28 3 0 31 25 26 27 28 29 30 23 24 25 26 27 28 29 30 31 October November 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 2 3 4 4 5 6 7 8 9 9 10 11 12 13 14 5 6 7 8 9 10 11 <	Hary February March A I T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S S M T W T F S S M T W T F S S S M T W T F S S M T W T F S S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S	Hary February March April I T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W	Hary February March April I T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y <t< td=""><td>HaryFebruaryMarchApril1TWTFSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWWTFSSMTWWWTFSSMTWWTWTSSMTWWTSSMTWWTSSMTWWTSSMTWWTSSMTWTSSMTWWTSSMTWWTSSSMTWTSSSMTWTSSMTWTSSMTWTSSMTWTSSMTWTSSMTWTSSSMTWWTSSSMTWTSSSM<</td><td>HaryFebruaryMarchApril1TWTFSMTWTFSSMTWTFSSMTWTFSSMTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTTWTTWTTWTTWTTWTTWTTWTTNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN<</td><td>HaryFebruaryMarchApril1TWTFSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMT<</td></t<>	HaryFebruaryMarchApril1TWTFSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWWTFSSMTWWWTFSSMTWWTWTSSMTWWTSSMTWWTSSMTWWTSSMTWWTSSMTWTSSMTWWTSSMTWWTSSSMTWTSSSMTWTSSMTWTSSMTWTSSMTWTSSMTWTSSMTWTSSSMTWWTSSSMTWTSSSM<	HaryFebruaryMarchApril1TWTFSMTWTFSSMTWTFSSMTWTFSSMTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTWTTWTTWTTWTTWTTWTTWTTWTTNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN<	HaryFebruaryMarchApril1TWTFSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMTWTFSSMT<

CALENDAR

February March January April SMTWTFS SMTWTFS SMTWTFS SMTWTFS 1 2 3 4 5 6 1 2 3 2 3 1 234567 1 7 8 9 10 11 12 13 4 5 6 7 8 9 10 4 5 6 7 8 9 10 8 9 10 11 12 13 14 14 15 16 17 18 19 20 11 12 13 14 15 16 17 11 12 13 14 15 16 17 15 16 17 18 19 20 21 21 22 23 24 25 26 27 18 19 20 21 22 23 24 18 19 20 21 22 23 24 22 23 24 25 26 27 28 28 29 30 31 25 26 27 28 25 26 27 28 29 30 31 29 30 May June July August SMTWTFS SMTWTFS SMTWTFS SMTWTFS 1 2 3 4 5 6 7 1 2 3 4 5 1 2 1 2 3 4 6 7 8 9 10 11 12 8 9 10 11 12 13 14 3 4 5 6 7 8 9 5 6 7 8 9 10 11 13 14 15 16 17 18 19 10 11 12 13 14 15 16 15 16 17 18 19 20 21 12 13 14 15 16 17 18 22 23 24 25 26 27 28 20 21 22 23 24 25 26 17 18 19 20 21 22 23 19 20 21 22 23 24 25 27 28 29 30 31 24 25 26 27 28 29 30 29 30 31 26 27 28 29 30 31 October September November December SMTWTFS SMTWTFS SMTWTFS SMTWTFS 1 2 3 4 5 6 2 3 1 1 1 2 3 4 5 6 7 8 8 9 10 11 12 13 4 5 6 7 8 9 10 2 3 4 5 6 7 8 7 9 10 11 12 13 14 15 14 15 16 17 18 19 20 11 12 13 14 15 16 17 9 10 11 12 13 14 15 16 17 18 19 20 21 22 21 22 23 24 25 26 27 18 19 20 21 22 23 24 16 17 18 19 20 21 22 23 24 25 26 27 28 29 28 29 30 31 25 26 27 28 29 30 23 24 25 26 27 28 29 30 30 31

1989

1990

31

