OBSERVER'S HANDBOOK 1983

EDITOR: ROY L. BISHOP

THE ROYAL ASTRONOMICAL SOCIETY OF CANADA

CONTRIBUTORS AND ADVISORS

- ALAN H. BATTEN, Dominion Astrophysical Observatory, Victoria, BC, Canada V8X 3X3 (The Nearest Stars).
- ROY L. BISHOP, Department of Physics, Acadia University, Wolfville, NS, Canada B0P 1X0 (Editor).
- TERENCE DICKINSON, R.R. 3, Odessa, ON, Canada KOH 2HO, (The Planets).
- DAVID W. DUNHAM, International Occultation Timing Association, P.O. Box 7488, Silver Spring, MD 20907, U.S.A. (Planetary Appulses and Occultations).
- ALAN DYER, Queen Elizabeth Planetarium, 10004-104 Ave., Edmonton, AB, Canada T5J 0K1 (Messier Catalogue, Deep-Sky Objects).
- MARIE FIDLER, Royal Astronomical Society of Canada, 124 Merton St., Toronto, ON, Canada M4S 2Z2 (Observatories and Planetaria).
- VICTOR GAIZAUSKAS, Herzberg Institute of Astrophysics, National Research Council, Ottawa, ON, Canada K1A 0R6 (Solar Activity).
- JOHN A. GALT, Dominion Radio Astrophysical Observatory, Penticton, BC, Canada V2A 6K3 (Radio Sources).
- IAN HALLIDAY, Herzberg Institute of Astrophysics, National Research Council, Ottawa, ON, Canada K1A 0R6 (Miscellaneous Astronomical Data).
- HELEN S. HOGG, David Dunlap Observatory, University of Toronto, Richmond Hill, ON, Canada L4C 4Y6 (Foreword).
- YOSHIO KUBO, International Lunar Occultation Centre, Astronomical Division, Hydrographic Department, Tsukiji-5, Chuo-ku, Tokyo, 104 Japan (Total and Grazing Lunar Occultations).
- DONALD A. MACRAE, David Dunlap Observatory, University of Toronto, Richmond Hill, ON, Canada L4C 4Y6 (The Brightest Stars).
- BARRY F. MADORE, David Dunlap Observatory, University of Toronto, Richmond Hill, ON, Canada L4C 4Y6 (Galaxies).
- BRIAN G. MARSDEN, Smithsonian Astrophysical Observatory, Cambridge, MA, U.S.A. 02138 (Comets, Minor Planets).
- JANET A. MATTEI, American Association of Variable Star Observers, 187 Concord Ave., Cambridge, MA, U.S.A. 02138 (Variable Stars).
- PETER M. MILLMAN, Herzberg Institute of Astrophysics, National Research Council, Ottawa, ON, Canada K1A 0R6 (Meteors, Fireballs and Meteorites).
- ANTHONY F. J. MOFFAT, Département de Physique, Université de Montréal, Montréal, PQ, Canada H3C 3J7 (Star Clusters).
- JOHN R. PERCY, Erindale College and Department of Astronomy, University of Toronto, Toronto, ON, Canada M5S 1A7 (Sky Month by Month).
- RENE RACINE, Director, Canada-France-Hawaii Telescope, P.O. Box 1597, Kamuela, Hawaii, U.S.A. 96743 (Galactic Nebulae).
- P. BLYTH ROBERTSON, Earth Physics Branch, Energy, Mines and Resources Canada, Ottawa, ON, Canada K1A 0Y3 (Meteorite Impact Sites).
- GORDON E. TAYLOR, H.M. Nautical Almanac Office, Royal Greenwich Observatory, Hailsham, Sussex, England BN27 1RP (Planetary Appulses and Occultations).
- JOSEPH F. VEVERKA, Department of Astronomy, Cornell University, Ithaca, NY, U.S.A. 14853 (Planetary Satellites).
- CHARLES E. WORLEY, U.S. Naval Observatory, Washington, DC, U.S.A. 20390 (Double Stars).

PRINTED IN CANADA

BY THE UNIVERSITY OF TORONTO PRESS

OBSERVER'S HANDBOOK 1983

EDITOR ROY L. BISHOP

SEVENTY-FIFTH YEAR OF PUBLICATION

© THE ROYAL ASTRONOMICAL SOCIETY OF CANADA 124 MERTON STREET, TORONTO, ONTARIO M4S 2Z2

ISSN 0080-4193

THE FIRST OBSERVER'S HANDBOOK OF THE ROYAL ASTRONOMICAL SOCIETY OF CANADA, 1907

The first issue of this HANDBOOK appeared under the title "The CANADIAN ASTRONOMICAL HANDBOOK for 1907". In 1911 the name became "THE OBSERVER'S HANDBOOK". The first HANDBOOK was small, consisting of 108 pages 5 by $6\frac{1}{2}$ inches in size. (By comparison the 1983 HANDBOOK has 176 pages, $5\frac{1}{2}$ by $8\frac{1}{2}$ inches.) In the "PREFACE" the distinguished Canadian astronomer, Dr. C. A. Chant, editor of both the HANDBOOK and the Journal of the Royal Astronomical Society of Canada, stated the purpose of the HANDBOOK as follows:

"For a number of years, in several foreign countries astronomical annals, designed chiefly for the use of amateur observers, have been regularly published, and have been very effective in extending the interest in Astronomy. The present HAND-BOOK aims to do a similar service for Canada.

"Our country is still young and, as we might expect, the advance of Astronomy has not been so marked as in some other branches of knowledge; and yet in every part of the land are to be found those who have a profound interest in the celestial bodies above and in the natural phenomena about them.

"The Royal Astronomical Society of Canada aims to unite in a common bond of interest all such students of nature. The object of the present work is to furnish, in a form understood by all, concise information regarding the chief astronomical phenomena to be observed in 1907; and it is hoped that the work will find its way into the hands of many who will add their names to the Society's roll of membership. Anyone interested in Astronomy, Astronomical Physics or allied subjects is eligible for membership.

"In preparing the work the Editor has received valued assistance from several members of the Society". Chant then names the contributors.

A few sections in this first HANDBOOK have vanished with the years. There is no longer need to give geographical positions of certain points in Canada such as the Astronomical Station in Calgary which was "1 chain 56 links south of centre line of C.P.R. main line, and 2 chains 49 links north of north-east corner of lot No. 11, in block 69".

Most of the sections in the 1907 HANDBOOK are still appearing in the 1983 edition, though in some cases with altered form or different title. The large section "MONTHLY PREDICTIONS FOR 1907" is now "THE SKY MONTH BY MONTH". In 1907 this section included a transit of Mercury on November 14, partly visible in Canada. Two relatively long articles appear, "OBSERVING THE SUN, MOON AND PLANETS" by Andrew Elvins of Toronto, and "THE STUDY OF VARIABLE STARS" by J. Miller Barr of St. Catherines, Ontario. "RADIANTS OF THE CHIEF METEORIC SHOWERS" are tabulated by W. F. Denning of Bristol, England. Some general Society business is included, "EXTRACTS FROM THE BY-LAWS", and "OFFICERS FOR 1907".

From these early beginnings, with its interest then chiefly in Canada, the Handbook has now evolved to a state useful over much of the North American continent, with important material from eight contributors outside Canada. With a broad and firm base like this, we foresee a long series of OBSERVER'S HANDBOOKS of the Royal Astronomical Society of Canada.

HELEN SAWYER HOGG

EDITOR'S COMMENTS

The appearance of the seventy-fifth edition of an annual publication is a notable event. Except for two years (1909 and 1910), The Royal Astronomical Society of Canada has produced an astronomical handbook for every year since 1907. In her foreword, Helen Hogg refers to some features of the first edition. John Percy, pasteditor of the OBSERVER'S HANDBOOK, is preparing an article on the history of the HANDBOOK for the December 1982 issue of the Society's *Journal*.

On behalf of The Royal Astronomical Society of Canada, I wish to thank the several contributors to the 1983 OBSERVER'S HANDBOOK (see the inside front cover). In particular, I wish to welcome Yoshio Kubo (lunar occultations) and Barry Madore (galaxies) as new contributors. They replace Leslie Morrison (Royal Greenwich Observatory) and Sidney van den Bergh (Dominion Astrophysical Observatory), respectively, both of whom have provided valuable service over several years.

Some revisions and additions have been made for 1983. The precession table, a feature of the HANDBOOK for many years, has been reinstated in recognition of its convenience. Precession formulae have been retained for those who prefer computation. Victor Gaizauskas has expanded his section to include the aurora. A simplified, graphical method has been devised for the determination of longitude corrections to moonrise/set times. On David Dunham's suggestion, the number and location of U.S. standard stations for lunar occultations have been revised. The magnitude limit for total lunar occultation predictions has been changed from 7.5 to 6.0. A diagram of the main ring features of Saturn has been prepared (data courtesy of the Jet Propulsion Laboratory of the California Institute of Technology). The spacecraft Voyager 1 and Voyager 2 have revealed many satellites as worlds in their own right; a pronunciation guide to their names is now included. To facilitate observations of occultations by minor planets, updated predictions may now be obtained by telephone in both Canada and the United States. Peter Millman has expanded the section on meteors. A new section, Interplanetary Dust, has been prepared, including reference to the zodiacal light and the gegenschein. At Donald MacRae's request, Robert Garrison (David Dunlap Observatory) has provided revised spectral types for forty stars in the table: The Brightest Stars. Janet Mattei has provided directions for the beginning observer of variable stars. Barry Madore has completely revised the section on galaxies.

In addition to the regular contributors, several other individuals have provided ideas, information, assistance, and/or constructive criticism. In particular I wish to thank Randall Brooks (Halifax, N.S.), Leo Enright (Sharbot Lake, Ont.), David Levy (Tucson, Ariz.), Warren Morrison (Peterborough, Ont.), Kenneth Rose (Bryn Athyn, Pa.), and B. Franklyn Shinn (Nanaimo, B.C.).

As always, the R.A.S.C. is indebted to the Nautical Almanac Office (U.S. Naval Observatory) and its Director, P. K. Seidelmann, for pre-publication material from *The Astronomical Almanac*. Without this support it would not be possible to publish the OBSERVER'S HANDBOOK on time. Also, I wish to acknowledge the invaluable support of Rosemary Freeman, Executive-Secretary of the R.A.S.C. Through its Department of Physics, Acadia University (Wolfville, Nova Scotia) provides substantial direct and indirect support toward the preparation of the HANDBOOK.

Comments and suggestions should be directed to the Editor (address on inside front cover). Good observing *quo ducit Urania*!

ROY L. BISHOP, EDITOR

COVER PHOTOGRAPH

The Dumbbell Nebula in Vulpecula (M27). Photograph by Jack Newton (Victoria Centre, R.A.S.C.). Eighteen minute cold camera exposure on Ektachrome 400 with Mr. Newton's 406 mm, f5 reflector. This "planetary" nebula is set against the rich star fields of the Cygnus arm of our galaxy. It is a shell of gas blown off several thousand years ago by the star at its centre. This star, in the final stages of its life-cycle, is extremely hot ($\sim 10^5$ K). Thus it radiates strongly in the ultraviolet which, in turn, causes the shell of gas to fluoresce. Still expanding, the nebula is now a few light-years in diameter. Here we see material, having been enriched in heavier elements by a stellar nuclear furnace, being returned to the interstellar medium.

REPORTING OF SIGNIFICANT ASTRONOMICAL DISCOVERIES

Professional and amateur astronomers who wish to report a possible discovery (e.g. a new comet, nova, or supernova) should send their report to Dr. Brian Marsden of the International Astronomical Union Central Bureau for Astronomical Telegrams, 60 Garden St., Cambridge, MA 02138, U.S.A. TWX/telex/telegraphic communication is preferred (TWX number: 710-320-6842 ASTROGRAM CAM), although 30 second messages will be recorded by telephone (1-617-864-5758). Messages are accepted at any time. Inexperienced observers are advised to have their observation checked, if at all possible, before contacting the Central Bureau. For an account of the history of the Bureau and its work today, see "Life in the Hot Seat", *Sky and Telescope*, August 1980, p. 92.

AN INVITATION FOR MEMBERSHIP IN THE ROYAL ASTRONOMICAL SOCIETY OF CANADA

The history of The Royal Astronomical Society of Canada goes back to the middle of the nineteenth century. The Society was incorporated within the province of Ontario in 1890, received its Royal Charter in 1903, and was federally incorporated in 1968. The National Office of the Society is located at 124 Merton Street, Toronto, Ontario M4S 2Z2, telephone (416) 484 6383. The business office and library are housed there.

The Society is devoted to the advancement of astronomy and allied sciences, and has members in many countries and from all walks of life. Any serious user of this HANDBOOK would benefit from membership. An applicant may affiliate with one of the twenty Centres across Canada, or may join the Society directly as an unattached member. Centres are located in Newfoundland (St. John's), Nova Scotia (Halifax), Quebec (Montreal (2), and Quebec), Ontario (Ottawa, Kingston, Toronto, Hamilton, Niagara Falls, Kitchener-Waterloo, London, Windsor, and Sarnia), Manitoba (Winnipeg), Saskatchewan (Saskatoon), Alberta (Edmonton and Calgary), and British Columbia (Vancouver and Victoria). Contact the National Office for the address of any of the Centres.

Members receive the publications of the Society free of charge: the OBSERVER'S HANDBOOK (published annually in November), and the bimonthly JOURNAL and NATIONAL NEWSLETTER which contain articles on many aspects of astronomy. The membership year begins October 1, and members receive the publications of the Society for the following calendar year. Annual fees are currently \$20, and \$12.50 for persons under 18 years. Life membership is \$300. (To cover higher mailing costs, these fees are to be read as U.S. dollars for members outside of Canada. Also, persons wishing to affiliate with one of the Centres are advised that some Centres levy a small surcharge.)

SUGGESTIONS FOR FURTHER READING

The OBSERVER'S HANDBOOK is an annual guide to astronomical phenomena and data. The following is a brief list of publications which may be useful as an introduction to astronomy, as a companion to the HANDBOOK, or for advanced work. Star atlases are mentioned near the bottom of page 169.

- Burnham, Robert. Burnham's Celestial Handbook, Volumes 1, 2 and 3. Dover Publications, Inc., New York, 1978. A detailed, well-presented, observer's guide to the universe beyond the solar system.
- Hartmann, W. K. Astronomy: The Cosmic Journey (Second edition). Wadsworth Publ., Belmont, CA, 1982. An excellent, non-technical, college text.
- Hogg, Helen S. *The Stars Belong To Everyone*. Doubleday Canada Ltd., Toronto, 1976. Superb introduction to the sky.
- Mayall, R. N., Mayall, M. W., and Wyckoff, J. *The Sky Observer's Guide*. Golden Press, New York, 1977. An excellent, introductory guide to observational astronomy.
- Peltier, L. C. Guideposts To The Stars. Collier-Macmillan Canada, Ltd., Ontario. Macmillan Publishing Co., New York, 1972. An enjoyable introduction to the stars by a man who loved the night.
- Rükl, A. *Moon, Mars and Venus*. Hamlyn Publishing Group Ltd., Toronto and New York, 1976. A compact, detailed, lunar atlas.
- Sherrod, P. C. A Complete Manual of Amateur Astronomy. Prentice-Hall, New Jersey, 1981. A comprehensive guide to observational astronomy for amateurs.
- Sky and Telescope. Sky Publishing Corp., 49 Bay State Road, Cambridge, MA 02238. A monthly magazine containing articles on all aspects of astronomy.
- Texereau, J. How To Make A Telescope. Doubleday and Co., New York, 1963. The best guide to making a Newtonian telescope.

VISITING HOURS AT SOME CANADIAN OBSERVATORIES AND PLANETARIA

COMPILED BY MARIE FIDLER

OBSERVATORIES

Algonquin Radio Observatory, Lake Traverse, Ontario KOA 2L0. Tours by appointment only. Telephone (613) 735-0141.

Burke-Gaffney Observatory, Saint Mary's University, Halifax, Nova Scotia B3H 3C3.

October-April: Saturday evenings, 7:00 p.m.

May-September: Saturday evenings, 9:00 p.m. Monday evening or daytime tours by arrangement.

Phone 429-9780, ext. 184.

Canada-France-Hawaii Telescope, Mauna Kea, Hawaii, U.S.A. 96743. R.A.S.C. members visiting "Big Island" are welcome to day-time visits of the CFHT installations. For appointment please phone (808) 885-7944.

David Dunlap Observatory, Richmond Hill, Ontario L4C 4Y6. Tuesday mornings throughout the year, 10:00 a.m. Saturday evenings, April through October, by reservation. Telephone (416) 884-2112.

Dominion Astrophysical Observatory, Victoria, B.C. V8X 3X3. May-August: Daily, 9:15 a.m.-4:15 p.m. September-April: Monday to Friday, 9:15 a.m.-4:15 p.m. Public observing, Saturday evenings, April-October inclusive.

Dominion Radio Astrophysical Observatory, Penticton, B.C. V2A 6K3.
Conducted Tours: Sundays, July and August only, 2:00-5:00 p.m.
Visitors' Centre: Open year round during daylight hours.
Visitors are asked to walk 0.5 km from the road except when Conducted Tours are offered. For information please phone (604) 497-5321.

Hume Cronyn Observatory, The University of Western Ontario, London, Ontario. N6A 5B9.

An active program for individual visitors and groups is maintained through-out the year. For information please phone (519) 679-3184.

National Museum of Science and Technology, 1867 St. Laurent Blvd., Ottawa, Ontario. K1A 0M8.

Evening tours, by appointment only. Telephone (613) 998-9520.

September-June: Group tours: Mon., Tues., Wed., Thurs. Public visits, Fri.

July-August: Public visits: Tues., Wed., Thurs.

Observatoire astronomique du mont Mégantic, Notre-Dame-des-Bois, P.Q. JOB 2E0.

June-September: Daily 2:00 p.m.-sunset.

Public observing, Saturday evening, May-August inclusive, by reservation. Telephone (819) 888-2822.

University of British Columbia Observatory, Vancouver, B.C. V6T 1W5 Public observing, clear Saturday evenings, dark until 11:30 p.m., year round. Tours by appointment; phone (604) 228-2802. Alberta Natural Resources Science Centre, Mobile Planetarium, P.O. Box 3182, Sherwood Park, Alberta T8A 2A6.

This planetarium travels throughout Alberta with public shows given Monday, Tuesday, and Thursday evenings. For locations and times, telephone (403) 427-9490, 9491 or 9492.

Calgary Centennial Planetarium, 701-11 Street S.W., P.O. Box 2100, Calgary, Alberta T2P 2M5.

For program information, telephone (403) 264-4060 or 264-2030.

Doran Planetarium, Laurentian University, Ramsey Lake Road, Sudbury, Ontario P3E 2C6.

Phone (705) 675-1151, ext. 381 for information on group reservations and public shows.

- Dow Planetarium, 1000 St. Jacques Street W., Montreal, P.Q. H3C 1G7. Live shows in French and in English every open day except Monday. Closed 3 weeks in September after Labour Day. For general information telephone (514) 872-4530
- The Halifax Planetarium, The Education Section of Nova Scotia Museum, Summer Street, Halifax, N.S. B3H 3A6.

Free public shows take place on some evenings at 8:00 p.m. and group shows can be arranged. For information, telephone (902) 429-4610.

- The Lockhart Planetarium, 394 University College, 500 Dysart Road, The University of Manitoba, Winnipeg, Manitoba R3T 2N2. For group reservations, telephone (204) 474-9785.
- H.R. MacMillan Planetarium, 1100 Chestnut Street, Vancouver, B.C. V6J 3J9.
 Public shows daily except Monday, 2:30 and 8:00.
 Additional shows 1:00 and 4:00 weekends, holidays and summer.
 For show information telephone (604) 736-3656.
- Manitoba Planetarium, 190 Rupert Avenue at Main Street, Winnipeg, Manitoba R3B 0N2.

For current show times and information, call the recorded message at (204) 943-3142.

McLaughlin Planetarium, 100 Queen's Park, Toronto, Ontario M5S 2C6 (telephone (416) 978-8550).

Tuesday-Friday, 3:00 and 7:45 p.m.

Weekends and holidays, 12:30, 1:45, 3:00 and 7:45 p.m.

- Ontario Science Centre, 770 Don Mills Road, Don Mills, Ontario M3C 1T3. Open daily except Christmas Day from 10:00 a.m. to 6:00 p.m. Telephone (416) 429-4100.
- University of Prince Edward Island Planetarium, Charlottetown, P.E.I. C1A 4P3 For show information telephone (902) 892-4121.
- Queen Elizabeth Planetarium, Coronation Park, 139 St. & 114 Ave., Edmonton, Alberta T5J 0K1.

Shows for adults and for children are held on most days. A Night Sky programme is held every day at 9:00 p.m. in the summer. Phone 455-0119 for up-to-date programme information and showtimes.

SYMBOLS

SUN, MOON, AND PLANETS

Ø Mercury

♀ Venus

⊕ Earth

3 Mars

The Moon generally

 \odot The Sun

D

- New Moon
- Full Moon
- First Quarter
- C Last Ouarter

SIGNS OF THE ZODIAC

Υ Aries 0°	Ω Leo 120°	🛪 Sagittarius 240°
V Taurus 30°	₩ Virgo 150°	б Capricornus. 270°
\blacksquare Gemini 60°		300° Aquarius 300°
Se Cancer 90°	m Scorpius 210°	X Pisces 330°

THE GREEK ALPHABET

Α, α	Alpha	Ι, ι	Iota	Ρ, ρ	Rho
Β, β	Beta	К, к	Kappa	Σ, σ	Sigma
Γ, γ	Gamma	Λ, λ	Lambda	Τ, τ	
Δ, δ	Delta	Μ, μ	Mu	Υ,υ	Upsilon
	Epsilon	Ν, ν	Nu	Φ, φ	Phi
	Zeta	Ξ, ξ	Xi	Χ, χ	Chi
Η, η	Eta		Omicron	Ψ, ψ	
Θ, θ,	ϑTheta	Π, π	Pi	Ω, ω	Omega

CO-ORDINATE SYSTEMS AND TERMINOLOGY

Astronomical positions are usually measured in a system based on the celestial poles and celestial equator, the intersections of the Earth's rotation axis and equatorial plane, respectively, and the infinite sphere of the sky. Right ascension $(\hat{R}, A, \text{ or } \alpha)$ is measured in hours (h), minutes (m) and seconds (s) of time, eastward along the celestial equator from the vernal equinox. Declination (Dec. or δ) is measured in degrees (°), minutes (') and seconds (") of arc, northward (N or +) or southward (S or -) from the celestial equator toward the N or S celestial pole.

Positions can also be measured in a system based on the ecliptic, the intersection of the Earth's orbit plane and the infinite sphere of the sky. The Sun appears to move eastward along the ecliptic during the year. Longitude is measured eastward along the ecliptic from the vernal equinox; latitude is measured at right angles to the ecliptic, northward or southward toward the N or S ecliptic pole. The vernal equinox is one of the two intersections of the ecliptic and the celestial equator; it is the one at which the Sun crosses the celestial equator moving from south to north.

Objects are in conjunction if they have the same longitude or R.A., and are in opposition if they have longitudes or R.A.'s which differ by 180°. If the second object is not specified, it is assumed to be the Sun. For instance, if a planet is "in conjunction", it has the same longitude as the Sun. At superior conjunction, the planet is more distant than the Sun; at *inferior conjunction*, it is nearer.

If an object crosses the ecliptic moving northward, it is at the ascending node of its orbit; if it crosses the ecliptic moving southward, it is at the descending node.

Elongation is the difference in longitude between an object and a second object (usually the Sun). At conjunction, the elongation of a planet is thus zero.

- 2 Jupiter
- b Saturn
- a Uranus
- 𝖞 Neptune
- P Pluto

BASIC DATA

PRINCIPAL ELEMENTS OF THE SOLAR SYSTEM

		Mean Distance Period from Sun Revolution			Eccen-	Inclina-	Long. of	Long. of Peri-	Mean Long. at
Planet	A. U.	millions of km	Sidereal (P)	Syn- odic	tricity (e)	tion (i)	Node (Ω)	helion (π)	Epoch (L)
				days		o	٥	0	0
Mercury	0.387	57.9	88.0d.	116	.206	7.0	47.9	76.8	222.6
Venus	0.723	108.1	224.7	584	.007	3.4	76.3	131.0	174.3
Earth	1.000	149.5	365.26		.017	0.0	0.0	102.3	100.2
Mars	1.524	227.8	687.0	780	.093	1.8	49.2	335.3	258.8
Jupiter	5.203	778.	11.86a	399	.048	1.3	100.0	13.7	259.8
Saturn	9.539	1427.	29.46	378	.056	2.5	113.3	92.3	280.7
Uranus	19.18	2869.	84.01	370	.047	0.8	73.8	170.0	141.3
Neptune	30.06	4497.	164.8	367	.009	1.8	131.3	44.3	216.9
Pluto	39.44	5900.	247.7	367	.250	17.2	109.9	224.2	181.6

MEAN ORBITAL ELEMENTS

These elements, for epoch 1960 Jan. 1.5 E.T., are taken from the *Explanatory Supplement* to the American Ephemeris and Nautical Almanac.

PHYSICAL ELEMENTS

	Object	Equat. Diam. km	Ob- late- ness	$ \begin{array}{l} \text{Mass} \\ \oplus = 1 \end{array} $	Den- sity g/cm ³	Grav- ity ⊕ = 1	Esc. Speed km/s	Rotn. Period d	Incl.	Albedo
\odot	Sun	1 392 000	0	332,946	1.41	27.8	616	25-35*		
E	Moon	3 4 7 6	0	0.0123	3.35	0.16	2.3	27.3217	6.7	0.067
ğ	Mercury	4 878	0	0.0553	5.43	0.38	4.3	58.65	0.0	0.056
ę	Venus	12 104	0	0.8150	5.24	0.90	10.3	243	~177	0.76
\oplus	Earth	12756	1/298	1.000	5.52	1.00	11.2	0.9973	23.4	0.36
δ	Mars	6 792	1/192	0.1074	3.93	0.38	5.0	1.0260	25.2	0.16
24	Jupiter	141 700	1/16	317.9	1.36	2.87	63.4	0.410	3.1	0.73
þ	Saturn	120 000	1/9	95.17	0.71	1.32	39.4	0.426	26.7	0.76
ð	Uranus	50 800	1/16	14.56	1.30	0.93	21.5	0.45†	97.9	0.93
Ψ	Neptune	48 600	1/50	17.24	1.80	1.23	24.2	0.67†	29.6	0.62
Б	Pluto	3 000?	?	0.0015?	0.7?	0.03?		6.3867	118?	0.5?

The table gives the *mean* density, the gravity and escape speed *at the pole* and the inclination of equator *to orbit*. Evidence in 1977 suggests that the equatorial diameter of Uranus may be 55,800 km and that its oblateness may be 1/120.

*depending on latitude

[†]There is some evidence that the rotation periods of Uranus and Neptune are 1.0 and 0.76 day, respectively; these values are larger than those given in the table.

SATELLITES OF THE SOLAR SYSTEM

	Vis.	Diam.	Mean D from F		Revolution Period			Orbit Incl.		
Name	Mag.	km	km/1000	arc sec	d	h	m	0	Discovery	
SATELLITE OF	THE EART	н			. –					
Moon	l -12.7	l 3476	384.5		1 27	07	43	18-29	l	
SATELLITES OF	MARS									
I Phobos	11.6	23	9.4	25	0	07	39	1.1	A. Hall, 1877	
II Deimos	12.7	13	23.5	63	1	06	18	1.8v	A. Hall, 1877	
SATELLITES OF	Satellites of Jupiter									
XVI 1979J3	17.5	(40)	128	42	0	07	04		S. Synnott, 1979	
XIV Adrastea	18.7	(25)	129	42	0	07	08	1	D. Jewitt, 1979	
V Amalthea	14.1	170	180	59	0	11	57	0.4	E. Barnard, 1892	
XV 1979J2	16.0	(80)	222	73	0	16	11	-	S. Synnott, 1979	
I Io	5.0	3630	422	138	1	18	28	0	Galileo, 1610	
II Europa	5.3	3140	671	220	3	13	14	0.5	Galileo, 1610	
III Ganymede	4.6	5260	1 070	351	7	03	43	0.2	Galileo, 1610	
IV Callisto	5.6	4800	1 885	618	16	16	32	0.2	Galileo, 1610	
XIII Leda	20	(10)	11 110	3640	240			26.7	C. Kowal, 1974	
VI Himalia	14.7	170	11 470	3760	251			27.6	C. Perrine, 1904	
X Lysithea	18.4	(20)	11710	3840	260			29.0	S. Nicholson, 1938	
VII Elara	16.4	80	11 740	3850	260			24.8	C. Perrine, 1905	
XII Ananke	18.9	(20)	20 700	6790	617			147	S. Nicholson, 1951	
XI Carme	18.0	(30)	22 350	7330	692			164	S. Nicholson, 1938	
VIII Pasiphae	17.7	(40)	23 330	7650	735			145	P. Melotte, 1908	
IX Sinope	18.3	(30)	23 370	7660	758			153	S. Nicholson, 1914	
SATELLITES OF	SATURN									
1980S28	(18)	30	137	23	0	14	26		1980*	
1980S27	(13.5)	100	139	23	0	14	43		1980*	
1980S26	(14)	90	142	24	0	15	05	- 1	1980*	
1980S1	(14)	190	151	25	0	16	41		**	
1980S3	(14.5)	120	151	25	0	16	41		**	
I Mimas	12.9	390	187	30	0	22	37	1.5	W. Herschel, 1789	
II Enceladus	11.8	500	238	38	1	08	53	0.0	W. Herschel, 1789	
III Tethys	10.3	1060	295	48	1	21	18	1.1	G. Cassini, 1684	
1980S13	(18)	25	295	48	1	21	18 ^a	—	1980*	
1980S25	(18)	25	295	48	1	21	18 ^b		1980*	

By Joseph Veverka

Apparent magnitude and mean distance from planet are at mean opposition distance. The inclination of the orbit is referred to the planet's equator; a value greater than 90° indicates retrograde motion.

61

61

2 17 41

2 17 41^c G. Cassini, 1684

1980*

0.0

Values in brackets are uncertain.

10.4

(17.5)

IV Dione

1980S6

D

*Observed both from Earth and by Voyager spacecraft. Formal name and priority of discovery is under consideration by the International Astronomical Union.

**Co-orbital satellites. First mistaken for a single object (1966S2) by Fountain and Larson (1978) and probably by Dollfus ("Janus") in 1966.

^aLibrates about trailing (L₅) Lagrangian point of Tethys' orbit.

378

378

30

1120

^bLibrates about leading (L₄) Lagrangian point of Tethys' orbit.

^cLibrates about leading (L₄) Lagrangian point of Dione's orbit with a period of \sim 790d.

	Vis.	Diam	Mean Distance from Planet			Revolution Period		Orbit Incl.	
Name	Mag.	km	km/1000	arc sec	d	h	m	°	Discovery
V Rhea	9.7	1530	526	85	4	12	25	0.4	G. Cassini, 1672
VI Titan	8.4	5800ª	1 221	197	15	22	41	0.3	C. Huygens, 1655
VII Hyperion	14.2	300	1 481	239	21	06	38	0.4	G. Bond, W.
									Lassell, 1848
VIII Iapetus	11.0v	1460	3 561	575	79	07	56	14.7	G. Cassini, 1671
IX Phoebe	16.5	220	12 960	2096	550	11		150	W. Pickering, 1898
SATELLITES OF	URANUS								
V Miranda	16.5	(300)	130	9	1	09	56	3.4	G. Kuiper, 1948
I Ariel	14.4	1400	192	14	2	12	29	0	W. Lassell, 1851
II Umbriel	15.3	1150	267	20	4	03	27	0	W. Lassell, 1851
III Titania	14.0	1650	438	33	8	16	56	0	W. Herschel, 1787
IV Oberon	14.2	1700	587	44	13	11	07	0	W. Herschel, 1787
SATELLITES OF	Neptune								
I Triton	13.6	(4400)	354	17	5	21	03	160.0	W. Lassell, 1846
II Nereid	18.7 I	(300)	5 600	264	365	5		27.6	G. Kuiper, 1949
SATELLITE OF	Pluto ,								
I Charon	17	(1300)	20.0	0.9	6	09	17	120	J. Christy, 1978

^aCloud-top diameter. Solid-body diameter equals 5150 km.

Note: Pronunciations of the names of the planetary satellites are given on p. 103.

TELESCOPE PARAMETERS

(where D = diameter of aperture in millimetres)

- Limiting Visual Magnitude $m_1 \approx 2.7 + 5 \log D$, assuming transparent, dark-sky conditions and magnification $\geq 1D$. (See article by R. Sinnott, Sky and Telescope, 45, 401, 1973)
- Smallest Resolvable Angle $\theta \approx 120/D$ seconds of arc. However, atmospheric conditions seldom permit values less than 0".5.
- Useful Magnification Range $\simeq 0.2D$ to 2D. The lower limit may be a little less, but depends upon the maximum diameter of the entrance pupil of the individual observer's eye. Also, 0.2D provides better contrast than a lower value. The upper limit is determined by the wave nature of light and the optical limitations of the eye, although atmospheric turbulence usually limits the maximum magnification to 500x or less. For examination of double stars, magnifications up to 4D are sometimes useful. Note that the reciprocal of the coefficient to D is the diameter (in mm) of the telescope's exit pupil.

D (mm)	60	75	100	125	150	200	350	400
mı	11.6	12.1	12.7	13.2	13.6	14.2	15.4	15.7
θ (")	2.0	1.6	1.2	1.0	0.80	0.60	0.34	0.30
0.2D	12x	15x	20x	25x	30x	40x	70x	80x
2D	120x	150x	200x	250x	300x	400x	700x	800x

Values for some common apertures are:

SOME ASTRONOMICAL AND PHYSICAL DATA

LENGTH

D

1 astronomical unit (AU) = $1.49597870 \times 10^{11}$ m = 499.004782 light seconds 1 light year (ly) = 9.460536×10^{15} m (based on average Gregorian year) = 63 239.8 AU $= 3.085\,678 \times 10^{16} \,\mathrm{m}$ 1 parsec (pc) = 206264.8 AU = 3.261631 light years1 mile \equiv 1.609 344 km 1 Angstrom $\equiv 0.1 \text{ nm}$ TIME Dav: Mean sidereal (equinox to equinox) = 86 164.091 s* Mean rotation (fixed star to fixed star) = 86164.099 s* Mean solar (d) = 86400s* $(s^* = \text{mean solar second}, \text{ which is now larger than the SI (atomic)})$ second (s) by a few parts in 10^8 .) Month: Draconic (node to node) = 27.21222 dTropical (equinox to equinox) = 27.321 58 d Sidereal (fixed star to fixed star) = 27.32166 d = 27.55455 d Anomalistic (perigee to perigee) Synodic (New Moon to New Moon) = 29.53059 d Year: Eclipse (lunar node to lunar node) = 346.6201 dTropical (equinox to equinox) = 365.2422 dAverage Gregorian = 365.2425 dAverage Julian = 365.2500 dSidereal (fixed star to fixed star) = 365.2564 d Anomalistic (perihelion to perihelion) = 365.2596 dEARTH Mass = 5.974×10^{24} kg Radius: Equatorial, a = 6378.140 km; Polar, b = 6356.755 km: Mean, $\sqrt[3]{a^2b} = 6371.004$ km 1° of latitude = $111.133 - 0.559 \cos 2\phi$ km (at latitude ϕ) 1° of longitude = 111.413 $\cos \phi - 0.094 \cos 3\phi$ km Distance of sea horizon for eye h metres above sea-level = $3.57\sqrt{h}$ km Standard atmospheric pressure = 101.325 kPa (~ 1 kg above 1 cm²) Speed of sound in standard atmosphere = 331 m s^{-1} Magnetic field at surface $\sim 5 \times 10^{-5}$ T Magnetic poles: 76°N, 101°W; 66°S, 140°E Surface gravity at latitude 45°, $g = 9.806 \text{ m s}^{-2}$ Age ~4.6 Ga Meteoric flux $\sim 1 \times 10^{-15}$ kg m⁻² s⁻¹ Escape speed from Earth = 11.2 km s^{-1} Solar parallax = 8''.794148Constant of aberration = 20''.49552Obliquity of ecliptic = $23^{\circ}.4415$ (1983) Annual general precession = 50''.26; Precession period = $25\,800$ a Orbital speed = 29.8 km s^{-1} Escape speed at 1 AU from $Sun = 42.1 \text{ km s}^{-1}$ SUN Mass = 1.9891×10^{30} kg; Radius = 696 265 km; Eff. temperature = 5770 K Output: Power = 3.83×10^{26} W; $M_{bol} = 4.75$ Luminous intensity = 2.84×10^{27} cd; M_v = 4.84At 1 AU, outside Earth's atmosphere: Energy flux = 1.36 kW m^{-2} ; $m_{bol} = -26.82$ Illuminance = 1.27×10^5 lx; m_v = -26.74Solar wind speed near Earth \sim 450 km s⁻¹ (travel time, Sun to Earth \sim 5 d) Solar velocity = 19.75 km s⁻¹ toward α = 18.07 h, δ = +30° (solar apex)

MILKY WAY GALAXY Mass $\sim 10^{12}$ solar masses Centre: $\alpha = 17 \text{ h} 42.5 \text{ min}, \delta = -28^{\circ} 59' (1950)$ Distance to centre ~ 9 kpc, diameter ~ 100 kpc North pole: $\alpha = 12 \text{ h } 49 \text{ min}, \delta = 27^{\circ} 24' (1950)$ Rotational speed (at Sun) \sim 250 km s⁻¹ Rotational period (at Sun) ~220 Ma Velocity relative to the 3 K background ~600 km s⁻¹ toward $\alpha \sim 10$ h, $\delta \sim -20^{\circ}$ MISCELLANEOUS CONSTANTS Speed of light, c = 299792458. m s⁻¹ Planck's constant, $h = 6.6262 \times 10^{-34} \text{ J s}$ Gravitational constant, $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$ Elementary charge, $e = 1.6022 \times 10^{-19} C$ Electron rest mass = 9.1095×10^{-31} kg Proton rest mass = 1.6726×10^{-27} kg Avogadro constant, $N_A = 6.022 \times 10^{26} \text{ kmol}^{-1}$ Atomic mass unit, $u = 1.6606 \times 10^{-27} \text{ kg} = N_A^{-1} = 931.50 \text{ MeV}$ Boltzmann constant, k = $1.381 \times 10^{-23} \text{ J K}^{-1} = 8.62 \times 10^{-5} \text{ eV K}^{-1} \sim 1 \text{ eV}/10^4 \text{ K}$ Stefan-Boltzmann constant, $\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$ Wien's law, $\lambda_m T = 2.898 \times 10^{-3} \text{ m K}$ (per d λ) Hubble constant, H \sim 50 to 75 km s⁻¹ Mpc⁻¹ (depending on method of determination) Thermochemical calorie (cal) = 4.184 JElectron-volt (eV) = $1.6022 \times 10^{-19} \text{ J}$ $1 \text{ eV per event} = 23060. \text{ cal mol}^{-1}$ $1 \text{ W} = 10^7 \text{ ergs s}^{-1}$ $\pi = 3.141592654 \simeq (113 \div 355)^{-1}$ $I'' = 4.8481 \times 10^{-6}$ rad Number of square degrees on a sphere = 41253. MISCELLANEOUS INFORMATION Relations between sidereal time t, right ascension α , hour angle h, declination δ , azimuth A (measured east of north), altitude a, and latitude ϕ : $h = t - \alpha$

 $\sin a = \sin \delta \sin \phi + \cos h \cos \delta \cos \phi$ $\cos \delta \sin h = -\cos a \sin A$ $\sin \delta = \sin a \sin \phi + \cos a \cos A \cos \phi$ Annual precession in $\alpha = 3.0730 + 1.3362 \sin \alpha \tan \delta$ seconds Annual precession in $\delta = 20''.043 \cos \alpha$ Log of light intensity ratio = 0.4 times magnitude difference $4^{1}H \rightarrow {}^{4}He + 26.73 \text{ MeV}$ Stable particles: γ , e^- , e^+ , p, \bar{p} , neutrinos(?) Some SI symbols and prefixes: m metre N newton (kg m s^{-2}) nano 10-9 n kg kilogram J joule (N m) μ micro 10⁻⁶ W watt $(J s^{-1})$ s second m milli 10^{-3} Pa pascal (N m⁻²) min minute centi 10^{-2} с tonne (10^3 kg) k kilo 10^{3} h hour t d day Hz Hertz (s⁻¹) M mega 10⁶ year C coulomb (A s) G giga 109 а Relation between rest mass (m), linear momentum (p), total energy (E), kinetic energy (KE), and $\gamma = (1 - v^2/c^2)^{-0.5}$: pc

mc²

t

TABLE OF PRECESSION FOR 50 YEARS

If declination is positive, use inner R.A. scale; if declination is negative, use outer R.A. scale, and reverse the sign of the precession in declination

$\begin{array}{c c c c c c c c c c c c c c c c c c c $.	Т	6000	000	888	0000	000	000	000	0000	5
R.A. Prec. R.A. Prec. R.A. - $10r$ $110r$ $110r$ </td <td>R.A</td> <td>ec</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	R.A	ec	1								
R.A. Prec.									000	0000	,
R.A. Prec. Precession in right accension Precession in right accension Prec. 0 0.00 +16.7 + 2.8 80° 75° 70° 50° 30° 20° 10° 0°	R.A	Dec.									12
R.A. Frec. Example Precession in right ascension - for , for			191	4.vivi	00 04	4000	167	4500	% 04	4000	e b.
R.A. Frec. Example Precession in right ascension - for , for	Prec	EG∎	- 16 - 16	112	1108		999 +++	+++	+++ 8		ed (s
R.A. Frec. Example Precession in right ascension - for , for						2222				<u></u>	e us
R.A. Frec. Example Precession in right ascension - for , for		°	E Ci Ci Ci	000	000	0000	000	000	000	2000	nay t
R.A. Frec. Example Precession in right ascension - for , for		0	56	2 ,88	7273	74 75 76 76	5452	6 44	39	37 37 36	lae r
R.A. Frec. Example Precession in right ascension - for , for		Ľ	E000	000	000	~~~~~	444	444	000		
R.A. Frec. Example Precession in right ascension - for , for		°	m 2.56 2.61	2.72 2.76 2.81	2.85 2.88 2.91	2.95 2.95 2.97	2.56 2.51 2.46	2.41 2.36 2.31	2.27 2.24 2.21	2.19 2.17 2.16 2.16	ion f
R.A. Frec. Example Precession in right ascension - for , for			+								scess
R.A. Frec. Example Precession in right ascension - for , for		30°	1000B	2.981 2.995	3.02 3.12	3.15 3.20 3.20	2.35	2.31 2.24 2.17	2.05 2.05	26.1 26.1 26.1	, pre
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ion	-		995	181	0,000	840	288	000	0.000	ge S
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	scent	40°	6003	3.1 3.1		0.0.0.0 4.4.4.0	0.02 0.4 0.4 0.0	2.2 1.9	5.1	1.6.1	or lar
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ght a	°.	90 356 90	37	50 61 71	888 89 89 89	56 23 39	05 75	51 51	325833	ate fo
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	in ri	50	E N N N	๛ํ๛ํ๛ํ	พ่พ่พ่	๛๛๛๛	~~~				ccura
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	sion	ô	n 		1.23	1.34 1.42 1.49	2.56 			0.78 0.70 0.65	y ina
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	reces	Ľ		· · · · · · · · · · · · · · · · · · ·						0000	lguis
	L C	70°	2.56 3.35	3.73 4.09 4.42	4.72 4.99 5.21	5.39 5.52 5.59	2.56 2.16 1.77	$1.39 \\ 1.03 \\ 0.70 $	0.40 0.13 0.09	0.27 0.39 0.47 0.50	creat
		<u> </u>		v40	000			3 80 4	+	90,08	les in
		75°	+2.5 3.1 3.6	5.0 5.0	5.5 5.8 6.1	6.5 6.7 6.7	2.5 1.4	0.9 +0.0	-0.3	-1.5	scom
				98 41	03 03	6 9288	56 93			2222	ch be
		80	₩4 10,00,4	4.0.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00 00 00 00	0.12			<u></u>	, whi
		85°	.56 .22 .85	.31	.566 .58	.29 .29 .29	.73 20 20	.19 .19	424	11.120	able
				1087	1121	4421				001	this 1
			5.7 5.6	4.5.6	8.0.4	4.0.20	.100	4.5.6	8,0,4	4.6.20	n in
	Pre	De	+++	+++	$\frac{1}{2}$				111		olatio
	. i	. +.	ESSS	888	888	8888	888	888	888	8888	terpc
	R.	Dec	400-							1121	id in
A 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	¥ ,		E8%8	888	888	8888	888	80%	8%8	2828	o avc
	. . 4	Dec									Ĕ

TIME

Any recurring event may be used to measure time. The various times commonly used are defined by the daily passages of the Sun or stars caused by the rotation of the Earth on its axis. The more uniform revolution of the Earth about the Sun, causing the return of the seasons, defines *ephemeris time*. Time can also be defined in terms of the vibrations within atoms. Atomic time is maintained in various labs, and an internationally acceptable atomic time scale has now been adopted.

A sundial indicates *apparent solar time*, but this is far from uniform because of the Earth's elliptical orbit and the inclination of the ecliptic. If the real Sun is replaced by a fictitious mean sun moving uniformly in the equator, we have *mean* (solar) *time*. Apparent time – mean time = equation of time.

Another useful quantity is the correction to sundial (see page 48), which differs from equation of time only in its sign. As the name implies, mean time – apparent time = correction to sundial.

If instead of the Sun we use other stars, we have *sidereal time*. The sidereal time is zero when the vernal equinox or first point of Aries is on the meridian. As the Earth makes one more rotation with respect to the stars than it does with respect to the Sun during a year, sidereal time gains on mean time $3^m 56^s$ per day or 2 hours per month. Right Ascension (R.A.) is measured east from the vernal equinox, so that the R.A. of an object on the meridian is equal to the sidereal time.

Sidereal time is equal to mean solar time plus 12 hours plus the R.A. of the fictitious mean sun, so that by observation of one kind of time we can calculate the other. Sidereal time is useful to an observer for setting his telescope on an object of known right ascension. The *hour angle* of the object is equal to the *sidereal time – right ascension*. There are several ways of calculating sidereal time if you do not have a sidereal clock; an article by Hardie and Krebs, *Sky and Telescope* **41**, 288 (May 1971) provides helpful information. See also the table on p. 16 and diagram on p. 18.

Local mean time varies continuously with longitude. The local mean time of Greenwich, now known as *Universal Time* (UT) is used as a common basis for timekeeping. Navigation and surveying tables are generally prepared in terms of UT.

To avoid the inconveniences to travellers of a changing local time, *standard time* is used. The Earth is divided into 24 zones, each ideally 15 degrees wide, the zero zone being centered on the Greenwich meridian. All clocks within the same zone will read the same time. See map on p. 16.

In Canada and the United States there are 9 standard time zones as follows: Newfoundland (N), $3^{h} 30^{m}$ slower than Greenwich; 60th meridian or Atlantic (A), 4 hours; 75th meridian or Eastern (E), 5 hours; 90th meridian or Central (C), 6 hours; 105th meridian or Mountain (M), 7 hours; 120th meridian or Pacific (P), 8 hours; 135th meridian or Yukon (Y), 9 hours; 150th meridian or Alaska-Hawaii, 10 hours; and 165th meridian or Bering, 11 hours slower than Greenwich.

The mean solar second, defined as 1/86400 of the mean solar day, has been abandoned as the unit of time because random changes in the Earth's rotation make it variable. The unit of time has been redefined twice within the past decades. In 1956 it was defined in terms of Ephemeris Time (ET) as 1/31,556,925.9747 of the tropical year 1900 at January 0 at 12 hrs. ET. In 1967 it was redefined as 9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of cesium 133 atom. *Ephemeris Time* is required in celestial mechanics, while the cesium resonator makes the unit readily available. The difference, ΔT , between UT and ET is measured as a small error in the observed longitude of the Moon, in the sense $\Delta T = ET - UT$. The Moon's position is tabulated in ET, but observed in UT. ΔT was zero near the beginning of the century, but in 1983 will be about 54 seconds.

RADIO TIME SIGNALS

National time services distribute co-ordinated time called UTC, which on January 1, 1972, was adjusted so that the time interval is the atomic second. Atomic time gains on mean solar time at a rate of about a second a year. An approximation to UT1, which is a close approximation to UT, is maintained by stepping the atomic time scale in units of 1 second on June 30 or December 31, when required so that the predicted difference DUT1 = UT1 - UTC does not exceed 0.9 second. The first such "leap second" occurred on June 30, 1972. These changes are coordinated through the Bureau International de l'Heure (BIH), so that most time services are synchronized to the tenth of a millisecond.

t

Radio time signals readily available in Canada include:

CHU Ottawa, Canada 3330, 7335, 14670 kHz

WWV Fort Collins, Colorado 2.5, 5, 10, 15, 20 MHz

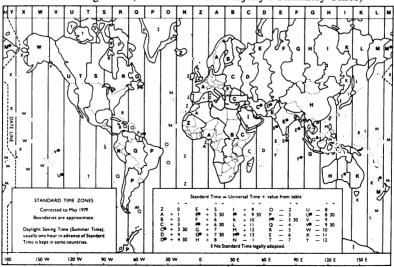
WWVH Kauai, Hawaii 2.5, 5, 10, 15 MHz.

For those without short wave radios, or in areas of poor reception, time service is available from Ottawa by telephone: 613-745-1576 (English) and 613-745-9426 (French).

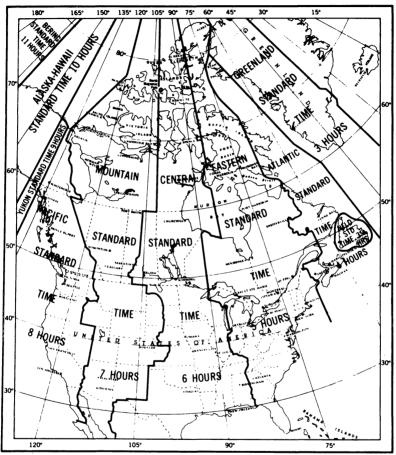
SIDEREAL TIME 1983

The following is the Greenwich sidereal time (GST) on day 0.0 (0 h UT) of each month:

Jan. 0 06 ^h 36 ^m 4	Apr. 0 12 ^h 31 ^m 2	July 0 18 ^h 30 ^m 0	Oct. 0 00 ^h 32 ^m 7
Feb. 0 08 38.6	May 0 14 29.5	Aug. 0 20 32.2	Nov. 0 02 34.9
Mar. 0 10 29.0	June 0 16 31.7	Sep. 0 22 34.4	Dec. 0 04 33.2


GST at hour t UT on day d of the month

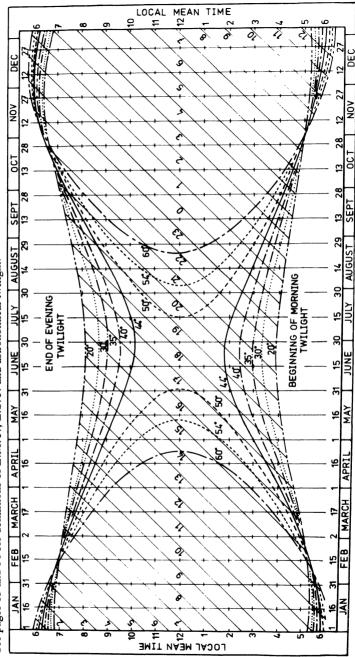
= GST at 0 h UT on day $0 + 0^{h}.0657 d + 1^{h}.0027 t$


Local sidereal time = GST – west longitude (or + east longitude). (Be sure to convert your time and date to UT to calculate t and d.)

WORLD MAP OF TIME ZONES

Taken from Astronomical Phenomena for the Year 1983 (Washington: U.S. Government Printing Office, and London: Her Majesty's Stationery Office)

MAP OF STANDARD TIME ZONES


PRODUCED BY THE SURVEYS AND MAPPING BRANCH, DEPARTMENT OF ENERGY, MINES AND RESOURCES, OTTAWA, CANADA, 1973.

The map shows the number of hours by which each time zone is *slower* than Greenwich, that is, the number of hours which must be *added* to the zone's standard time to give Greenwich (Universal) Time.

Note: Since the preparation of the above map, the standard time zones have been changed so that all parts of the Yukon Territory now observe Pacific Standard Time. The Yukon Standard Time Zone still includes a small part of Alaska, as shown on the above map. Also, the part of Texas west of longitude 105° is in the Mountain Time Zone.

ASTRONOMICAL TWILIGHT AND SIDEREAL TIME

The diagram gives (i) the local mean time (L.M.T.) of the beginning and end of astronomical twilight (curved lines) at a given latitude on a given date and (ii) the local sidereal time (L.S.T., diagonal lines) at a given L.M.T. on a given date. The L.S.T. is also the right ascension of an object on the observer's celestial meridian. To use the diagram, draw a line downward from the given date; the line cuts the curved lines at the L.M.T. of beginning and end of twilight, and cuts each diagonal line at the L.M.T. corresponding to the L.S.T. marked on the line. See pages 15 and 56 for definitions of L.M.T., L.S.T. and astronomical twilight.

JULIAN DATE, 1983

The Julian date is commonly used by astronomers to refer to the time of astronomical events, because it avoids some of the annoying complexities of the civil calendar. The Julian day corresponding to a given date is the number of days which have elapsed since January 1, 4713 B.C. For an account of the origin of the Julian system see: "The Julian Period", by C. H. Cleminshaw in the *Griffith Observer*, April 1975; "The Origin of the Julian Day System", by G. Moyer in *Sky and Telescope*, April 1981.

The Julian day commences at noon (12^h) UT. To find the Julian date at any time during 1983, determine the day of the month and time at the Greenwich meridian, convert this to a decimal day, and add it to one of the following numbers according to the month (These numbers are the Julian dates for 0^h UT on the "0th" day of each month.):

Jan. 244 5334.5	Apr. 244 5424.5	July 244 5515.5	Oct. 244 5607.5
Feb. 244 5365.5	May 244 5454.5	Aug. 244 5546.5	Nov. 244 5638.5
Mar. 244 5393.5	June 244 5485.5	Sep. 244 5577.5	Dec. 244 5668.5

e.g. 23:08 EDT on July 22 = 03:08 UT on July 23 = July 23.13 UT = 2445515.5 + 23.13 = JD 2445538.63

The Julian dates for 0 UT January 0 for several previous years are 244 0000.5 plus (for years indicated): 951(1971), 1316(1972), 1682(1973), 2047(1974), 2412(1975), 2777(1976), 3143(1977), 3508(1978), 3873(1979), 4238(1980), 4604(1981), 4969(1982), 5334(1983).

ANNIVERSARIES AND FESTIVALS 1983

New Year's Day Sat.	Jan.	1	Memorial Day (U.S.) Mon. May 30
Epiphany Thu.			First Day of Ramadan Sun. June 12
Lincoln's Birthday (U.S.) Sat.			Canada DayFri. July 1
Ash Wednesday			Independence Day (U.S.). Mon. July 4
Washington's Birthday (U.S.). Mon.	Feb. 2	21	Civic Holiday Mon. Aug. 1
St. David (Wales) Tue.	Mar.	1	Labour Day Mon. Sep. 5
St. Patrick (Ireland) Thu.	Mar.	17	Rosh Hashanah Thu. Sep. 8
Palm Sunday	Mar. 2	27	Yom Kippur Sat. Sep. 17
First Day of Passover Tue.	Mar. 2	29	Succoth
Good Friday	Apr.	1	Islamic New Year Sat. Oct. 8
Easter Sunday	Apr.	3	Thanksgiving (Can.) Mon. Oct. 10
Birthday of Queen			Columbus Day (U.S.) Mon. Oct. 10
Elizabeth II (1926) Thu.	Apr. 2	21	Election Day (U.S.) Tue. Nov. 8
St. George (England) Sat.	Apr. 2	23	Remembrance Day Fri. Nov. 11
Ascension Day Thu.	May 1	12	Veterans' Day (U.S.) Fri. Nov. 11
Shebuoth Wed.	May 1	18	Thanksgiving (U.S.) Thu. Nov. 24
Pentecost (Whit Sunday)	May 2	22	First Sunday in Advent Nov. 27
Victoria Day Mon.	May 2	23	St. Andrew (Scotland) Wed. Nov. 30
Trinity Sunday	May 2	29	Christmas Sun. Dec. 25

Note: 1983 and 1984 calendars are on the inside back cover.

THE SKY MONTH BY MONTH

BY JOHN R. PERCY

Introduction—In the monthly descriptions of the sky on the following pages, positions of the Sun and planets are given for 0 h Ephemeris Time, which differs only slightly from Standard Time on the Greenwich meridian. Estimates of altitude are for an observer in latitude 45°N. Unless noted otherwise, the descriptive comments about the planets apply to the middle of the month.

The Sun—The values of the equation of time are for noon U.T. on the first and last days of the month. For times of sunrise and sunset and for changes in the length of the day, see pp. 52–55. See also p. 48.

The Moon—Its phases, perigee and apogee times and distances (rounded to the nearest 100 km), and its conjunctions with the planets are given in the monthly tables. For times of moonrise and moonset, see pp. 60–73.

Age, Elongation and Phase of the Moon—The elongation is the angular distance of the Moon from the Sun in degrees, counted eastward around the sky. Thus, elongations of 0° , 90°, 180°, and 270° correspond to new, first quarter, full, and last quarter moon. For certain purposes the phase of the Moon is more accurately described by elongation than by age in days because the Moon's motion per day is not constant. However, the equivalents in the table below will not be in error by more than half a day.

Elong.	Age	Elong.	Age	Elong.	Age
0°	0 ^d .0	120°	9 ^d .8	240°	19 ^d .7
30°	2.5	150°	12.3	270°	22.1
60°	4.9	180°	14.8	300°	24.6
90°	7.4	210°	17.2	330°	27.1

The Sun's selenographic colongitude is essentially a convenient way of indicating the position of the sunrise terminator as it moves across the face of the Moon. It provides an accurate method of recording the exact conditions of illumination (angle of illumination), and makes it possible to observe the Moon under exactly the same lighting conditions at a later date. The Sun's selenographic colongitude is numerically equal to the selenographic longitude of the sunrise terminator reckoned eastward from the mean centre of the disk. Its value increases at the rate of nearly 12.2° per day or about $\frac{1}{2}^{\circ}$ per hour; it is approximately 270°, 0°, 90° and 180° at New Moon, First Quarter, Full Moon and Last Quarter respectively. Values of the Sun's selenographic colongitude are given on the following pages for the first day of each month.

Sunrise will occur at a given point *east* of the central meridian of the Moon when the Sun's selenographic colongitude is equal to the eastern selenographic longitude of the point; at a point *west* of the central meridian when the Sun's selenographic colongitude is equal to 360° minus the western selenographic longitude of the point. The longitude of the sunset terminator differs by 180° from that of the sunrise terminator.

Libration is the shifting, or rather apparent shifting, of the visible disk of the Moon. Sometimes the observer sees features farther around the eastern or the western limb (libration in longitude), or the northern or southern limb (libration in latitude). When the libration in longitude is positive, the mean central point of the disk of the Moon is displaced eastward on the celestial sphere, exposing to view a region on the west limb. When the libration in latitude is positive, the mean central point of the disk of the Moon is displaced towards the south, and a region on the north limb is exposed to view.

The dates of the greatest positive and negative values of the libration in longitude and latitude are given in the following pages.

The Moon's Orbit. In 1983, the ascending node of the Moon's orbit regresses from longitude 94° to 75° (Gemini into Taurus).

The Planets—Further information in regard to the planets, including Pluto, is found on pp. 88–103. For the configurations of Jupiter's four Galilean satellites, see the monthly tables. In these diagrams, the central vertical band represents the equatorial diameter of the disk of Jupiter. Time is shown by the vertical scale, each horizontal line denoting 0^h Universal Time. (Be sure to convert to U.T. before using these diagrams.) The relative positions of the satellites at any time with respect to the disk of Jupiter are given by the four labelled curves (I, II, III, IV) (see p. 10 for the key to these Roman numerals). In constructing these diagrams, the positions of the satellites in the direction perpendicular to the equator of Jupiter are necessarily neglected. Note that the orientation is for an inverting telescope. For the various transits, occultations, and eclipses of these satellites, see p. 104.

Minima of Algol—The times of mid-eclipse are given in the monthly tables and are calculated from the ephemeris

heliocentric minimum = 2440953.4657 + 2.8673075 E

and are rounded off to the nearest ten minutes. (The first number in the equation is the Julian date corresponding to 1971 Jan. 1.9657, an Algol minimum. The second number is the period of Algol in days, and E is an integer.)

Occultations of Stars and Planets—For information about occultations of stars and planets visible in North America, see pp. 75–87 and 120.

THE SKY FOR JANUARY 1983

The Sun—During January, the sun's R.A. increases from 18 h 43 m to 20 h 56 m and its Decl. changes from $-23^{\circ}04'$ to $-17^{\circ}19'$. The equation of time changes from -3 m 24 s to -13 m 25 s. On Jan. 2, the earth is at perihelion, at a distance of 147,094,000 km (91,400,000 mi) from the sun.

The Moon—On Jan. 1.0 U.T., the age of the moon is 16.6 d. The sun's selenographic colongitude is 109.45° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Jan. 6 (8°) and minimum (east limb exposed) on Jan. 22 (8°). The libration in latitude is maximum (north limb exposed) on Jan. 20 (7°) and minimum (south limb exposed) on Jan. 5 (7°).

Mercury on the 1st is in R.A. 20 h 08 m, Decl. $-21^{\circ}15'$, and on the 15th is in R.A. 19 h 53 m, Decl. $-17^{\circ}59'$. Early in the month, it may be seen very low in the south-west at sunset, but thereafter it is too close to the sun to be seen. On Jan. 16, it is in inferior conjunction.

Venus on the 1st is in R.A. 19 h 45 m, Decl. $-22^{\circ}33'$, and on the 15th it is in R.A. 20 h 58 m, Decl. $-18^{\circ}46'$, mag. -3.3, and transits at 13 h 23 m. Toward the end of the month, it may be seen very low in the south-west at sunset.

Mars on the 15th is in R.A. 22 h 02 m, Decl. $-13^{\circ}09'$, mag. +1.4, and transits at 14 h 26 m. At sunset, it stands about 25° above the south-western horizon, and sets about 3 hours later. During the month, it moves from Capricorn into Aquarius.

Jupiter on the 15th is in R.A. 16 h 08 m, Decl. $-20^{\circ}06'$, mag. -1.4, and transits at 8 h 31 m. It rises about $3\frac{1}{2}$ hours before the sun, and is low in the south-south-east at sunrise. During the month, it moves from Libra through Scorpius, above Antares. Throughout the year, it remains in this part of the ecliptic, far south of the celestial equator. For this reason, it will never appear very high in the northern observer's sky. On the other hand, its motion relative to the bright stars of Scorpius will provide continual interest.

Saturn on the 15th is in R.A. 14 h 09 m, Decl. $-10^{\circ}27'$, mag. +0.8, and transits at 6 h 33 m. It rises after midnight, and is west of south by sunrise. Until October, it is in Virgo, a few degrees east of Spica.

Uranus on the 15th is in R.A. 16 h 23 m, Decl. $-21^{\circ}29'$, mag. +6.0, and transits at 8 h 47 m. It is in Ophiuchus until early June.

Neptune on the 15th is in R.A. 17 h 50 m, Decl. $-22^{\circ}13'$, mag. +7.8, and transits at 10 h 13 m. It is in Sagittarius throughout the year.

Μ

1983			JANUARY UNIVERSAL TIME	Min. of Algol	Config. of Jupiter's Satellites
	d	hr	n	hm	4 W E
Sat.	1	1.			1.0
Sun.	2	16	Earth at perihelion	1.50	2.0
Mon.	3	20	Quadrantid meteor shower	1 50	3.0
Tues. Wed.	4 5		Manager at assenting node	22 40	···
Thur.	6	04 0	Mercury at ascending node 0 C Last Quarter	22 40	5.0
rnur.	0	18	Mercury stationary		6.0 IV III II I
Fri.	7	10	Mercury 2° N. of Venus		2.0
F11.	1 '	12	Saturn 2° S. of Moon		
Sat.	8	12	Saturn 2 S. of Woon	19 30	
Sun.	9		Mercury at perihelion	17 50	
, un.	1	22	Jupiter 2° S. of Moon		10.0
Mon.	10	07	Uranus 2° S. of Moon		11.0
Tues.	11			16 20	12.0
Wed.	12	01	Neptune 0.6° N. of Moon; occultation ¹		13.0
Thur.	13	·			11.0
Fri.	14	05	Moon at apogee (406,600 km)	13 10	15.0
		05 0			16.0
Sat.	15	19	Venus 1.8° N. of Moon		17.4
Sun.	16	03	Mercury in inferior conjunction		18.0
Mon.	17	04	Mars 3° N. of Moon	9 50	
l'ues.	18	13	Vesta 0.8° S. of Moon; occultation		79.0
Wed.	19				
l'hur.	20		Mercury at greatest hel. lat. N.	6 40	21.0
Fri.	21				2.0
Sat.	22		Venus at greatest hel. lat. S.		2.1
		05 3	B D First Quarter		84.0 <u>11 11 11 11 11 11 11 11 11 11 11 11 11</u>
Sun.	23			3 30	25.0
Mon.	24				8.0
lues.	25				2.1
Wed.	26			0 20	
l'hur.	27	10	Mercury stationary		
īri.	28	11	Moon at perigee (357,000 km)	21 10	2.1
		22 2	5 🕲 Full Moon		30.0
bat.	29				3n.0.
dun.	30				32.0QL / /
Aon.	31			18 00	

¹Visible from the central Indian Ocean

THE SKY FOR FEBRUARY 1983

The Sun—During February, the sun's R.A. increases from 20 h 56 m to 22 h 45 m and its Decl. changes from $-17^{\circ}19'$ to $-7^{\circ}53'$. The equation of time changes from -13 m 34 s to -12 m 40 s, reaching a minimum on Feb. 11.

The Moon—On Feb. 1.0 U.T., the age of the moon is 17.8 d. The sun's selenographic colongitude is 126.32° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Feb. 3 (8°) and minimum (east limb exposed) on Feb. 19 (7°). The libration in latitude is maximum (north limb exposed) on Feb. 16 (7°) and minimum (south limb exposed) on Feb. 1 (7°) and Feb. 28 (7°).

Mercury on the 1st is in R.A. 19 h 15 m, Decl. $-20^{\circ}16'$, and on the 15th is in R.A. 20 h 12 m, Decl. $-20^{\circ}21'$. It reaches greatest elongation west (26°) on Feb. 8, but this is a very unfavourable elongation because of the shallow inclination of the ecliptic to the horizon. Early in the month, it may possibly be seen, with great difficulty, very low in the south-east at sunrise.

Venus on the 1st is in R.A. 22 h 21 m, Decl. $-11^{\circ}54'$, and on the 15th it is in R.A. 23 h 26 m, Decl. $-5^{\circ}04'$, mag. -3.4, and transits at 13 h 49 m. As the month progresses, it moves further up in the south-western sky at sunset, setting about 3 hours later. On Feb. 18, Venus is 0.5° south of Mars. (Note that 0.5° is the apparent diameter of the moon.)

Mars on the 15th is in R.A. 23 h 33 m, Decl. $-3^{\circ}45'$, mag. +1.4, and transits at 13 h 54 m. Mars is low in the south-western sky at sunset, setting about 3 hours later; see also "Venus" above. During the month, it moves from Aquarius into Pisces.

Jupiter on the 15th is in R.A. 16 h 27 m, Decl. $-20^{\circ}52'$, mag. -1.6, and transits at 6 h 49 m. It rises after midnight and is due south at sunrise. During the month, it moves from Scorpius into Ophiuchus, passing 5° north of Antares and 0.8° north of Uranus on Feb. 17. This provides an easy way of locating Uranus around that date. A pair of binoculars helps!

Saturn on the 15th is in R.A. 14 h 12 m, Decl. $-10^{\circ}34'$, mag. +0.7, and transits at 4 h 34 m. It rises about midnight, and is low in the south-west at sunrise. On Feb. 13, it is stationary, and begins to move westward toward Spica.

Uranus on the 15th is in R.A. 16 h 28 m, Decl. $-21^{\circ}40'$, mag. +5.9, and transits at 6 h 49 m. It is 0.8° south of Jupiter on Feb. 17.

Neptune on the 15th is in R.A. 17 h 54 m, Decl. $-22^{\circ}13'$, mag. +7.8, and transits at 8 h 15 m.

Northern Chauvinism. Remember that, in this HANDBOOK, the descriptions of the appearance of the sky are for an observer in latitude $+45^{\circ}$ or thereabouts. The appearance will be quite different for an observer in southern latitudes. An unfavourable elongation of Mercury, for instance, may become favourable. And Orion, as everyone knows, is upside down when viewed from southern latitudes!

Μ

			r		
1983			FEBRUARY UNIVERSAL TIME	Min. of Algol	Config. of Jupiter's Satellites
	d	h m		hm	
Tues.	1				1.0
Wed.	2	ł			2.0
Thur.	1 3	00	Juno in conjunction	14 50	
	-	21	Saturn 2° S. of Moon		
Fri.	4	19 17	C Last Quarter		
Sat.	5				5.0
Sun.	6	13	Jupiter 1.5° S. of Moon	11 40	6.0
		16	Uranus 2° S. of Moon		7.0 <u>IV</u> I
Mon.	7	07	Pluto stationary		8.0
Tues.	8	09	Neptune 0.8° N. of Moon; occultation ¹		9.0
		20	Mercury greatest elong. W. (26°)		10.0
Wed.	9			8 30	
Thur.	10	08	Moon at apogee (406,300 km)		
	1	15	Mercury 2° N. of Moon		
Fri.	11		•		13.0
Sat.	12		Mercury at descending node	5 20	11.0
Sun.	13	00 32	Wew Moon		15.0
		08	Saturn stationary		16.0
Mon.	14				17.1
Tues.	15	02	Venus 4° N. of Moon	2 10	18.0
		06	Mars 5° N. of Moon		19.0
		15	Uranus 5° N. of Antares		20.0
		19	Vesta 0.3° S. of Moon; occultation		
Wed.	16				21.0
Thur.	17	05	Jupiter 5° N. of Antares	23 00	2.0
		14	Jupiter 0.8° N. of Uranus		2.0
Fri.	18	22	Venus 0.5° S. of Mars	(21.0
Sat.	19				25.0
Sun.	20	17 32	First Quarter	19 50	25.0 <u>IV III I II</u>
Mon.	21				2.0
Tues.	22		Mercury at aphelion		22.0
Wed.	23			16 40	
Thur.	24				38.0
Fri.	25	22	Moon at perigee (360,200 km)		30.0
Sat.	26			13 30	3.0
Sun.	27	08 58	() Full Moon		32.0/(/
Mon.	28				
			L		
1		-	1		

¹Visible in the south of S. America

THE SKY FOR MARCH 1983

The Sun—During March, the sun's R.A. increases from 22 h 45 m to 0 h 39 m and its Decl. changes from $-7^{\circ}53'$ to $+4^{\circ}14'$. The equation of time changes from -12 m 28 s to -4 m 20 s. On Mar. 21, at 4 h 39 m U.T., the sun reaches the vernal equinox, and spring begins in the northern hemisphere.

The Moon—On Mar. 1.0 U.T., the age of the moon is 16.0 d. The sun's selenographic colongitude is 107.03° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Mar. 3 (7°) and Mar. 31 (6°) and minimum (east limb exposed) on Mar. 18 (5°). The libration in latitude is maximum (north limb exposed) on Mar. 15 (7°) and minimum (south limb exposed) on Mar. 28 (7°).

Mercury on the 1st is in R.A. 21 h 33 m, Decl. $-16^{\circ}31'$, and on the 15th is in R.A. 23 h 02 m, Decl. $-8^{\circ}30'$. It is too close to the sun to be seen.

Venus on the 1st is in R.A. 0 h 29 m, Decl. $+2^{\circ}13'$, and on the 15th it is in R.A. 1 h 32 m, Decl. $+9^{\circ}21'$, mag. -3.4, and transits at 14 h 04 m. It continues to move further up in the south-western sky at sunset, dominating the otherwise-barren region of Pisces. Venus is gradually moving east relative to the sun. The angle of the ecliptic to the horizon is also steepening. The prominence of Venus is due to these two factors (and to its great brilliance, of course).

Mars on the 15th is in R.A. 0 h 51 m, Decl. $+5^{\circ}03'$, mag. +1.5, and transits at 13 h 23 m. It is low in the west at sunset, and sets about 2 hours later. It is closing in on the sun, and by next month will be lost in the glow of twilight.

Jupiter on the 15th is in R.A. 16 h 37 m, Decl. $-21^{\circ}10'$, mag. -1.8, and transits at 5 h 08 m. It rises before midnight, and is low in the south-western sky by sunrise. On March 28, it is stationary, and begins to move westward.

Saturn on the 15th is in R.A. 14 h 09 m, Decl. $-10^{\circ}13'$, mag. +0.5, and transits at 2 h 41 m. It rises in mid-evening, and is very low in the south-west by sunrise.

Uranus on the 15th is in R.A. 16 h 30 m, Decl. $-21^{\circ}43'$, mag. +5.9, and transits at 5 h 01 m.

Neptune on the 15th is in R.A. 17 h 56 m, Decl. $-22^{\circ}12'$, mag. +7.8, and transits at 6 h 27 m.

Occultations of Planets by the Moon. On Apr. 2, Jupiter is occulted by the moon. This event is visible in parts of North America. In 1983, there are 19 occultations of planets by the moon, a rather good crop. All planets except Mars and Pluto will be occulted at some time during 1983. Four of the occultations will be visible from some part of North America.

The series of occultations of Neptune ends on Mar. 7, as the moon's orbit swings south of Neptune (see page 24 of last year's HANDBOOK). A series of occultations of Uranus begins on Oct. 10, the first one being visible from the North Pacific.

Μ

1983			MARCH UNIVERSAL TIME	Min. of Algol	Config. of Jupiter's Satellites
	d	hm		h m 10 10	⁴ ₩ E
Tues.				10 10	1.0
Wed.	$\begin{vmatrix} 2\\ 3 \end{vmatrix}$	06	Saturn 1.7° S. of Moon		2.0
Thur.		00	Saturn 1.7 S. Of Mioon	7 00	3.0
Fri.	5	ļ		100	·
Sat.	6	00	Uranus 1.8° S. of Moon		5.0
Sun.	0	00	Jupiter 1.0° S. of Moon; occultation ¹		
		13 16	C Last Quarter		
Mon.	7	17	Neptune 1.0° N. of Moon; occultation ²	3 50	
Tues.	8	1/	Neptune 1.0 N. of Woon, occutation	5.50	8.0
Wed.	9	23	Moon at apogee (405,400 km)		5.0
Thur.	10	25	Wooll at apogee (405,400 km)	0 40	10.0
Fri.	11			040	11.0
Sat.	12			21 30	12.0
Sat. Sun.	12			21 50	13.0
Mon.	14	13	Uranus stationary		11.0
WIOII.	14	17 43	New Moon		15.0
Tues.	15	17 45	Mercury at greatest hel. lat. S.	18 20	
Wed.	16	02	Vesta 0.3° S. of Moon; occultation	10 20	
weu.	10	02	Mars 5° N. of Moon		17.0
Thur.	17	06	Venus 5° N. of Moon		18.0
Fri.	18		venus 5 TV. of Moon	15 10	19.0
Sat.	19		Venus at ascending node	15 10	20.0
Sun.	20		venus at ascending node		21.0
Mon.	21	04 39	Vernal equinox; Spring begins	12 00	2.0
Tues.	$\frac{21}{22}$	02 25) First Quarter		
Wed.	23	02 23			
Thur.	24			8 50	
Fri.	25	22	Moon at perigee (365,400 km)		8.0
Sat.	26	11	Mercury in superior conjunction		8.0
Sun.	27			5 40	2.1
Mon.	28	01	Jupiter stationary		28.0
		19 27	(1) Full Moon		29.0
Tues.	29				30.0
Wed.	30	14	Saturn 1.5° S. of Moon	2 30	31.0
Thur.	31	-			32.0

¹Visible in N. and E. Europe, Asia ²Visible in Antarctica

THE SKY FOR APRIL 1983

The Sun—During April, the sun's R.A. increases from 0 h 39 m to 2 h 31 m and its Decl. changes from $+4^{\circ}14'$ to $+14^{\circ}50'$. The equation of time changes from -4 m 02 s to +2 m 45 s.

The Moon—On Apr. 1.0 U.T., the age of the moon is 17.3 d. The sun's selenographic colongitude is 124.58° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Apr. 28 (5°) and minimum (east limb exposed) on Apr. 13 (5°). The libration in latitude is maximum (north limb exposed) on Apr. 11 (7°) and minimum (south limb exposed) on Apr. 24 (7°). On Apr. 2, there is an occultation of Jupiter by the moon, visible from parts of North America.

Mercury on the 1st is in R.A. 1 h 01 m, Decl. $+6^{\circ}07'$, and on the 15th is in R.A. 2 h 38 m, Decl. $+17^{\circ}39'$. Early in the month, it is too close to the sun to be seen, but by Apr. 21, it reaches greatest elongation east (20°). This is a favourable elongation: the planet stands about 16° above the western horizon at sunset. On Apr. 9, Mercury is 1.4° north of Mars.

Venus on the 1st is in R.A. 2h 50 m, Decl. $+17^{\circ}02'$, and on the 15th it is in R.A. 3h 58 m, Decl. $+21^{\circ}55'$, mag. -3.5, and transits at 14h 28 m. Moving from Aries into Taurus, it is well up in the west at sunset, and sets about 3 hours later.

Mars on the 15th is in R.A. 2 h 19 m, Decl. $+13^{\circ}46'$, mag. +1.6, and transits at 12 h 48 m. Early in the month, it may be seen with difficulty, very low in the west at sunset, but by the end of the month, it is too close to the sun to be seen. See also "Mercury" above.

Jupiter on the 15th is in R.A. 16 h 36 m, Decl. $-21^{\circ}06'$, mag. -2.0, and transits at 3 h 05 m. It rises in mid-evening, and is low in the south-west at sunrise. It is occulted by the moon on Apr. 2.

Saturn on the 15th is in R.A. 14h 02 m, Decl. $-9^{\circ}28'$, mag. +0.4, and transits at 0 h 31 m. It rises just after sunset and is setting at sunrise, being in opposition to the sun on Apr. 21.

Uranus on the 15th is in R.A. 16 h 28 m, Decl. $-21^{\circ}39'$, mag. +5.8, and transits at 2 h 57 m.

Neptune on the 15th is in R.A. 17 h 56 m, Decl. $-22^{\circ}11'$, mag. +7.7, and transits at 4 h 25 m.

Venus Joins the "Winter Six". As the winter constellations appear to gradually swing westward, Venus moves eastward to join them. Venus is now in Taurus, and these, along with the stars of Orion, Auriga, Gemini, Canis Minor and Canis Major, dominate the western sky. In the middle of the month, the crescent moon adds to the beauty of the scene.

In the springtime, sunset rapidly becomes later each evening and the winter constellations slip all too quickly into the dusk. Enjoy them now, before it's too late!

Μ

			T	T	
				Min.	Config. of
			APRIL	of	Jupiter's
1983			UNIVERSAL TIME	Algol	Satellites
		T			
	d	h m		h m	0.0 W E
Fri.	1	05	Neptune stationary	23 20	
Sat.	2	09	Uranus 1.6° S. of Moon		2.1
		13	Jupiter 0.6° S. of Moon; occultation ¹		
Sun.	3		Mercury at ascending node		
Mon.	4	01	Neptune 1.3° N. of Moon	20 10	1.1
Tues.	5	08 38	C Last Quarter		5.0
Wed.	6	18	Moon at apogee (404,400 km)		6.0
Thur.	7		Mercury at perihelion	16 50	···
Fri.	8				LI
Sat.	9	12	Mercury 1.4° N. of Mars		,
Sun.	10	19	Uranus 5° N. of Antares	13 40	
Mon.	11				
Tues.	12				11.0
Wed.	13	07 58	🕲 New Moon	10 30	12.0
Thur.	14	15	Mercury 6° N. of Moon		13.0
		18	Vesta in conjunction		11.0
Fri.	15		5		15.0
Sat.	16	07	Venus 4° N. of Moon	7 20	16.0
Sun.	17				12.0
Mon.	18		Mercury at greatest hel. lat. N.		W. (()
	1.0	18	Pluto at opposition		18.0
Tues.	19			4 10	19,0
Wed.	20	08 58	First Quarter		20.0
Thur.	21	00.00	Venus at perihelion		7.0
			Mars at ascending node		2.1
		08	Moon at perigee (369,700 km)	ļ	23.0
		08	Mercury greatest elong. E. (20°)		
		19	Saturn at opposition		
Fri.	22		Venus 7° N. of Aldebaran	1 00	8.0 11 11 11
1 11.		22	Lyrid meteor shower		26.0
Sat.	23	22			27.1
Sun.	$\frac{23}{24}$			21 50	28.0
Mon.	25			21 50	2.1
Tues.		19	Saturn 1.6° S. of Moon		30.0
Wed.	27	06 31	© Full Moon	18 40	
Weu. Thur.	28	00 51			
Fri.	20 29	17	Uranus 1.5° S. of Moon	1	x.,
гп.	29	17	Jupiter 0.6° S. of Moon; occultation ²]	
Sat	30	17	Jupiter 0.0 5. or wooll, occuration	15 30	
Sat.	30			15 50	
				1	l

¹Visible in the N. Pacific, N. and Central America, the north of S. America ²Visible in Asia, the E. Indies, and the N. Pacific

THE SKY FOR MAY 1983

The Sun—During May, the sun's R.A. increases from 2 h 31 m to 4 h 33 m and its Decl. changes from $+14^{\circ}50'$ to $+21^{\circ}57'$. The equation of time changes from +2 m 53 s to +2 m 28 s, reaching a maximum on May 14.

The Moon—On May 1.0 U.T., the age of the moon is 17.7 d. The sun's selenographic colongitude is 130.49° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on May 24 (5°) and minimum (east limb exposed) on May 10 (6°). The libration in latitude is maximum (north limb exposed) on May 8 (7°) and minimum (south limb exposed) on May 21 (7°).

Mercury on the 1st is in R.A. 3 h 30 m, Decl. $+21^{\circ}29'$, and on the 15th is in R.A. 3 h 11 m, Decl. $+16^{\circ}47'$. Very early in the month, it may be seen very low in the western sky (near the Pleiades). Binoculars would help. During the rest of the month, it is too close to the sun to be seen. It passes inferior conjunction on May 12.

Μ

Venus on the 1st is in R.A. 5 h 18 m, Decl. $+25^{\circ}13'$, and on the 15th it is in R.A. 6 h 28 m, Decl. $+25^{\circ}49'$, mag. -3.7, and transits at 15 h 00 m. Moving from Taurus into Gemini, it continues to dominate the western sky at sunset. Watch it as it moves past Castor and Pollux; it is 4° south of Pollux on May 31.

Mars on the 15th is in R.A. 3 h 45 m, Decl. $+20^{\circ}06'$, mag. +1.6, and transits at 12 h 16 m. It is too close to the sun to be seen.

Jupiter on the 15th is in R.A. 16 h 24 m, Decl. $-20^{\circ}41'$, mag. -2.1, and transits at 0 h 55 m. It rises shortly after sunset and is setting at sunrise, being in opposition to the sun on May 27. On May 16, it is 0.8° north of Uranus. This is another excellent opportunity to look for Uranus, especially if you have never done so before. Binoculars would help.

Saturn on the 15th is in R.A. 13 h 53 m, Decl. $-8^{\circ}44'$, mag. +0.5, and transits at 22 h 21 m. It rises shortly before sunset and sets before sunrise. In May and June, it continues to move westward, toward Spica. This "retrograde motion" is due to the motion of the earth in its orbit, as it passes between Saturn and the Sun.

Uranus on the 15th is in R.A. 16 h 24 m, Decl. $-21^{\circ}30'$, mag. +5.8, and transits at 0 h 55 m. On May 29, it is at opposition, at a distance of 17.933 astronomical units from the earth. It is less than 1° south of Jupiter on May 16.

Neptune on the 15th is in R.A. 17 h 55 m, Decl. $-22^{\circ}10'$, mag. +7.7, and transits at 2 h 26 m.

1983			MAY UNIVERSAL TIME	Min. of Algol	Config. of Jupiter's Satellites
Sun. Mon. Tues. Wed. Thur. Fri. Sat.	d 1 2 3 4 5 6 7		Neptune 1.5° N. of Moon Mercury stationary Moon at apogee (404,200 km) η Aquarid meteor shower (© Last Quarter Jupiter 6° N. of Antares Pallas stationary	h m 12 20 9 10	dist W E 1.2
Sun. Mon. Tues.	8 9 10			5 50	8.0
Wed. Thur.	11 12	17 19 25	Mercury at descending node Mercury in inferior conjunction Wew Moon	2 40	18.0 11.0 12.0
Fri. Sat. Sun.	13 14 15		Venus at greatest hel. lat. N.	23 30	13.8
Mon. Tues. Wed.	16 17 18	13 16	Venus 1.5° N. of Moon Jupiter 0.8° N. of Uranus Moon at perigee (367,500 km)	20 20	16.8 17.3 19.3
Thur. Fri. Sat.	19 20 21 22	14 17	First QuarterMercury at aphelion	17 10	20.0
Sun. Mon. Tues. Wed.	22 23 24 25	23 23	Saturn 1.8° S. of Moon Mercury stationary	14 00	2).1 21.1 21.1 21.1 21.1 21.1
Thur.	26	18 48 21 23	⁽²⁾ Full Moon Jupiter 0.8° S. of Moon; occultation ¹ Uranus 1.6° S. of Moon	10 50	25.0 27.0 7.0
Fri. Sat. Sun. Mon. Tues.	27 28 29 30 31	22 16 01 05	Jupiter at opposition Neptune 1.6° N. of Moon Uranus at opposition Venus 4° S. of Pollux	7 40	73.0 31.0 7.1 7.3
17.71					L

¹Visible in Europe, N.E. Africa, Asia

THE SKY FOR JUNE 1983

The Sun—During June, the sun's R.A. increases from 4 h 33 m to 6 h 38 m and its Decl. changes from $+21^{\circ}57'$ to $+23^{\circ}10'$. The equation of time changes from +2 m 19 s to -3 m 29 s. On June 21, at 23 h 09 m U.T., the sun reaches the summer solstice, and summer begins in the northern hemisphere. There is a total eclipse of the sun on June 11, visible along a path stretching from the middle of the Indian Ocean, through Indonesia into the Pacific Ocean.

The Moon—On June 1.0 U.T., the age of the moon is 19.2 d. The sun's selenographic colongitude is 149.04° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on June 20 (6°) and minimum (east limb exposed) on June 7 (6°). The libration in latitude is maximum (north limb exposed) on June 4 (7°) and minimum (south limb exposed) on June 17 (7°). On June 24–25, there is a partial eclipse of the moon, visible in Australia and in the Americas. On June 9, there is an occultation of Mercury by the moon, visible from parts of North America.

Μ

Mercury on the 1st is in R.A. 3 h 06 m, Decl. $+13^{\circ}31'$, and on the 15th is in R.A. 3 h 57 m, Decl. $+17^{\circ}36'$. It reaches greatest elongation west (24°) on June 8, but this is not a favourable elongation. The planet is too low in the sky to be seen with ease.

Venus on the 1st is in R.A. 7 h 48 m, Decl. $+23^{\circ}44'$, and on the 15th it is in R.A. 8 h 47 m, Decl. $+20^{\circ}07'$, mag. -3.9, and transits at 15 h 16 m. Moving from Gemini into Cancer, it continues to dominate the western sky at sunset. On June 16, it reaches greatest elongation east (45°). Warning: within a few weeks, Venus will no longer be visible! It swings *rapidly* back toward the sun. The increasingly shallow angle of the ecliptic to the horizon does not help matters, either.

Mars on the 15th is in R.A. 5 h 18 m, Decl. $+23^{\circ}37'$, mag. +1.7, and transits at 11 h 46 m. It is too close to the sun to be seen, being in conjunction on June 3.

Jupiter on the 15th is in R.A. 16 h 08 m, Decl. $-20^{\circ}04'$, mag. -2.1, and transits at 22 h 33 m. It is low in the south-east at sunset, and sets after midnight. Moving westward from Ophiuchus into Scorpius, it passes near β Sco (see map in the "Planets" section).

Saturn on the 15th is in R.A. 13 h 48 m, Decl. $-8^{\circ}18'$, mag. +0.7, and transits at 20 h 13 m. It is due south at sunset, and sets at about midnight.

Uranus on the 15th is in R.A. 16 h 18 m, Decl. $-21^{\circ}17'$, mag. +5.8, and transits at 22 h 44 m. Early in the month, it moves from Ophiuchus into Scorpius.

Neptune on the 15th is in R.A. 17 h 51 m, Decl. $-22^{\circ}10'$, mag. +7.7, and transits at 0 h 20 m. On June 19, it is at opposition, at a distance of 29.251 astronomical units from the earth.

				r	
1983			JUNE UNIVERSAL TIME	Min. of Algol	Config. of Jupiter's Satellites
Wed. Thur. Fri.	d 1 2 3		Moon at apogee (404,700 km) Mars in conjunction © Last Quarter	h m 4 30	1.1 E
Sat.	4			1 10	5.1
Sun. Mon.	5			22 00	6.1
Tues. Wed. Thur. Fri.	7 8 9 10	06 10	Mercury greatest elong. W. (24°) Mercury 0.8° S. of Moon; occultation ¹	18 50	
Sat. Sun. Mon.	11 12 13	04 37 06	Mercury at greatest hel. lat. S. New Moon; eclipse of Sun, pg. 74 Moon at perigee (362,500 km)	15 40	
Tues. Wed.	14 15	11	Venus 1.5° S. of Moon	12 30	15.0
Thur. Fri. Sat.	16 17 18	07 19 46	Venus greatest elong. E. (45°) » First Quarter	9 20	v.ı
Sun. Mon. Tues.	19 20 21	17 03 06 23 09	Neptune at opposition Saturn 2° S. of Moon Mercury 4° N. of Aldebaran Summer solstice; summer begins	6 10	13.1 21.1 2.1
Wed. Thur. Fri. Sat.	22 23 24 25	21 03 22 08 32	Jupiter 1.2° S. of Moon; occultation ² Uranus 1.7° S. of Moon Neptune 1.5° N. of Moon ⁽²⁾ Full Moon; eclipse of Moon. pg. 74	3 00	2.1 8.1 [V] 1 [I] [I] 5.1
Sat. Sun. Mon.	23 26 27	00 52	• I un moon, conpse of moon. pg. 74	23 40	2.1
Tues. Wed.	28 29	06 23	Ceres stationary Moon at apogee (405,700 km)	20 30	
Thur.	30		Mercury at ascending node		x.

¹Visible in eastern N. America, N. Atlantic, Greenland, Arctic, N. Europe and N. Asia ²Visible only in the Arctic

THE SKY FOR JULY 1983

The Sun—During July, the sun's R.A. increases from 6 h 38 m to 8 h 42 m and its Decl. changes from $+23^{\circ}10'$ to $+18^{\circ}13'$. The equation of time changes from -3 m 41 s to -6 m 21 s, reaching a minimum on July 26. On July 6, the earth is at aphelion, at a distance of 152,103,000 km (94,512,000 mi) from the sun.

The Moon—On July 1.0 U.T., the age of the moon is 19.8 d. The sun's selenographic colongitude is 155.68° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on July 17 (7°) and minimum (east limb exposed) on July 5 (7°). The libration in latitude is maximum (north limb exposed) on July 2 (7°) and July 29 (7°) and minimum (south limb exposed) on July 15 (7°).

Mercury on the 1st is in R.A. 5 h 53 m, Decl. $+23^{\circ}34'$, and on the 15th is in R.A. 8 h 03 m, Decl. $+22^{\circ}16'$. Throughout the month, it is too close to the sun to be seen, being in superior conjunction on July 9.

Venus on the 1st is in R.A. 9 h 43 m, Decl. $+14^{\circ}41'$, and on the 15th it is in R.A. 10 h 19 m, Decl. $+9^{\circ}35'$, mag. -4.2, and transits at 14 h 48 m. Early in the month, it is low in the western sky at sunset, but by the end of the month, it is too close to the sun to be seen. On July 9, it passes 0.7° south of Regulus. On July 19, it attains greatest brilliancy $(-4^{m}2)$. At this time, seen through a small telescope, it would appear as a crescent, about 40 arc seconds in size. See also "Venus" last month.

Mars on the 15th is in R.A. 6 h 46 m, Decl. $+23^{\circ}49'$, mag. +1.8, and transits at 11 h 16 m. It is too close to the sun to be seen.

Jupiter on the 15th is in R.A. 15 h 58 m, Decl. $-19^{\circ}41'$, mag. -2.0, and transits at 20 h 25 m. It is low in the south at sunset, and sets about 5 hours later. On July 29, it is stationary; thereafter, it resumes its normal eastward motion relative to the background stars.

Saturn on the 15th is in R.A. 13 h 47 m, Decl. $-8^{\circ}24'$, mag. +0.9, and transits at 18 h 15 m. At sunset, it is west of south, and it sets about 4 hours later. On July 2, it is stationary; thereafter, it resumes its normal eastward motion relative to the background stars.

Uranus on the 15th is in R.A. 16 h 14 m, Decl. $-21^{\circ}08'$, mag. +5.8, and transits at 20 h 42 m.

Neptune on the 15th is in R.A. 17 h 48 m, Decl. $-22^{\circ}09'$, mag. +7.7, and transits at 22 h 15 m.

Angular Distances in the Sky. In "The Sky Month by Month", you will often see reference to angular distances in the sky. For instance, on July 9, Venus passes 0.7° south of Regulus, and on July 13, Venus passes 6° south of the moon. You can visualize these angles more easily if you remember the following. (1) The moon and sun are both 0.5° in diameter. (2) With your arm fully outstretched, your little finger is 1° wide and your fist is 10° wide. (3) The bowl of the Big Dipper is 5° high and 10° wide; the entire Big Dipper is 25° long.

Μ

1983				JULY UNIVERSAL TIME	Min. of Algol	Config. of Jupiter's Satellites
.	d	h	m		h m	e
Fri. Sat.	1 2			Saturn stationary	17.20	1.0
Sat. Sun.	3		12		17 20	2.0
Mon.	4		12	Mercury at perihelion		3.0
Tues.	5				14 10	1.0
Wed.	6			Earth at aphelion	14 10	5.0
Thur.	7					5.0 — / / / / / / / / / / / / / / / / / /
Fri.	8			Venus at descending node	11 00	7.0
		06		Pallas at opposition		
Sat.	9	16		Mercury in superior conjunction		9.0
		23		Venus 0.7° S. of Regulus		10.0
Sun.	10	/	18	log New Moon		
Mon.	11	10		Moon at perigee (358,600 km)	7 50	12.0
Tues.	12					
Wed.	13			Venus 6° S. of Moon		
Thur.	14 15	08		Pluto stationary	4 40	
Fri. Sat.	15			Mercury at greatest hel. lat. N.		
Sat. Sun.	17	02 5	:n	First Quarter	1 20	
Jun.	11	02	~	Saturn 2° S. of Moon	1 20	17.0
Mon.	18	07		Suturn 2 S. of Moon		18.0
Tues.	19	15		Venus greatest brilliancy (-4 ^m 2)	22 10	19.0
		23		Jupiter 1.4° S. of Moon		20.0
Wed.	20	07		Uranus 1.7° S. of Moon		21.0
Thur.	21					2.1 - / - / - /
Fri.	22	02		Neptune 1.5° N. of Moon	19 00	2.1
Sat.	23					21.0
Sun.	24	23 2	7	🕲 Full Moon		3.0
Mon.	25	07			15 50	35.0 <u>IV III 1 1</u>
	26	07		Moon at apogee (406,300 km)		2.0
	27 28				12 40	28.0
		04		South δ Aquarid meteor shower	12 40	29.0
		13		Jupiter stationary		38.0
at.	30	15		supror surround y		37.0
	~~		- 1		9 30	XML \

THE SKY FOR AUGUST 1983

The Sun—During August, the sun's R.A. increases from 8 h 42 m to 10 h 39 m and its Decl. changes from $+18^{\circ}13'$ to $+8^{\circ}34'$. The equation of time changes from -6 m 18 s to -0 m 26 s.

The Moon—On August 1.0 U.T., the age of the moon is 21.5 d. The sun's selenographic colongitude is 174.55° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Aug. $14(8^{\circ})$ and minimum (east limb exposed) on Aug. 2 (7°) and Aug. 31 (7°). The libration in latitude is maximum (north limb exposed) on Aug. 25 (7°) and minimum (south limb exposed) on Aug. 11 (7°).

Mercury on the 1st is in R.A. 10 h 07 m, Decl. $+12^{\circ}32'$, and on the 15th is in R.A. 11 h 16 m, Decl. $+3^{\circ}25'$. Although it reaches greatest elongation east (27°) on Aug. 19, this is an unfavourable elongation. The planet is barely 10° above the horizon at sunset, and could only be seen with great difficulty. On Aug. 1, it passes 0.4° north of Regulus.

Venus on the 1st is in R.A. 10 h 38 m, Decl. $+4^{\circ}20'$, and on the 15th it is in R.A. 10 h 25 m, Decl. $+2^{\circ}25'$, mag. -3.7, and transits at 12 h 50 m. It is too close to the sun to be seen. On Aug. 25, it is in inferior conjunction.

Mars on the 15th is in R.A. 8 h 13 m, Decl. $+20^{\circ}58'$, mag. +1.9, and transits at 10 h 41 m. Throughout the month, it moves rapidly west, relative to the sun. By mid-month, it rises about 2 hours before the sun, and stands about 20° above the eastern horizon at sunrise. It moves from Gemini into Cancer during the month, passing 6° south of Pollux on Aug. 4.

Jupiter on the 15th is in R.A. 15 h 58 m, Decl. $-19^{\circ}50'$, mag. -1.8, and transits at 18 h 24 m. It is west of south at sunset, and sets about 4 hours later.

Saturn on the 15th is in R.A. 13 h 52 m, Decl. $-9^{\circ}01'$, mag. +0.9, and transits at 16 h 18 m. It is low in the south-west at sunset, and sets about $2\frac{1}{2}$ hours later.

Uranus on the 15th is in R.A. 16 h 13 m, Decl. $-21^{\circ}04'$, mag. +5.9, and transits at 18 h 38 m.

Neptune on the 15th is in R.A. 17 h 45 m, Decl. $-22^{\circ}09'$, mag. +7.7, and transits at 20 h 11 m.

The Joys of August. August is a good month for stargazing. The nights are warm, but are beginning to get longer. Many observers find themselves cottaging or camping, far from city lights.

One of the treats of August is the Perseid meteor shower. This year, it occurs a few days after new moon, so that by midnight, meteors can be seen against a dark sky. Not completely dark, of course, because the Milky Way stretches across the August sky, arching overhead at midnight. Try scanning along the Milky Way with binoculars, stopping to look at star clouds and star clusters.

Earlier in the evening, the crescent moon is a pretty sight, along with Jupiter and Saturn. Try to find Uranus; it is only a few degrees away from Jupiter (see maps in the "Planets" section).

M

1983			AUGUST UNIVERSAL TIME	Min. of Algol	Config. of Jupiter's Satellites
Maa	d	· · · · · ·		h m	e
Mon.	1	02	Mercury 0.4° N. of Regulus Venus stationary		
Tues.	2	00 52			
Wed.	3			6 20	3.0
Thur.			Mars 6° S. of Pollux		1.0
Fri.	5				5.0
Sat.	6	06	Mercury 6° N. of Venus	3 10	6.0
Sun.	7		Mercury at descending node		7.0
		12	Mars 1.8° S. of Moon		8.0
Mon.	8	19	Moon at perigee (363,500 km)	23 50	9.0 - / (()
		19 18	Wew Moon		10.0
Tues.	9				
Wed.	10	01	Venus 12°S. of Moon		
		11	Mercury 6° S. of Moon		
Thur.	11			20 40	13.0
Fri.	12		Venus at aphelion		11.0
-		19	Perseid meteor shower		15.0
Sat.	13	18	Saturn 1.9° S. of Moon		16.0
Sun.	14		Ceres at opposition	17 30	".·
		08	Uranus stationary		1.0
Mon.	15	12 47	D First Quarter		19.0
Tues.	16		Jupiter 1.3° S. of Moon		20.0
		13	Uranus 1.6° S. of Moon		
Wed.	17	07	Mercury at aphelion	14 20	
Thur.	18	07	Neptune 1.5° N. of Moon		
Fri.	19	16	Mercury greatest elong. E. (27°)	11.10	2.1
Sat.	20 21			11 10	21.0
Sun. Mon.	$\frac{21}{22}$	09	Maan at anagaa (406,200 km)		8.1
Tues.	22	14 59	Moon at apogee (406,300 km)	8 00	26.0 IV 1 III
Wed.	23	14 39		0.00	27.0
Thur.	25	05	Venus in inferior conjunction		2.1
Fri.	23 26	05	venus in interior conjunction	4 40	2.0
Sat.	27			4 40	38.0
Sun.	28				37.0
Mon.		20	Pallas stationary	1 30	×
Tues.	30		r unus stationary	1 50	
Wed.		11 22	C Last Quarter	22 20	

THE SKY FOR SEPTEMBER 1983

The Sun—During September, the sun's R.A. increases from 10 h 39 m to 12 h 27 m and its Decl. changes from $+8^{\circ}34'$ to $-2^{\circ}53'$. The equation of time changes from -0 m 07 s to +9 m 52 s. On Sept. 23, at 14 h 42 m U.T., the sun reaches the autumnal equinox, and autumn begins in the northern hemisphere.

The Moon—On September 1.0 U.T., the age of the moon is 23.2 d. The sun's selenographic colongitude is 193.20° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Sept. 12 (8°) and minimum (east limb exposed) on Sept. 27 (6°). The libration in latitude is maximum (north limb exposed) on Sept. 21 (7°) and minimum (south limb exposed) on Sept. 7 (7°). On Sept. 12, there is an occultation of Jupiter by the moon, visible from parts of North America.

Mercury on the 1st is in R.A. 11 h 56 m, Decl. $-3^{\circ}52'$, and on the 15th is in R.A. 11 h 29 m, Decl. $-0^{\circ}21'$. Throughout most of the month, it is too close to the sun to be seen (it passes inferior conjunction on Sept. 15), but the situation rapidly improves at the end of the month. At this time, the planet is approaching a favourable greatest elongation west, and stands about 16° above the eastern horizon at sunrise.

Venus on the 1st is in R.A. 9 h 47 m, Decl. $+4^{\circ}27'$, and on the 15th it is in R.A. 9 h 33 m, Decl. $+7^{\circ}17'$, mag. -4.1, and transits at 9 h 58 m. Early in the month, it is too close to the sun to be seen, but by mid-month, it is well up in the east at sunrise. This elongation west, like that of Mercury discussed above, is extremely favourable, because of the steep angle of the ecliptic to the horizon. On Sept. 14, Venus passes 9° south of Mars. You might wonder: how can the

On Sept. 14, Venus passes 9° south of Mars. You might wonder: how can the separation of the planets be as large as 9°, almost the width of the bowl of the Big Dipper? The explanation is as follows. The orbit of Venus is tilted by 3.4° relative to the orbit of the earth. On Sept. 3, Venus is at the extreme southerly position in its orbit ("greatest heliocentric latitude south"). At the same time, Venus is on the near side of the sun, less than 0.4 astronomical units from earth. As a result of these factors, Venus 8° south of the ecliptic.

Mars on the 15th is in R.A. 9 h 34 m, Decl. $+15^{\circ}45'$, mag. +2.0, and transits at 9 h 59 m. Moving from Cancer into Leo (near Venus; see "Venus" above), it is well up in the east at sunrise. It passes 0.9° north of Regulus on Sept. 28.

Jupiter on the 15th is in R.A. 16 h 10 m, Decl. $-20^{\circ}29'$, mag. -1.6, and transits at 16 h 34 m. It is low in the south-west at sunset, and sets about 3 hours later. On Sept 12, it is occulted by the moon, and on Sept. 24, it passes 0.4° north of Uranus.

Saturn on the 15th is in R.A. 14h02m, Decl. $-10^{\circ}02'$, mag. +0.9, and transits at 14h 27 m. It is low in the west at sunset, and sets about 2 hours later.

Uranus on the 15th is in R.A. 16 h 14 m, Decl. $-21^{\circ}09'$, mag. +5.9, and transits at 16 h 38 m. Late in the month, it moves from Scorpius back into Ophiuchus, where it remains for the rest of the year. It is only 0.4° south of Jupiter on Sept. 24.

Neptune on the 15th is in R.A. 17 h 45 m, Decl. $-22^{\circ}11'$, mag. +7.7, and transits at 18 h 08 m.

1983	- -	1	SEPTEMBER UNIVERSAL TIME	Min. of Algol	Config. of Jupiter's Satellites
	d	h m	1	h m	4 E
Thur.	1		Mercury stationary		1.0
Fri.	2				2.0
Sat.	3		Venus at greatest hel. lat. S.	19 10	3.0
Sun.	45		20.0 ()/		
Mon.	2		Mars 3° S. of Moon		5.0
T		14	Venus 13° S. of Moon	16.00	\mathbb{R}
Tues.	6	05	Moon at perigee (358,400 km)	16 00	(\mathbf{p})
Wed.	7	00.00	Mercury at greatest hel. lat. S.		···
		02 35			8.0
(1)		20	Mercury 10° S. of Moon		3.0
Thur.	8	12	Neptune stationary		10.0
Fri.	9	07		12 50	11.0 <u>IV II II</u>
Sat.	10	07	Saturn 1.7° S. of Moon		12.0
Sun.	11	10		0.40	no AR
Mon.	12		Jupiter 0.9° S. of Moon; occultation ¹	9 40	
T	112	21	Uranus 1.3° S. of Moon		
Tues.	13	02.24	D First Outstan		15.0
Wed.	14				16.0
		08 14	Venus stationary		17.0
		14	Neptune 1.7° N. of Moon Venus 9° S. of Mars		18.0
Thur.	15		Mercury in inferior conjunction	6 20	19.8
Fri.	16	10	Mercury in interior conjunction	0 20	20.0
Sat.	17	8			8.1
Sat. Sun.	18	17	Moon at apogee (405,700 km)	3 10	2.1
Mon.	10	17	Moon at apogee (403,700 km)	5 10	
Tues.	20		-		
Wed.	20			0.00	
Thur.	$\frac{21}{22}$	06 36	© Full Moon; Harvest Moon		2.1
ri.		14 42	Autumnal equinox; autumn begins	20 50	8.1
Sat.	24	01	Mercury stationary	20 50	2.1
bal.	24	03	Juno stationary		2.1
		22	Jupiter 0.4° N. of Uranus		2.1
un.	25				31.1
Alon.	26		Mercury at ascending node	17 40	3
ues.	27			17 -0	
Ved.	28	21	Mars 0.9° N. of Regulus		
hur.		20 05	C Last Quarter	14 30	
ri.	30	20 05	Mercury at perihelion	14 50	
			stern N America Greenland N Atlantic N		

¹Visible in northeastern N. America, Greenland, N. Atlantic, N. Africa, Europe

THE SKY FOR OCTOBER 1983

The Sun—During October, the sun's R.A. increases from 12 h 27 m to 14 h 22 m and its Decl. changes from $-2^{\circ}53'$ to $-14^{\circ}10'$. The equation of time changes from +10 m 12 s to +16 m 21 s.

The Moon—On October 1.0 U.T., the age of the moon is 23.9 d. The sun's selenographic colongitude is 199.24° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Oct. 10 (7°) and minimum (east limb exposed) on Oct. 24 (5°). The libration in latitude is maximum (north limb exposed) on Oct. 18 (7°) and minimum (south limb exposed) on Oct. 4 (7°).

Mercury on the 1st is in R.A. 11 h 23 m, Decl. $+5^{\circ}15'$, and on the 15th is in R.A. 12 h 40 m, Decl. $-2^{\circ}17'$. Early in the month, it stands about 16° above the eastern horizon at sunrise. It reaches greatest elongation west (18°) on Oct. 1, and this is a favourable elongation. By the end of the month, it is too close to the sun to be seen; it reaches superior conjunction on Oct. 30.

Venus on the 1st is in R.A. 9 h 52 m, Decl. $+8^{\circ}34'$, and on the 15th it is in R.A. 10 h 30 m, Decl. $+7^{\circ}24'$, mag. -4.2, and transits at 8 h 58 m. It rises about 3 hours before the sun, and is well up in the south-east at sunrise. In Leo, it passes 4° south of Regulus on Oct. 7, and passes 1.7° south of Mars on Oct. 28. It attains greatest brilliancy $(-4^{m}3)$ on Oct. 1. At this time, it would appear as a crescent in a small telescope. The partial illumination is more than compensated by the small distance of Venus from the earth.

Mars on the 15th is in R.A. 10 h 45 m, Decl. $+9^{\circ}21'$, mag. +1.9, and transits at 9 h 13 m. It rises about 3 hours before the sun, and is well up in the south-east at sunrise. In Leo, it passed close to Regulus on Sept. 28, and is in conjunction with Venus on Oct. 28. Of these three objects, Venus is by far the brightest and Mars is by far the reddest.

Incidentally, do you know how to find the autumnal equinox in the sky? It is midway between Regulus and Spica (slightly closer to Spica).

Jupiter on the 15th is in R.A. 16 h 30 m, Decl. $-21^{\circ}22'$, mag. -1.4, and transits at 14 h 56 m. It is very low in the south-west at sunset, and sets about 2 hours later.

Saturn on the 15th is in R.A. 14 h 15 m, Decl. $-11^{\circ}12'$, mag. +0.8, and transits at 12 h 41 m. Early in the month, it may be seen, with very great difficulty, low in the south-west at sunset, but by the end of the month, it is too close to the sun to be seen. It is in conjunction with the sun on Oct. 31.

Uranus on the 15th is in R.A. 16 h 19 m, Decl. $-21^{\circ}21'$, mag. +6.0, and transits at 14 h 45 m.

Neptune on the 15th is in R.A. 17 h 46 m, Decl. $-22^{\circ}13'$, mag. +7.8, and transits at 16 h 12 m.

Μ

1983					OCTOBER UNIVERSAL TIME	Min. of Algol	Config. of Jupiter's Satellites
Sat.	d	1	h 07 10	m	Venus greatest brilliancy (-4.3) Mercury greatest elong. W. (18°)	h m	1.8 - W E
Sun.		2				11 20	2.0
Mon.			07		Venus 9° S. of Moon		3.0
			16		Mars 4° S. of Moon		1.0
Tues.	4		11		Moon at perigee (362,400 km)		5.0
Wed.			03		Mercury 4° S. of Moon	8 10	6.0
Thur.			11 1	6	New Moon		2.0
Fri.			07		Venus 4° S. of Regulus		
			13		Ceres stationary		D111
			23		Saturn 1.4° S. of Moon		9.0
Sat.	8					4 50	10.0(
Sun.	g					. 50	n.o
Mon.	10)8		Uranus 1.0° S. of Moon; occultation ¹		12.0
	1.0		1		Jupiter 0.4° S. of Moon; occultation ²		13.0
Tues.	111	1.7	-		Mercury at greatest hel. lat. N.	1 40	11.0
1405.	1		22		Neptune 2° N. of Moon	1 40	15.0
Wed.	12				reptune 2 11, of Moon		15.0
Thur.	12)1		Jupiter 5° N. of Antares	22 30	16.0
1	1.0		94) First Quarter	22 50	17.0
Fri.	14			-			18.0
Sat.	15	1					19.0
Sun.	16		8		Moon at apogee (404,900 km)	19 20	20.0
Mon.	17	ľ	•			17 20	2.9
Tues.	18						
Wed.	19					16 10	
Thur.	20						2.1
Fri.	21	2	1 53	3	Full Moon; Hunters' Moon		8.0 (
• • • •		2		-	Orionid meteor shower		2.0
Sat.	22	-				13 00	26.0
Sun.	23			1	Mars at greatest hel. lat. N.	15 00	27.0
Jun.	25	1	1		Pluto in conjunction		21.0
Mon.	24	0			Juno at opposition		2.1
Tues.	25	12	-		Vesta stationary	9 50	
Wed.	$\frac{25}{26}$	14	2		vesta stationary	9.50	
Thur.	27						31.0
Fri.	28	13	2		Venus 1.7° S. of Mars	6 30	32.0 / \/A
Sat.	29		, 3 37		(Last Quarter	0.50	
Sun.	30	0.	, ,,		Venus at ascending node		
,un.	50	17	,		Aercury in superior conjunction		
Aon.	31				Saturn in conjunction	3 20	
				_	N Pagific	1 5 20	L

¹Visible only in the N. Pacific ²Visible in southern Europe, N. Africa, Saudi Arabia, S.E. Asia, the Indian Ocean and the East Indies

THE SKY FOR NOVEMBER 1983

The Sun—During November, the sun's R.A. increases from 14 h 22 m to 16 h 26 m and its Decl. changes from $-14^{\circ}10'$ to $-21^{\circ}41'$. The equation of time changes from +16 m 24 s to +11 m 30 s, reaching a maximum on Nov. 3.

The Moon—On November 1.0 U.T., the age of the moon is 25.5 d. The sun's selenographic colongitude is 216.99° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Nov. 6 (6°) and minimum (east limb exposed) on Nov. 19 (5°). The libration in latitude is maximum (north limb exposed) on Nov. 14 (7°) and minimum (south limb exposed) on Nov. 1 (7°) and Nov. 28 (7°)

Mercury on the 1st is in R.A. 14 h 26 m, Decl. $-14^{\circ}10'$, and on the 15th is in R.A. 15 h 54 m, Decl. $-21^{\circ}33'$. Throughout the month, it is too close to the sun to be seen.

Venus on the 1st is in R.A. 11 h 29 m, Decl. $+3^{\circ}34'$, and on the 15th it is in R.A. 12 h 24 m, Decl. $-1^{\circ}02'$, mag. -4.0, and transits at 8 h 50 m. It rises about 4 hours before the sun, and is well up in the south-east at sunrise. During the month, it moves from Leo into Virgo, passing 4° north of Spica on Nov. 29. On Nov. 4, it is at greatest elongation west (47°), and this is a favourable elongation.

Mars on the 15th is in R.A. 11 h 55 m, Decl. $+2^{\circ}10'$, mag. +1.8, and transits at 8 h 20 m. It rises about 5 hours before the sun, and is high up in the south-east at sunrise. During the month, it also moves from Leo into Virgo. It appears to the west of Venus, which is considerably brighter and less red than Mars.

Jupiter on the 15th is in R.A. 16 h 57 m, Decl. $-22^{\circ}15'$, mag. -1.4, and transits at 13 h 21 m. It is too close to the sun to be seen.

Saturn on the 15th is in R.A. 14 h 29 m, Decl. $-12^{\circ}25'$, mag. +0.8, and transits at 10 h 54 m. It is too close to the sun to be seen.

Uranus on the 15th is in R.A. 16 h 26 m, Decl. $-21^{\circ}38'$, mag. +6.0, and transits at 12 h 50 m.

Neptune on the 15th is in R.A. 17 h 50 m, Decl. $-22^{\circ}15'$, mag. +7.8, and transits at 14 h 14 m.

Observing Variable Stars. This year, in case you have not already noticed, we have made some changes in the "Variable Stars" section of this HANDBOOK. We have replaced the "Star of the Year" feature with a set of simple instructions on variable star observing. These were kindly provided by Janet A. Mattei, of the American Association of Variable Star Observers.

November is a good month for observing variable stars. Three of the most famous variables: Mira (o Ceti), Algol (β Persei) and δ Cephei are well placed for observing. Charts for these stars are included in the "Variable Stars" section of this HANDBOOK. Variable star observing is easy, interesting and worthwhile. Try it – you'll like it!

Μ

1983				NOVEMBER UNIVERSAL TIME	Min. of Algol	Config. of Jupiter's Satellites
Tues.	d 1			Moon at perigee (367,800 km) Mars 4° S. of Moon Venus 5° S. of Moon	h m	4 - W E
Wed.	2					3.0
Thur.	3	1		Mercury at descending node	0 10	··· / X
		00		South Taurid meteor shower	0.10	5.0
Fri.	4	1		Venus greatest elong. W. (47°)		6.0 <u>IV I II III</u>
			21	Wew Moon		· · · · · · · · · · · · · · · · · · ·
Sat.	5			-	21 00	
Sun.	6	20		Uranus 0.7° S. of Moon; occultation ¹		
Mon.	7	07		Jupiter 0.2° N. of Moon; occultation ²		
Tues.	8	09		Neptune 2° N. of Moon	17 50	10.0
Wed.	9					"
Thur.	10					12.0
Fri.	11				14 40	13.0
Sat.	12	15	49) First Quarter		11.0 A
Sun.	13			Mercury at aphelion		15.0
		03		Moon at apogee (404,400 km)	11.00	16.0
Mon.	14				11 30	17.0
Tues. Wed.	15 16		ĺ			18.0
Wea. Thur.	17				8 20	19.0
Fri.	18	06		Leonid meteor shower	0 20	20.0
Sat.	19	00		Leonid meteor shower		
Sun.	20	04		Mercury-1.8° S. of Uranus	5 10	
Juii.	20	07		Mercury 3° N. of Antares	5 10	
		12 2		© Full Moon		2.1
Mon.	21					
Fues.	22					a
Wed.	23				1 50	× · · · · · · · · · · · · · · · · · · ·
Thur.	24					2.1
Fri.	25				22 40	21.1
Sat.	26	02		Moon at perigee (369,800 km)		23.0 ()
		06		Mercury 3° S. of Jupiter		30.0
Sun.	27	10 5	50	C Last Quarter		л.о
Mon.	28				19 30	32.0
ues.	29	15		Venus 4° N. of Spica		
		15		Mars 4° S. of Moon		
Ved.	30	21		Mars at aphelion		
		21 the 1		Venus 2° S. of Moon		

¹Visible in the N. Atlantic and northeastern S. America ²Visible in E. Africa, the Indian Ocean and Australasia

THE SKY FOR DECEMBER 1983

The Sun—During December, the sun's R.A. increases from 16 h 26 m to 18 h 42 m and its Decl. changes from $-21^{\circ}41'$ to $-23^{\circ}05'$. The equation of time changes from +11 m 08 s to -2 m 48 s. On Dec. 22, at 10 h 30 m U.T., the sun reaches the winter solstice, and winter begins in the northern hemisphere. On Dec. 4, there is an annular eclipse of the sun, visible as such along a path extending from the middle of the North Atlantic Ocean, through Central Africa.

The Moon—On December 1.0 U.T., the age of the moon is 26.1 d. The sun's selenographic colongitude is 222.08° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Dec. 3 (5°) and Dec. 30 (6°) and minimum (east limb exposed) on Dec. 17 (6°). The libration in latitude is maximum (north limb exposed) on Dec. 12 (7°) and minimum (south limb exposed) on Dec. 25 (7°). On Dec. 19–20, there is a penumbral eclipse of the moon, visible in the Americas (among other places). On Dec. 29, there is an occultation of Saturn by the moon, visible from parts of North America.

Mercury on the 1st is in R.A. 17 h 38 m, Decl. $-25^{\circ}41'$, and on the 15th is in R.A. 18 h 57 m, Decl. $-24^{\circ}34'$. Though technically an evening "star", it remains too low in the sky to be seen. This is due to its extreme southerly declination (25°). Greatest elongation east (21°) occurs on Dec. 13, and inferior conjunction occurs on Dec. 31.

Venus on the 1st is in R.A. 13 h 30 m, Decl. $-7^{\circ}07'$, and on the 15th it is in R.A. 14 h 32 m, Decl. $-12^{\circ}27'$, mag. -3.7, and transits at 9 h 00 m. It rises about 3 hours before the sun, and stands about 30° above the south-eastern horizon at sunrise. On Dec. 17, it is a scant 0.2° north of Saturn. By the end of the month, it begins to close in on the sun again, and is not so easily seen.

Mars on the 15th is in R.A. 12 h 59 m, Decl. $-4^{\circ}34'$, mag. +1.6, and transits at 7 h 26 m. In Virgo, it rises after midnight and is due south at sunrise. It is 4° north of Spica on Dec. 27.

Jupiter on the 15th is in R.A. 17 h 26 m, Decl. $-22^{\circ}52'$, mag. -1.3, and transits at 11 h 52 m. It is too close to the sun to be seen, being in conjunction on Dec. 14.

Saturn on the 15th is in R.A. 14 h 42 m, Decl. $-13^{\circ}25'$, mag. +0.8, and transits at 9 h 09 m. It has emerged from behind the sun, and is now prominent in the early morning sky. It rises about 3 hours before the sun, and stands almost 30° above the south-eastern horizon at sunrise. It is now in Libra, and passes about 2° north of Zubenelgenubi at the end of the month. Note the occultation of Saturn by the moon on Dec. 29.

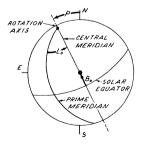
Uranus on the 15th is in R.A. 16 h 34 m, Decl. $-21^{\circ}55'$, mag. +6.0, and transits at 11 h 00 m. On Dec. 2, it is in conjunction with the sun.

Neptune on the 15th is in R.A. 17 h 54 m, Decl. $-22^{\circ}16'$, mag. +7.8, and transits at 12 h 20 m. On Dec. 21, it is in conjunction with the sun.

Μ

1983			DECEMBER UNIVERSAL TIME	Min. of Algol	Config. of Jupiter's Satellites
Thur. Fri.	d 1 2	03 04	Venus at perihelion Uranus in conjunction Saturn 0.9° S. of Moon; occultation ¹	h m 16 20	e.a E 1.1 2.0 3.1
_		23	Juno stationary		•••
Sat.	3		Mercury 4°S. of Neptune		5.0
Sun.	4		Mercury at greatest hel. lat. S.	13 10	6.0
Mam	5	12 26	New Moon; eclipse of Sun. pg. 74 Neptune 2° N. of Moon		2.0
Mon. Tues.	6		Mercury 0.9° S. of Moon; occultation ²		
Wed.	7	05	Mercury 0.9 S. of Moon, occurtation	10 00	9.0
Thur.	8			10 00	10.0
Fri.	9	1			11.0
Sat.	10	1		6 50	12.0
Sun.	11		Moon at apogee (404,700 km)		13.0
Mon.	12				19.0
Tues.	13	10	Vesta at opposition	3 40	15.0
		21	Mercury greatest elong. E. (21°)		16.0
Wed.	14	13	Jupiter in conjunction		
	1	18	Geminid meteor shower		
Thur.	15				NA NA
Fri.	16			0 30	15.1
Sat.	17	11	Venus 0.2° N. of Saturn		20.0
Sun.	18			21 20	R.1
Mon.	19	00 00			2.0
Tues. Wed.	20 21	02 00 10	© Full Moon; eclipse of Moon, pg. 74	10 10	
wea.	21	20	Neptune in conjunction	18 10	29.0 <u>IV</u> III (II 1
Thur.	22	10 30	Mercury stationary Winter solstice; winter begins		25.0
I nui .	22	10 50	Moon at perigee (364,900 km)		25.1
Fri.	23	10	Mercury at ascending node		p.1
	23	00	Ursid meteor shower		28.1
Sat.	24	00	Venus at greatest hel. lat. N.	14 50	8.0
Sun.	25		venus al greatest nell nat. 11.		33.4
Mon.	26	18 52	C Last Quarter		
Fues.	27		Mercury at perihelion	11 40	
		08	Mars 4° N. of Spica		
Wed.	28	00	Mars 3° S. of Moon		
Thur.	29	16	Saturn 0.6° S. of Moon; occultation ³		
Fri.	30	19	Venus 0.7° N. of Moon; occultation ⁴	8 30	
Sat.	31	08	Mercury in inferior conjunction		
			Uranus 0.4° S. of Moon; occultation ⁵		

¹Visible in northeastern Europe, Asia ²Visible in E. Asia and the N. Pacific ³Visible in the N. Pacific, N. and Central America and northern S. America ⁴Visible in Australasia, the S. Pacific, Antarctica, and southern S. America ⁵Visible only in the N. Pacific


SUN EPHEMERIS

Date	Apparent 1983	Transit at	
O ^h ut	RA Dec	Greenwich UT	P B _o L _o
Jan 1 6 11 16 21 26 31	h m o / 18 43.5 -23 04 19 05.5 -22 35 19 27.3 -21 55 19 48.9 -21 05 20 10.3 -20 04 20 31.3 -18 54 20 51.9 -17 36	h m s 12 03 24 12 05 41 12 07 47 12 09 40 12 11 14 12 12 30 12 13 25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Feb 5 10 15 20 25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 14 00 12 14 16 12 14 12 12 13 50 12 13 10	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Mar 2 7 12 17 22 27	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	12 12 16 12 11 10 12 09 55 12 08 32 12 07 04 12 05 33	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Apr 1 6 11 16 21 26	0 39.3 + 4 14 0 57.6 + 6 09 1 15.9 + 8 01 1 34.3 + 9 50 1 52.9 +11 35 2 11.7 +13 15	12 04 02 12 02 34 12 01 11 11 59 55 11 58 48 11 57 52	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
May 1 6 11 16 21 26 31	2 30.6 +14 50 2 49.8 +16 19 3 09.2 +17 41 3 28.9 +18 55 3 48.8 +20 01 4 08.9 +20 59 4 29.2 +21 48	11 57 07 11 56 37 11 56 20 11 56 18 11 56 30 11 56 55 11 57 32	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Jun 5 10 15 20 25 30	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	11 58 20 11 59 16 12 00 18 12 01 23 12 02 27 12 03 29	-14.2 -0.2 354.7 -12.2 +0.4 288.6 -10.1 +1.0 222.4 - 7.9 +1.6 156.2 - 5.7 +2.2 90.0 - 3.4 +2.7 23.8
Jul 5 10 15 20 25 30	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	12 04 25 12 05 14 12 05 52 12 06 16 12 06 27 12 06 23	- 1.1 +3.3 317.6 + 1.1 +3.8 251.5 + 3.4 +4.3 185.3 + 5.6 +4.8 119.1 + 7.7 +5.2 53.0 + 9.8 +5.6 346.8

 \odot

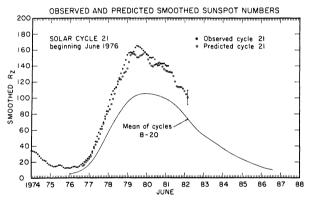
Date	Appar		Transit at	Or	ientat	ion
O ^h UT	198 RA	Dec	Greenwich UT	Р	B,	Lø
Aug 4 9 14 19 24 29	h m 8 54.1 9 13.3 9 32.2 9 50.9 10 09.4 10 27.7	0 / +17 27 +16 05 +14 36 +13 02 +11 23 + 9 39	h m s 12 06 05 12 05 31 12 04 44 12 03 42 12 02 27 12 01 02	0 +11.8 +13.7 +15.5 +17.2 +18.7 +20.2	0 +6.0 +6.3 +6.6 +6.8 +7.0 +7.1	0 280.7 214.6 148.5 82.4 16.3 310.3
Sep 3	10 45.9	+ 7 51	11 59 29	+21.4	+7.2	244.2
8	11 04.0	+ 6 00	11 57 49	+22.6	+7.2	178.2
13	11 21.9	+ 4 06	11 56 05	+23.6	+7.2	112.2
18	11 39.9	+ 2 11	11 54 18	+24.5	+7.2	46.1
23	11 57.8	+ 0 14	11 52 31	+25.2	+7.0	340.1
28	12 15.8	- 1 43	11 50 48	+25.7	+6.9	274.2
Oct 3	12 33.9	- 3 39	11 49 10	+26.1	+6.6	208.2
8	12 52.1	- 5 35	11 47 41	+26.3	+6.4	142.2
13	13 10.4	- 7 28	11 46 22	+26.3	+6.0	76.2
18	13 29.0	- 9 20	11 45 16	+26.1	+5.7	10.3
23	13 47.9	-11 07	11 44 24	+25.8	+5.2	304.3
28	14 07.0	-12 51	11 43 50	+25.2	+4.8	238.4
Nov 2	14 26.4	-14 30	11 43 35	+24.5	+4.3	172.5
7	14 46.2	-16 03	11 43 40	+23.5	+3.8	106.5
12	15 06.3	-17 29	11 44 06	+22.4	+3.2	40.6
17	15 26.7	-18 47	11 44 53	+21.0	+2.6	334.7
22	15 47.5	-19 58	11 46 01	+19.5	+2.0	268.8
27	16 08.7	-20 59	11 47 28	+17.8	+1.4	202.9
Dec 2	16 30.1	-21 50	11 49 14	+16.0	+0.8	137.0
7	16 51.9	-22 31	11 51 16	+13.9	+0.2	71.1
12	17 13.8	-23 01	11 53 31	+11.8	-0.5	5.2
17	17 35.9	-23 20	11 55 54	+ 9.6	-1.1	299.4
22	17 58.1	-23 26	11 58 22	+ 7.2	-1.8	233.5
27	18 20.3	-23 22	12 00 51	+ 4.8	-2.4	167.6
32	18 42.4	-23 05	12 03 17	+ 2.4	-3.0	101.8

P is the position angle of the axis of rotation, measured eastward from the north point on the disk. B_0 is the heliographic latitude of the centre of the disk, and L_0 is the heliographic longitude of the centre of the disk, from Carrington's solar meridian, measured in the direction of rotation (see diagram). The rotation period of the sidereal period of rotation at the equator is 25.38^d.

SUNDIAL CORRECTION

The "Transit at Greenwich" time (pages 46 and 47) may be used to calculate the sundial correction at the observer's position. e.g. To find the correction at Winnipeg on August 16, 1983: At Greenwich the Sun transits at $12^{h}04^{m}44^{s}$ on August 14 and at $12^{h}03^{m}42^{s}$ on August 19. Thus, to the nearest minute, on August 16 at both Greenwich and Winnipeg the Sun will transit at $12^{h}04^{m}$ mean solar time, or $12^{h}33^{m}$ CST, since Winnipeg has a longitude correction of $+29^{m}$ (See page 52). Thus a 4^{m} correction must be added to the reading of a simple sundial to obtain mean solar time.

A figure accurate to a second or two can be obtained by interpolating for longitude. The interpolated transit time at Greenwich for August 16 is $12^{h}04^{m}19^{s}$, the daily change in the time being $-12^{s}4$. Adjusting this for the longitude of Winnipeg: $12^{h}04^{m}19^{s} - (12^{s}4 \times 6^{h}29^{m} \div 24^{h}) = 12^{h}04^{m}16^{s}$. Thus the sundial correction is $4^{m}16^{s}$. To find the standard time of the Sun's transit to the nearest second or two, the observer's longitude must be known to 10'' or better. e.g. Suppose an observer in Winnipeg is at longitude $97^{\circ}13'50''$ W, or $6^{h}28^{m}55^{s}$ W of Greenwich. The time of transit will be $12^{h}04^{m}16^{s} + 28^{m}55^{s} = 12^{h}33^{m}11^{s}$ CDT).


\mathbf{D}	DATES OF COMMENCEMENT (UT, $L_0 = 0^\circ$) OF NUMBERED SYNODIC ROTATIONS (CARRINGTON'S SERIES)								
	No.	Commences	No.	Commences	No.	Commences			
	1730 1731 1732 1733 1734	1982 Dec 22.84 1983 Jan 19.17 Feb 15.52 Mar 14.84 Apr 11.14	1735 1736 1737 1738 1739	May 8.39 Jun 4.60 Jul 1.80 Jul 29.00 Aug 25.24	1740 1741 1742 1743 1744	Sep 21.50 Oct 18.78 Nov 15.08 Dec 12.40 1984 Jan 8.73			

 \odot

SOLAR ACTIVITY SUNSPOTS, FLARES, AND AURORAE

BY V. GAIZAUSKAS

The present sunspot cycle (21) is compared with the mean of cycles 8 to 20 in the diagram adapted from "Solar-Geophysical Data" (U.S. Dept. of Commerce, Boulder, Colorado). The data plotted in the graph are monthly smoothed relative sunspot numbers from Zürich. The vertical bar defines the interval in which the most recent value in the graph can be predicted with a confidence of 90%. These *smoothed* data indicate that the maximum of the cycle occurred in the interval December 1979 – January 1980. Another measure of solar activity is the 10 cm microwave flux which has been monitored daily since 1947 by the National Research Council of Canada (Covington, A.E. 1967, J. Roy. Astron. Soc. Can., 61, 314). The 10 cm flux correlates closely with sunspot number and has the advantage of being reproducible without subjective bias by an observer.

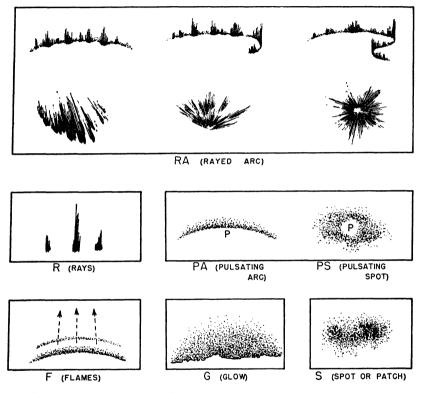
Solar activity was sustained at unexpectedly high levels during 1981 and the early months of 1982. The abatement of activity throughout April and May 1982 seemed to signal the beginning of the long-awaited declining phase. Instead, a spectacular outburst of activity in the early weeks of June 1982 set records for Cycle 21: the largest sunspot group (in fact, the biggest in 25 years); the greatest total emission of X-rays from flares erupting in a single region. Successive eleven-year peaks of sunspot activity follow long-term trends which can in extreme cases result in prolonged periods of very low activity (Eddy, J.A. 1976, *Science, 192*, 1189; 1977, *Scientific Am., 236*, 80). We are at an opposite extreme; Cycle 21 has the second highest peak of this century, exceeded only by Cycle 19 (maximum at 1957.9).

The resurgence of solar activity in mid-1982 means that amateurs who observe sunspots* may still find it worthwhile in 1983 to keep a watch for white light flares (Pike, R. 1974, *J. Roy. Astron. Soc. Can.*, 68, 330). Five or six white light flares are estimated to occur each year during a few years around peak sunspot activity. These rare events are visible in the solar photosphere for a few minutes at most and are not to be confused with long-enduring "light bridges" or bright facular patches adjacent to sunspots. White light flares one or more intensely bright and compact structures (a few arc-sec or less) during the explosive phase of highly energetic flares.

^{*}Editor's Note: Some of the hazards in viewing the sun and some effective safety precautions are discussed by B. Ralph Chou (J. Roy. Astron. Soc. Can., 75, 36, 1981; Sky and Telescope, 62, 119, 1981).

They are most likely to occur in complex, rapidly-evolving sunspot groups with many closely-packed umbrae enclosed by a single penumbra. Forewarning of such energetic events may be given for several hours by a realignment of penumbral filaments or a major increase in penumbral size.

The likely occurrence in 1983 of a few episodes of high solar activity holds the promise that some brilliant auroral displays may consequently be observed in the southern, populous parts of Canada. Aurorae ("Northern Lights") are caused by the precipitation into the ionosphere of energetic charged particles from a vast reservoir enveloping Earth, the *magnetosphere*. Seen from above (e.g. from the Canadian ISIS satellites) aurorae are concentrated in elliptical bands called *auroral ovals* that ring Earth's magnetic poles. When the Sun is calm, the ovals shrink to nearly circular rings centred close to the geomagnetic poles. As the Sun grows more active, the ovals advance towards lower latitudes (e.g. in Canada to Churchill, Man. and to Yellowknife, N.W.T.) and become more eccentric with respect to the geomagnetic poles. During periods of very intense solar activity, the ovals shift closer still towards the Equator (e.g. down to the Southern United States for the northern oval). For an observer at the ground, the shifting patterns of the aurora over the night sky reflect the changes in the magnetic and electric fields along the paths of electrons streaming toward Earth.


The magnetospheric reservoir of particles is created by a complicated interaction between Earth's magnetic field and the *solar wind*, a magnetized plasma that flows steadily from the Sun even in the absence of solar activity. When a major solar flare erupts, the normal balance between the solar wind and the magnetosphere can be violently disturbed and can lead to an *auroral sub-storm*. Not every large solar flare will have this effect. Many factors, only partially understood, come into play: the location of the flare in relation to large-scale magnetic structures at the Sun; the state of the interplanetary magnetic field; the transfer of energy from any blast wave accompanying the flare to the magnetosphere; etc.

 \odot

The atoms and molecules, mostly those of oxygen and nitrogen, that radiate the shimmering light of the aurora are terrestrial in origin. They become luminous at heights between 100 and 400 km through collisions with energetic particles that have leaked out of the magnetosphere during a sub-storm. A faint auroral display may not exceed the brightness threshold of colour perception for the eye; it will be sensed as white. Most aurorae appear green or blue-green with occasional faint patches of pink or red. The green colour is due to excited atoms of oxygen radiating at a wavelength of 558 nm; the blue is produced by ionized nitrogen molecules radiating in a group of spectral bands between 391 and 470 nm. The green and blue emissions are concentrated near an altitude of 100 km. Excited atoms of oxygen also produce a red aurora (630 nm) that originates at greater heights, 300 to 400 km, and is normally faint (because of the low concentration of oxygen at that altitude) unless the influx of particles is very great. Red emission also occurs at lower altitudes, near 100 km, from excited nitrogen molecules radiating in a series of bands between 650 and 680 nm.

HA (HOMOGENEOUS ARC)

Illustrative sketches of standard auroral forms. This simplified classification emphasizes the fundamental features of auroral patterns and minimizes variations which depend on the location of the observer.

TIMES OF SUNRISE AND SUNSET

The tables on pages 53 to 55 give the times of sunrise and sunset at four day intervals for places ranging from 20° to 60° north latitude. "Rise" and "set" correspond to the upper limb of the Sun appearing at the horizon for an observer at sea level. The values are in UT and are for the Greenwich meridian, although for North American observers the stated values may be read as standard time at the standard meridians (60° , 75° , *etc.*) without significant error. The values may be interpolated linearly for both non-tabular latitudes and dates. Also, it is possible to extrapolate the table beyond the 20° and 60° latitude limits a few degrees without significant loss of accuracy.

The standard time of an event at a particular location must take account of the observer's longitude relative to his or her standard meridian. The table below lists the latitude and the longitude correction (in minutes of time) for a number of cities and towns. e.g. To find the time of sunrise at Toronto on February 19, 1983: The latitude is 44°, and from the table the time of sunrise at 0° longitude is 06:54 UT. Thus at the Eastern time zone (E) meridian (75° west), the time of sunrise will be approximately 06:54 EST. The correction for Toronto is + 18 minutes, so sunrise will occur at 07:12 EST on that date. Corrections for places not listed below may be found by converting the difference between the longitude of the place and that of its standard meridian, to time (15° = 1 h), the correction being positive if the place is west of its standard meridian, negative if east. Finally, it should be emphasized that the observed time will often difference in height between the observer and the actual horizon.

 (\cdot)

	CANAI	DIAN CIT	ES AND TOWNS			AMERICAN CITIES		
-	Lat.	Corr.		Lat.	Corr.		Lat.	Corr.
Baker Lake	64°	+24C	Peterborough	44°	+13E	Atlanta	34°	+37E
Brandon	50	+40C	Prince Albert	53	+63C	Baltimore	39	+06E
Calgary	51	+36M	Prince George	54	+11P	Birmingham	33	-13C
Charlottetown	46	+12A	Prince Rupert	54	+41P	Boston	42	-16E
Chicoutimi	48	-16E	Quebec	47	-15E	Buffalo	43	+15E
Churchill	59	+17C	Regina	50	+58C	Chicago	42	-10C
Corner Brook	49	+22N	Resolute	75	+20C	Cincinnati	39	+38E
Cornwall	45	-01E	Rimouski	48	-26E	Cleveland	42	+26E
Edmonton	54	+34M	St. Catharines	43	+17E	Dallas	33	+27C
Fredericton	46	+27A	St. Hyacinthe	46	-08E	Denver	40	00M
Gander	49	+08N	St. John, N.B.	45	+24A	Fairbanks	65	-10A
Goose Bay	53	+02A	St. John's, Nfld.	48	+01N	Flagstaff	35	+27M
Granby	45	-09E	Sarnia	43	+29E	Indianapolis	40	-15C
Halifax	45	+14A	Saskatoon	52	+67C	Juneau	58	+58P
Hamilton	43	+20E	Sault Ste. Marie	47	+37E	Kansas City	39	+18C
Kapuskasing	49	+30E	Sept Iles	50	-35E	Los Angeles	34	-07P
Kenora	50	+18C	Sherbrooke	45	-12E	Louisville	38	-17C
Kingston	44	+06E	Sudbury	47	+24E	Memphis	35	00C
Kitchener	43	+22E	Sydney	46	+01A	Miami	26	+21E
Lethbridge	50	+31M	The Pas	54	+45C	Milwaukee	43	-09C
London	43	+25E	Thunder Bay	48	+57E	Minneapolis	45	+13C
Medicine Hat	50	+23M	Timmins	48	+26E	New Orleans	30	00C
Moncton	46	+19A	Toronto	44	+18E	New York	41	-04E
Montreal	46	-06E	Trail	49	-09P	Omaha	41	+24C
Moosonee	51	+23E	Trois Rivieres	46	-10E	Philadelphia	40	+01E
Moose Jaw	50	+62C	Vancouver	49	+12P	Phoenix	33	+28M
Niagara Falls	43	+16E	Victoria	48	+13P	Pittsburgh	40	+20E
North Bay	46	+18E	Whitehorse	61	00Y	St. Louis	39	+01C
Ottawa	45	+03E	Windsor, Ont.	42	+32E	San Francisco	38	+10P
Owen Sound	45	+24E	Winnipeg	50	+29C	Seattle	48	+09P
Pangnirtung	66	+23A	Yarmouth	44	+24A	Tucson	32	+24M
Penticton	49	-02P	Yellowknife	62	+38M	Washington	39	+08E

		1			
0。	SET	h H 15 01 15 05 15 22 15 22 15 23 15 24 15 24 15 25 15 25 15 15 25 15 15 15 15 15 15 15 15 15 15 15 15 15	16 18 16 29 16 39 16 30 17 10 17 21	17 31 17 41 17 51 18 01 18 11 18 20 18 30 18 30	18 50 19 59 19 29 19 29 19 39 19 39 19 39
+60°	RISE	в 20 20 20 20 20 20 20 20 20 20	7 7 7 7 7 8 01 7 7 7 29 06 06	6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 5 18 5 06 4 4 4 5 06 4 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13
÷	SET	h н 115545 115549 11600 11600 1620 1620 1636	16 44 16 52 17 00 17 28 17 24 17 32	17 40 17 48 17 55 18 03 18 10 18 18 18 25 18 33	18 40 18 48 19 03 19 10 19 18 19 25
+54°	RISE	н ^н 8888888 77888888 778888 7788 77 758 77 758 77 758 77 758 77 758 77 77 758 77 758 77 757 75	7 29 7 29 7 29 6 55	6 26 6 26 6 16 6 16 7 34 7 7 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	5 27 5 17 5 17 4 4 9 31 31
+50°	SET	h m 16 06 16 06 16 19 16 19 16 30 16 33 16 33 16 50	16 57 17 04 17 10 17 17 17 24 17 31 17 31	17 51 17 51 17 58 18 04 18 10 18 10 18 23 18 23	18 36 18 42 18 48 18 54 19 01 19 07 19 13
+ S	RISE	н 58 7 7 7 7 58 7 47 7 47 37 37 37	7 32 7 19 7 19 6 57 6 49	6 41 6 32 6 15 6 15 6 05 5 58 5 49 5 49	55 55 32 55 23 50 58 58 58 58 58 58 58 58 58 58 58 58 58
°4	SET	h m 16 30 16 33 16 33 16 33 16 31 16 51 16 51 17 01 17 07	17 12 17 18 17 23 17 29 17 29 17 40 17 45	17 50 17 55 18 00 18 05 18 10 18 15 18 25 18 25	18 30 18 35 18 35 18 35 18 44 18 49 18 54 18 54
+ 44°	RISE	р р р р р р р р р р р р р р	7 16 7 11 7 06 6 54 6 48 6 41	5 5 5 9 6 6 2 3 5 5 5 9 6 6 2 3 5 5 9 6 6 2 2 8 5 5 9 6 6 2 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	5 33 5 16 5 10 4 57
	SET	h II 16 43 16 45 16 49 16 53 16 53 17 02 17 02 17 11 17 16	17 21 17 26 17 30 17 40 17 49	17 53 17 58 18 02 18 06 18 10 18 10 18 10 18 13 18 23	18 27 18 31 18 31 18 35 18 35 18 43 18 47 18 47 18 51
+40°	RISE	h II 7 22 7 22 7 19 11 11	6 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 25 6 19 5 5 30 6 10 7 47 7 47 7 47 7 47 7 47 7 47 7 47 7 4	5 34 5 23 5 16 5 16 5 05 16 5 05 5 16 5 05 5 05 5 05 5 05 5 05 5 05 5 05 5 0
5°	SET	h m 16 57 17 00 17 00 17 00 17 10 17 14 17 18 17 22 17 22	17 30 17 34 17 38 17 42 17 46 17 50	17 57 18 00 18 04 18 07 18 10 18 10 18 17 18 17 18 17 18 20	18 25 18 26 18 30 18 33 18 33 18 33 18 39 18 42
+35°	RISE	h 7 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 58 6 55 6 47 6 42 6 33 8 23 8 23 8 23 8 23 8 23 8 23 8 23 8	6 28 6 17 6 17 5 55 6 00 5 49	5 5 23 5 28 5 18 5 18 13 5 18 5 18 5 18 5 18 5 18 5 18 5 18 5 18
+30°	SET	h m 17 09 17 12 17 12 17 12 17 23 17 23 17 23 17 23	17 38 17 45 17 45 17 45 17 51 17 51 17 57	18 00 18 05 18 05 18 05 18 05 18 10 18 13 18 15 18 13	18 20 18 23 18 23 18 25 18 25 18 32 18 32 18 32 18 32
+3	RISE	ь	6 50 6 44 6 44 6 33 6 33 6 29	6 25 6 20 6 15 6 11 6 11 6 01 5 56 5 51	5 5 33 5 24 5 23 5 24 5 24 5 24 5 24 5 24
+20°	SET	ь 17 33 17 33 17 33 17 33 17 33 17 33 17 33 17 40 17 43 17 43 17 43 17 43 17 43	17 53 17 55 17 55 17 59 17 59 18 01 18 03 18 04	18 06 18 07 18 08 18 09 18 11 18 12 18 13 18 13 18 13 18 13	18 15 18 16 18 16 18 17 18 17 18 20 18 20 18 21 18 22
+	RISE	66553333 66555333 66555333 66555333 665553 66555 6653 6653 6653 6653 6653 6653 6653 6653 6653 6653 6653 6653 6653 6653 6653 6653 6653 7655 7655	6 33 6 25 6 22 6 22 7 7 6 23 6 23 7 6 23 7 6 23 7 6 23 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6 19 6 16 7 25 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7	8555555 84555555 8455555 83655555 836555555 855555555 855555555 85555555555
	'ENT	3062218406 22 3082218406 22	2339511 7 3	323395117 31223995117 31223995117 31223995117 31223995117 31223995117 31223995117 31223995117 31223995117 31223995117 31223995117 31223995117 31223995117 312339517 312339517 3123395117 3123395117 3123395117 3123395117 31	480296284
LAT	EVE	Jan.	Feb.	Mar.	Apr.

SUN

	1				
0	SET	р 19 59 19 59 19 59 19 59 19 59 19 59 10 50 50 10 50 50 50 50 50 50 50 50 50 5	21 10 21 10 21 21 21 25 21 25 21 27 21 28 21 27	221 22 221 22 221 12 221 11 220 57 20 39 20 39	
+60°	RISE	53008-1263455 ^H	33552222 38652222 38652222 38652222	222252525 2222625252 2222625252 2222625252 2222525252 22252525 2225252 2225252 2225252 2225252 2225252 2225252 2225252 225552 225552 225552 2255552 2255552 2255555 2255555 2255555 2255555 2255555 2255555 2255555 2255555 2255555 2255555 2255555 2255555 22555555	
L	RI	4.000000000	ининин	00000000	
۰.	SET	рания 119 20 00 220 00 220 00 119 40 220 00 220 00 200 2	20 23 20 34 20 35 20 35 20 35 20 35 20 35	20 33 20 33 20 31 20 11 20 11 20 05 20 0 20 0	
+54°	RISE	32453809153a	58272833	0025443332 0025443332	
	RI	₽444 <i>wwww</i>			
0	SET	h H 19 19 25 19 31 19 33 19 43 19 53 19 53	20 13 220 05 220 05 220 05 220 13 20 10 10 10 10 10 10	19 220 06 09 13 19 230 13 19 230 06 09 13 19 230 06 05 13 19 230 06 05 13 19 23 12 13 19 23 12 13 19 23 19 23 19 23 19 23 19 23 19 23 12 13 19 23 12 12 13 12 12 12 12 12 12 12 12 12 12 12 12 12	19 42 19 35 19 29 19 21 19 06 18 58 18 58
+50°	RISE	2828125333B	225055335	272005152 212005152	
	RI	₽4444440	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	 ww444444	 44444400
0	SET	р 11 11 12 12 13 13 14 14 15 15 14 14 14 14 14 14 14 14 14 14 14 14 14	19 46 19 46 19 46 19 46 19 46 19 46	19999444 1933334444 283334444	19 23 19 13 19 01 18 54 18 48 18 48 18 48
+ 44°	E	2228336 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10110 1010 100 1000000	463329231	20 11 11 11 11 11 11 11 11 11 1
	RISE	4444444	444444	4444444	444 <i>い</i> ろろろろ
0	SET	h m 18 55 18 55 19 03 19 03 19 11 19 14 19 18 19 21	19 24 19 26 19 33 19 33 19 33	19 33 19 33 19 31 19 27 19 27 19 27 19 27 19 27 19 27	19 13 19 13 19 04 19 04 19 04 19 04 18 23 18 36 18 36 18 36
+40°	RISE	в 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	333333333333333333333333333333333333333	55188233 551882333 55188233 55188233 55188233 55188233 5518833 5518833 5518833 5518833 5518833 5518833 551835 551835 551835 551835 551835 551835 551835 551835 551835 551835 551835 551855 55555 551855 551855 551855 551855 551855 55555 55555 55555 55555 55555 55555 5555	2218110622
	R	ت 1044444444	444444	44444444	40000000
0_	SET	h m 18 46 18 49 18 55 18 55 18 55 19 01 19 01 19 07	10 11 12 10 10 10 10 10 10 10 10 10 10 10 10 10	19 18 19 18 19 17 19 15 19 11 19 00 00	19 02 18 59 18 55 18 46 18 41 18 36 18 36 18 36
+35°	RISE	48 5 5 5 5 8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4445 445 446 45 446 48 48 48 48 48 48 48 48 48 48 48 48 48	649 553 001 002 002 002 002 002 002 002 002 002	3122229966330
	RI	<u>ד</u> ∾∾∾44444	444444	44444000	<u>, , , , , , , , , , , , , , , , , , , </u>
	SET	h m 18 38 18 40 18 45 18 45 18 50 18 55 18 55	18 57 19 01 19 02 19 04 19 05	19 002 003 003 003 003 003 003 003 003 003	18 53 18 53 18 50 18 46 18 39 18 35 18 35 18 35 18 35
+30°	щ	0013358010111 0010325800101111	000000000000000000000000000000000000000	002 112 12 12 12 12 12 12 12 12 12 12 12 1	333111
	RISE	4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	444400	ູ້ນານອອງອອງອ	~~~~~
	SET	h II 18 24 18 25 18 25 18 27 18 30 18 33 18 33 18 33	18 36 18 38 18 38 18 40 18 41 18 41 18 42 18 43	18 43 18 43 18 43 18 43 18 43 18 41 18 41 18 40 18 39	18 37 18 35 18 35 18 32 18 32 18 27 18 21 18 21 18 21 18 21
+20°		22122228811 2011111112223	2222001	333102255	332 1 441 1 442 1 442 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	RISE	⁴ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ູ້	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
<u>.</u> .	TNE	306228410 6 2 302228110 6 2	23319211 7 3 233192	20 25 25 25 25 25 25 25 25 25 25 25 25 25	10 0 10 0 10 0 10 0 10 0 10 0 10 0 10
LAT.	EVENT	May	June	July	Aug.

SUN

 \odot

0	SET	h m 18 59 18 47 18 47 18 23 18 23 17 59 17 47	17 34 17 22 17 22 16 59 16 47 16 36 16 25 16 25	16 03 15 53 15 53 15 34 15 34 15 18 15 18 15 05	15 00 15 00 114 54 114 54 114 54 114 56 115 04
+60°	RISE	h H H 55 55 55 55 55 55 55 55 55 55 55 55	6 04 6 13 6 23 6 33 7 03 7 13	888877772 888877773 88888723 8233	8 40 9 03 9 03 9 03 9 03 9 03 9 03 9 03 9 0
- 4	SET	h m 18 47 18 38 18 38 18 28 18 28 17 58 17 48	17 38 17 28 17 19 17 09 17 09 16 51 16 42 16 33	16 25 16 17 16 10 16 03 15 57 15 57 15 47 15 44	15 41 15 39 15 38 15 38 15 38 15 41 15 41 15 48
+54°	RISE	р	$\begin{array}{c} 6 \\ 6 \\ 6 \\ 6 \\ 3 \\ 6 \\ 6 \\ 3 \\ 3 \\ 3 \\$	7 25 7 29 7 25 7 25 7 25 7 25 7 25 7 25 7 25 7 25	7 59 8 05 8 05 8 13 8 13 8 16 8 18 8 19 8 19 8 19
+50°	SET	h m 18 41 18 32 18 32 18 24 18 15 18 15 17 57 17 57	17 40 17 31 17 31 17 23 17 24 17 23 16 58 16 51 16 53	16 36 16 36 16 30 16 24 16 13 16 05 16 05 16 02	16 00 15 59 15 58 15 58 16 00 16 02 16 02 16 03
+	RISE	н 5 5 5 5 5 5 5 7 5 5 4 1 5 5 3 5 5 4 5 6 7 1 7 1 8 7 1 7 1 8 7 1 7 1 7 1 8 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1	5 59 6 11 6 18 6 32 6 33 6 33 6 33 6 33 6 33 6 33 6 33	6 50 6 57 6 57 7 10 7 10 7 23 7 35 7 35	7 7 7 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
et (SET	h II 18 34 18 26 18 19 18 19 17 57 17 49	17 42 17 35 17 35 17 28 17 28 17 28 17 08 17 08 17 01	16 50 16 50 16 45 16 35 16 33 16 28 16 28	16 23 16 23 16 23 16 23 16 24 16 24 16 29 16 29
+ 44°	RISE	н 7 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2	<pre>5 57 6 01 6 11 6 16 6 21 6 32 6 32 6 32 6 32</pre>	7 7 7 6 5 3 8 6 4 2 7 7 9 0 3 3 1 3 8 1 3 1 3 8 1 3 1 3 8 1 3 1 3 8 1 3 1 3	$\begin{array}{c} 7 \\ 7 \\ 33 \\ 7 \\ 33 \\ 7 \\ 33 \\ 33 \\ 7 \\ 33 \\ 34 \\ 7 \\ 35 \\ 7 \\ 35 \\ 7 \\ 36 \\ 7 \\ 36 \\ 7 \\ 36 \\ 7 \\ 37 \\ 7 \\ 31 \\ 7 \\ 31 \\ 7 \\ 31 \\ 7 \\ 31 \\ 7 \\ 31 \\ 7 \\ 31 \\ 7 \\ 31 \\ 7 \\ 31 \\ 7 \\ 31 \\ 7 \\ 31 \\ 7 \\ 31 \\ 7 \\ 31 \\ 7 \\ 31 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ $
0.0	SET	h m 18 29 18 23 18 16 18 10 17 57 17 57	17 43 17 37 17 31 17 31 17 19 17 19 17 07 17 02	16 57 16 53 16 49 16 49 16 33 16 33 16 33	16 35 16 35 16 35 16 35 16 37 16 37 16 42 16 42
+40°	RISE	h 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	5 56 6 08 6 12 6 12 6 20 6 25 7 6 25 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6 39 6 39 6 43 7 6 52 7 01 7 01	7 05 7 12 7 15 7 15 7 19 7 21 19
+35°	SET	h m 18 25 18 19 18 14 18 08 18 02 17 56 17 51	17 45 17 39 17 39 17 29 17 29 17 19 17 09	17 05 17 05 16 58 16 53 16 53 16 50 16 49	16 48 16 49 16 50 16 51 16 53 16 53 16 53
+	RISE	^h 55555533 5555533 51 5555555 53 51 55 51 55 51 55 51 55 55 55 55 55 55	 5 54 5 57 6 00 6 04 6 14 6 18 6 18 	6 23 6 29 6 44 6 44 6 44 6 44 6 44 6 44 6 44 6 4	6 55 6 55 6 58 7 01 7 03 7 03 7 03
+30°	SET	h m 18 21 18 16 18 11 18 11 18 06 17 51 17 51	17 46 17 41 17 37 17 37 17 32 17 28 17 28 17 28 17 28	17 13 17 10 17 07 17 05 17 03 17 00 17 00	17 00 17 00 17 01 17 02 17 04 17 08
+	RISE	н 222222222222222222222222222222222222	5 53 5 55 6 00 6 03 6 03 6 11	6 14 6 17 6 20 6 27 6 33 6 33 6 33	6 40 6 46 6 49 6 53 6 55 6 55 6 55 6 55 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 7 7 7 7 7
+20°	SET	h m 18 14 18 11 18 11 18 07 18 03 18 03 17 56 17 56	17 49 17 45 17 42 17 33 17 33 17 33 17 27	17 25 17 23 17 22 17 21 17 20 17 19 17 19 17 19	17 20 17 21 17 22 17 23 17 23 17 23 17 29
÷	RISE	^H 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 23 6 23 6 33 7 25 7 20 6 23 7 20 7 20 7 20 7 20 8 20 8 20 8 20 8 20 8 20 8 20 8 20 8
LAT.	EVENT	27 23 23 23	20 27 27 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	30523841062	328420611384
LA	EV	Sep.	Oct.	Nov.	Dec.

SUN

TWILIGHT

This table gives the beginning of morning and ending of evening astronomical twilight (Sun 18° below the horizon) in UT at the Greenwich meridian. For observers in North America, the times may be treated in the same way as those of sunrise and sunset (see p. 52).

				ie way as t	nose or sun	inse and se	moet (see p		
	EVE.	848 36 57 36 57	20 12 12 12 12 12 12 12 12 12 12 12 12 12	::: 588	:::::	39: : : :	88 1 8 33 38 1 8 33	8 988649	2 6 3 3
+60°	ы	h 17 18 18 18 18 18 18 18	56885	53 23	. : : : :	3::::	12885	1 1881	111
+	ż	3258158B	821288	215 : : :	:::::	::::%	28888	1 48845	18812
	MORN.	200000	N44W0	80 : : :	:::::	::::=	00004		
-	<u> </u>	E852883	28828	: 24 88	:::::	::622	22 8 16 8	86.68.8	
	EVE.	481881 1883 1883 1883 1883 1883 1883 188	201531	: 2213		222: :	4-462		_
+54°	-								
	MORN	55566 ^h 3385668	4 4 5 5 4 4 5 1 4 5 2 8 2 9 1 6 1 4 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6	: 39 2 23 1 41 39 : 39	:::::	2 041: : 38 041: :	852338		838
┝──	Σ								
	EVE.	E85869	28882	48284	£2 : : : : : : :	88888	82644		1028
-50°		4222222	66688	82228		82228	2021	88885	18 18
1	MORN.	E882258	413 36 IS	1653322	6 3 : : : : :	84568	8428%		888
	Ŭ	⁴ 00000	N4440	600	• : : : :	000	ww444	40000	<u> </u>
	EVE.	E72258	22233	37 20 33 4 20 33 4 52 33 20	285128 1585	28 E 23 SI	24828	884233	07 20
* +	ш	4888888	616162 50112	22222	ភពឧឧឧ	88555	89998	8 8 8 8 8 8	18 18
+	MORN.	E82844	81 03 03 03 03 03 03 03 03 03 03 03 03 03	42242	82428	21 57 38 32	885 7 84	88588	56 50 50
	QW	⁴ ~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	88	00000	w4444	40000	~~~~
	EVE.	E28888	55 3 3 21 0	82%58	33 33 39	15 82 821 15 82 821	288384	11 12 38	13 18 25
+40°	ы	4 88 88 86 88 88 86	66666	88885	55555	88855	61 61 61 81 61 61 81	8 8 8 8 8	8888
÷	Ľ.	E433888	81 81 81 81 81 81 81 81 81 81 81 81 81 8	883388	33.233	29588	43212 <i>5</i> 9	321282	644
	MORN.	π ω	NN444	~~~~~	00000	0,0,0,0,0,0	w4444	40000	s s s s s s s s s s s s s s s s s s s
	EVE.	E8%4%8	163854	%8≈84	28282	84878	8 82128	33 19 18	3223
°°	E	4888880	61 66 61 61 61 61	28888	22228	ຨຨຨຨຨ	61 66 66 88 61 66 66 66 88 61 66 66 66 88 61 66 66 66 88 61 66 66 66 66 88 61 66 66 66 66 88 61 66 66 66 66 66 66 66 66 66 88 61 66 66 66 66 66 66 66 66 66 66 66 66 6	81 82 88 88 88	18 18 18
+35°	KN.	23333 333333	23323618	13283338	88888	8233812	10 118 335 43	23 16 23 23	38.30
	MORN.	π nnnnn	ww444	4~~~~	~~~~~	~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	44444	44 w w w	ŝ
	ai.	E 2 2 2 2 2 2 3 E	331228	428212	88448	28225	581233 4881233	85833	3338
	EVE.	4818818 81888 818 818 818 818 818 818 81	22222	22888	88888	88882	000088	<u>8888888</u>	8 8 8
+30°	7	583338∎	25845	321232	88888	10355	43 331 43 331 832 832 832 832 832 832 832 832 832 832	5649 11033649	328
	MORN.	¹ 888888	NN444 -0N4W	44000 -0040	~~~~~~ ~~~~~~	~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	44444	44000 400	1010 1010
			10 m -: - +				101010 - 5		
	EVE.	е 1999 1982 1983 1983 1983 1983 1983 1983 1983 1983	19999 1992 1992 1992 1995 1995 1995 1995	66666 6777 6787 6787 6787 6787 6787 678	00000	866666 88848	22 20 20 20 20 20 20 20 20 20 20 20 20 2	88 36 39 43 88 36 39 43 88 36 39 43	18 18 18 52
+20°					28888	82222 8			
	MORN.	8855223	50 51 51 51 51	014233	836288	84628	33,331,231,231,231,231,231,231,231,231,2	58 53 86 03 88 53 03 89 54 03 89 54 03 89 54 03 89 54 03 89 55 03 80 55 03 80 55 03 80 55 03 80 55 03 80 55 03 80 55 00 00 00 00 00 00 00 00 00 00 00 00 0	09 18 18
	ž	⁴ ~~~~~		44444	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	44444	44444	44440	~~~
ا نے	M-E	02880	3121119	28828	⁶ 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	19 28 28 28 28 28	71 77 17	24 6 6 26 6 6 7 7	5 5 5
LAT.	Σ	Jan. Feb.	Mar.	Apr. May	June July	Aug.	Sep.	Nov. Dec.	Jan.
'	'		F 4			7	. , 0	~ 1	-

E

MOON

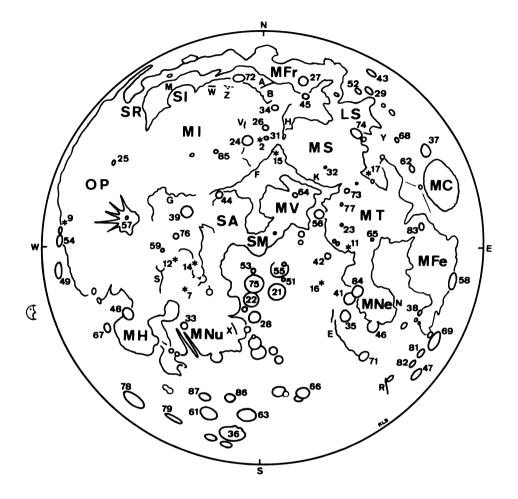
KEY TO THE MAP OF THE MOON

CRATERS

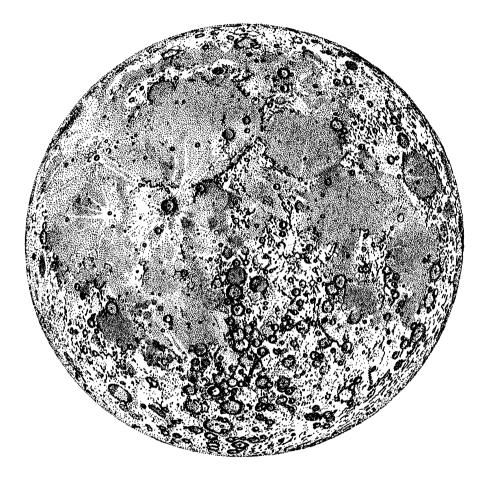
- 21—Albategnius 22—Alphonsus 23—Arago 24—Archimedes 25—Aristarchus 26—Aristillus 27-Aristoteles 28—Arzachel 29-Atlas 31—Autolycus 32—Bessel 33-Bullialdus 34—Cassini 35-Catharina 36—Clavius 37—Cleomedes 38—Cook 39—Copernicus 41-Cyrillus 42—Delambre 43—Endymion 44—Eratosthenes 45—Eudoxus 46—Fracastorius 47-Furnerius 48-Gassendi 49-Grimaldi 51-Halley 52-Hercules 53-Herschel 54-Hevelius 55—Hipparchus 56—Julius Caesar 57—Kepler 58—Langrenus 59—Lansberg 61—Longomontanus 62-Macrobius 63-Maginus 64-Manilius 65-Maskelyne 66—Maurolycus 67—Mersenius 68—Newcomb 69—Petavius 71-Piccolomini 72-Plato 73-Plinius 74-Posidonius
- 75-Ptolemaeus
- 76—Reinhold
- 77-Ross
- 78—Schickard 79—Schiller
- 81—Snellius
- 82—Stevinus
- 83—Taruntius
- 84—Theophilus 85—Timocharis 86—Tycho

- 87—Wilhelm

MOUNTAINS


- A Alpine Valley B — Alps Mts. E — Altai Mts. F — Apennine Mts. G —Carpathian Mts. H -Caucasus Mts. K — Haemus Mts. M-Jura Mts. N — Pyrenees Mts. R — Rheita Valley S — Riphaeus Mts. V --- Spitzbergen W-Straight Range X —Straight Wall Y —Taurus Mts.
- Z Teneriffe Mts.

MARIA


- LS —Lacus Somniorum (Lake of Dreams)
- MC Mare Crisium (Sea of Crises)
- MFe Mare Fecunditatis (Sea of Fertility)
- MFr Mare Frigoris (Sea of Cold)
- MH Mare Humorum (Sea of Moisture)
- MI Mare Imbrium (Sea of Rains)
- MNe—Mare Nectaris (Sea of Nectar)
- MNu—Mare Nubium (Sea of Clouds)
- MS Mare Serenitatis (Sea of Serenity)
- MT Mare Tranquillitatis (Sea of Tranquillity)
- MV —Mare Vaporum (Sea of Vapors) OP —Oceanus Procellarum (Ocean of Storms)
- SA —Sinus Aestuum (Seething Bay)
- -Sinus Iridum (Bay of Rainbows) SI
- SM Sinus Medii (Central Bay)
- SR Sinus Roris (Bay of Dew)

LUNAR PROBES

- 2—Luna 2, First to reach Moon (1959.9.13)
- 7—Ranger 7, First close pictures (1964.7.31)
- 9—Luna 9, First soft landing (1966.2.3)
- 11—Apollo 11, First men on Moon (1969.7.20)
- 12—Apollo 12 (1969·11·19)
- 14—Apollo 14 (1971·2·5)
- 15—Apollo 15 (1971.7.30)
- 16—Apollo 16 (1972·4·21)
- 17—Apollo 17 (1972·12·11)

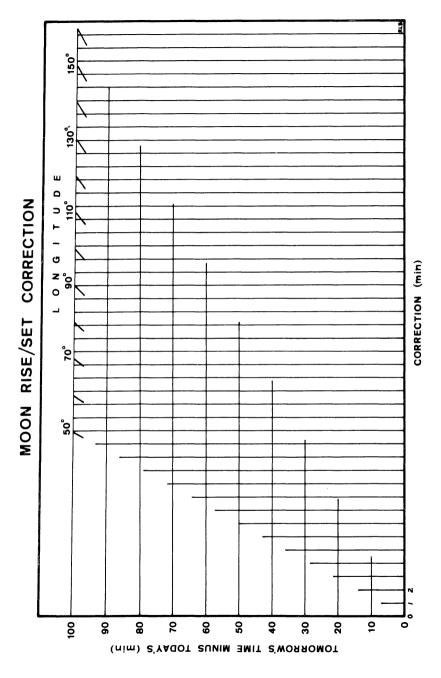
MAP OF

THE MOON

FULL MOON DATES

11	T)
ιu	11)

	1983	198	34
Jan. 28	Jul. 24	Jan. 18	Jul. 13
Feb. 27	Aug. 23	Feb. 17	Aug. 11
Mar. 28	Sep. 22	Mar. 17	Sep. 10
Apr. 27	Oct. 21	Apr. 15	Oct. 9
May 26	Nov. 20	May 15	Nov. 8
Jun. 25	Dec. 20	Jun. 13	Dec. 8


TIMES OF MOONRISE AND MOONSET

The tables on pages 62 to 73 give the times of moonrise and moonset for each day of the year for places ranging from 20° to 60° north latitude. The tables may be interpolated linearly for non-tabular latitudes, and can be extrapolated beyond the 20° and 60° latitude limits a few degrees without significant loss of accuracy. "Rise" and "set" correspond to the upper limb of the Moon appearing at the horizon for an observer at sea level. The times are in UT and are for the Greenwich meridian. Because of the relatively rapid eastward motion of the Moon, unlike the sunrise and sunset tables, the times *cannot* be read directly as standard times at the various standard meridians in North America. The table must be interpolated according to the observer's longitude. Also, the observer's longitude correction relative to his standard meridian must, of course, be applied (see p. 52). The graph on the opposite page enables the sum of these two corrections to be determined easily in one step. However, the graph must be set for your longitude.

To prepare the Moon Rise/Set Correction graph, first locate your longitude on the longitude scale. Using a straight-edge, draw a line from the origin (0,0 point) to your position on the longitude scale (a *red* pen is recommended to make this line stand out). Next, the CORRECTION axis must be labeled. As a guide, the first three divisions have been tentatively labeled 0, 1, 2; *but*, to these numbers must be added your longitude correction relative to your standard meridian (p. 52). e.g. For Toronto the correction is +18 minutes, thus an observer in Toronto would label this axis: 18, 19, 20, 21, ... 62, 63. An observer in Rimouski (longitude correction: -26) would label the axis: -26, -25, -24, ... 18, 19.

The graph is now ready for use on any day from your position. From the table obtain tomorrow's time and today's time for the event (moonrise, or moonset), enter the difference on the ordinate, and run horizontally across to meet the diagonal line. The correction, to the nearest minute, can then be read directly below off the abscissa. This correction is applied to "today's time" in the table. (Note that, due to a difference in height between the observer and the actual horizon, the observed time may differ by up to several minutes from the predicted time.)

(7

°(SET	h m 10 50 11 13 11 29 11 40 11 40	11 57 12 05 12 14 12 26 12 41	13 04 13 37 14 24 15 25 16 36	17 53 19 12 20 32 21 52 23 13		6 38 6 38 8 42 9 13 9 33 9 46
+60°	RISE	h m 17 45 19 24 23 32 33 59	1 24 2 47 5 29	6 45 7 53 8 48 9 28 9 56	10 14 10 28 10 38 10 46 10 53	11 01 11 09 11 20 11 36	112 38 113 39 115 04 116 43 20 02
	SET	h m 10 10 10 10 11 29 29 11 29 21 11 29 21 11 29 21 11 29 21 11 29 21 11 29 21 11 29 21 11 20 21 21 21 21 21 21 21 21 21 21 21 21 21	12 01 12 17 12 34 12 53 13 17	13 48 14 26 15 15 16 12 17 16	18 24 19 35 19 35 20 46 21 58 23 11		5 51 7 01 8 38 9 08 31 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
+54°	RISE	h m 18 24 19 51 22 40 23 59		6 02 7 57 9 15 9 15	9 42 10 03 10 37 10 37 10 37	11 06 11 23 11 23 12 06 12 06	13 26 14 29 15 48 17 16 18 46 20 14
50°	SET	h 9 51 11 23 11 23 11 23 11 23 11 23	12 03 12 23 12 44 13 07 13 35	14 09 14 49 15 38 16 34 17 35	18 40 19 46 22 53 10 22 01 23 10		9887638 9887638 9887638 98876
+5(RISE	h 18 42 20 05 23 44 23 58		5 41 6 41 7 34 8 18 8 55	9 26 9 51 10 12 10 32 10 50	11 09 11 29 11 53 12 22 12 59	13 48 14 52 16 08 17 32 18 57 20 20
°4	SET	h m 9 28 10 11 10 46 11 15 11 42	12 06 12 31 12 31 13 26 13 56	14 33 15 16 16 04 16 59 17 57	18 58 19 59 221 02 23 09	0 15 1 24 3 50	5 03 6 11 7 11 8 00 8 40 9 13
+44°	RISE	h п 19 03 20 21 22 49 23 58		5 18 6 15 7 07 8 33	9 06 9 36 10 25 10 49	11 12 11 38 112 06 112 40 13 22	14 14 15 18 16 32 16 32 19 10 20 27
00	SET	h п 9 16 10 01 11 11 11 40	12 08 12 35 13 03 13 33 14 07	14 46 15 30 16 19 17 12 18 09	19 07 20 07 21 07 23 07 23 08	$\begin{array}{c} \cdot \cdot \\ 0 & 12 \\ 1 & 18 \\ 2 & 27 \\ 3 & 38 \end{array}$	 4 49 5 57 6 57 6 57 8 31 9 08
+40°	RISE	h II 19 15 20 30 22 52 23 58 23 58	4 3 06 4 06 6 06 7 02 7 02 7 02 7 02 7 02 7 02 7 02 7 02	5 05 6 01 6 53 8 20	8 56 9 28 9 56 10 23 10 48	11 14 11 42 12 14 12 50 13 34	14 28 15 33 16 45 19 18 20 32
5°	SET	h m 9 02 9 50 10 31 11 07 11 39	12 10 12 40 13 11 13 24 14 20	15 00 15 45 16 34 17 27 18 22	19 18 20 15 21 12 23 09 23 08		 4 5 42 6 43 6 43 6 43 7 8 7 8 7 8 7 8 7 8 9 <l< td=""></l<>
+35°	RISE	h m 19 28 20 39 21 49 23 55 23 58		4 51 5 46 6 37 7 24 8 07	8 45 9 19 9 50 10 19 10 47	11 16 11 47 12 22 13 01 13 48	14 44 15 48 16 59 18 13 19 26 20 36
0°	SET	h m 8 51 9 41 10 25 11 03 11 38	12 11 12 14 13 17 13 52 14 31	15 12 15 58 16 47 17 39 18 33	19 27 20 22 21 17 22 11 23 07		 4 5 28 6 30 8 56
+30°	RISE	h m 19 39 20 48 21 54 22 57 23 57		4 40 5 33 6 24 7 11 7 55	8 34 9 11 9 44 10 16 10 47	11 18 11 52 12 29 13 11 14 00	14 57 16 01 17 11 18 23 19 33 20 40
+20°	SET	h т 8 30 9 25 10 13 10 56 11 36	12 14 12 51 13 29 14 08 14 49	15 33 16 20 17 10 18 00 18 52	19 43 20 34 21 25 23 15 23 06	23 59 0 54 1 53 2 55	5 06 6 09 8 47 8 47
+	RISE	h т 1957 2102 2204 2302 2357		 4 19 5 11 6 01 6 49 7 35 	8 17 8 57 9 34 10 10 10 46	11 22 12 00 13 28 14 20	15 19 16 24 17 32 18 39 19 45 20 47
LAT.	EVENT	Jan. 1 33 54	ه 109876	11 12 13 15 15	117 117 209 209	8 21 23 24 25	ه 228 339 310 328 310 328 328 328 328 328 328 328 328 328 328

MOON

(}

MOON

0°	SET	h m 9 56 10 05 10 13 10 22 10 33	10 47 11 07 11 36 12 18 13 15	14 24 15 40 17 00 18 20 19 40	21 01 22 23 23 48 	2 47 4 16 5 34 6 33 7 11	7 35 7 50 8 02
+60°	RISE	h m 21 35 23 04 1 54	3 16 5 45 6 45 7 29	8 21 8 21 8 36 8 47 8 55	9 03 9 10 9 27 9 40	9 58 10 28 11 17 12 29 14 00	15 41 17 22 18 59
• +	SET	р 10 39 10 49 10 49 10 10 10 49 10 10 10 10 10 10 10 10 10 10 10 10 10	11 21 11 49 12 25 13 10 14 04	15 06 16 14 17 25 18 36 19 49	21 02 22 16 23 32 23 32	5 43 5 44 6 30 6 30	7 04 7 30 7 51
+54°	RISE	h m 21 38 22 58 1 31	2 44 5 53 6 40 6 40	7 17 7 46 8 09 8 28 8 44	8 59 9 13 9 28 9 46 10 07	10 36 11 14 12 07 13 17 14 40	16 09 17 39 19 06
00	SET	h m 9 46 10 07 10 27 11 11 11 11	11 37 12 09 12 47 13 33 14 26	15 26 16 31 17 37 18 45 19 53	21 02 22 12 23 24 38	1 54 3 10 5 21 6 11	6 49 7 20 7 45
+50°	RISE	h m 21 39 22 55 0 08 1 19	2 28 3 34 5 30 6 17	6 56 7 29 8 18 8 38	8 56 9 15 9 34 9 55 10 21	10 54 11 36 12 31 13 39 14 58	16 23 17 48 19 10
+44°	SET	h H 9 42 10 08 10 33 11 26	11 57 12 32 13 13 14 00 14 52	15 50 16 50 17 52 18 55 19 58	21 02 22 07 23 14 0 23	1 34 2 45 5 45 5 48 5 48	6 31 7 07 7 38
+	RISE	h m 21 41 22 51 23 59 1 05	2 09 3 11 5 03 5 03	6 33 7 08 8 06 8 31	8 54 9 17 9 41 10 07 10 38	11 15 12 01 12 58 14 05 15 20	16 39 17 58 19 15
+40°	SET	h m 9 39 10 08 11 05 11 35	12 08 12 45 13 27 14 14 15 06	$\begin{array}{c} 16 & 02 \\ 17 & 01 \\ 18 & 00 \\ 19 & 01 \\ 20 & 01 \end{array}$	21 02 22 05 23 09 	1 23 2 32 3 39 5 35 5 35	6 21 7 00 7 34
+	RISE	h m 21 42 22 49 23 54 0 57	1 59 2 59 5 37 3 37	6 20 6 57 7 30 8 26 8 26	8 52 9 18 9 45 10 14 10 47	11 27 12 15 13 12 14 19 15 32	16 48 18 04 19 17
+35°	SET	h т 9 36 10 09 11 11 11 11 11 44	12 19 12 59 13 42 14 29 15 21	16 16 17 12 18 09 19 07 20 04	21 02 22 02 23 03 	1 11 2 18 3 24 5 21	6 10 6 52 7 30
+	RISE	h m 21 43 22 47 23 49 .0 49	1 48 2 46 3 41 5 22 22	6 06 6 45 7 20 8 22	8 51 9 19 9 49 10 21 10 57	11 39 12 29 13 27 14 34 15 45	16 58 18 10 19 20
+30°	SET	h н 9 34 10 09 11 17 11 52	12 30 13 10 13 55 14 43 15 34	16 27 17 22 18 17 19 12 20 07	21 03 21 59 22 57 23 58	1 01 2 06 3 10 5 10	6 00 6 45 7 26
+	RISE	h m 21 44 22 45 23 44 0 42	1 39 2 34 5 09	5 53 6 34 7 11 8 18 8 18	8 49 9 20 9 53 10 27 11 06	11 51 12 42 13 41 14 46 15 56	17 07 18 16 19 23
·20°	SET	h п 9 30 10 10 10 49 11 27 12 06	12 47 13 31 14 17 15 05 15 56	16 47 17 39 18 30 19 21 20 12	21 03 21 55 22 48 23 44 	0 43 1 45 2 48 3 50 4 49	5 44 6 34 7 19
+	RISE	h m 21 46 22 42 23 36 .0 29	1 22 2 15 3 07 3 57 4 46	5 33 6 16 6 57 7 35 8 11	8 47 9 22 9 59 10 39 11 22	12 10 13 04 14 04 15 08 16 15	17 21 18 26 19 27
LAT.	EVENT	Feb. 1 8 3 3 2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6 8 10 10	11 13 13 13 13 13	16 17 18 19 20	<u>5,53355</u>	@ 26 28 28

°(SET	h m 8 11 8 19 8 28 8 38 8 50	9 08 9 34 11 04 12 09	13 24 14 43 16 04 17 26 18 48	20 11 21 36 23 04 	55 4 3 2 3 25 3 25 3 25 3 25 3 25	5 57 6 09 6 34 6 34 6 34
+60°	RISE	h m 20 33 22 03 22 03 23 32	6 2 4 3 2 1 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 28 6 56 12 05 7 05 7 05 7 05 7 05 7 05 7 05 7 05 7	8 02 8 02 8 02	8 26 9 06 10 08 11 31 13 06	14 45 16 23 17 58 19 31 22 31 22 31
		1 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	55 55 55	01 50 37 42 24	05 01 01	21 234 04 1 1	32 11 11 11 28 11 28 11 28 11 28 11 28 11 28 11 28 28 28 11 28 28 28 11 28 28 28 11 28 28 28 28 28 28 28 28 28 28 28 28 28
+54°	SET	<u> − ∞ ∞ ∞ ∞ ⊅</u>	9 11 12 12 10 9	114 115 117 118	0: 22	-0.040	100000
+	RISE	h m 20 31 21 53 23 12 23 12	1 41 2 48 3 48 48 38 5 18 18	5 50 6 14 6 34 7 06	7 20 7 35 8 11 8 37	9 11 9 57 10 59 12 15 13 39	15 07 16 35 19 24 19 24 22 06
	SET	h m 8 07 9 11 9 37 9 37	10 07 10 43 11 27 12 18 13 16	14 19 15 26 16 33 16 33 18 52	0 03 1 15 3 45 	1 00 4 06 4 06	5 19 5 45 6 08 6 29 6 49
+50°		n 05430 14	223 10 227 11 57 11 15 11 15	259 11 12 12 13 11 12 13 14 12 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14	21 20 24 21 54 23 54 23 55 25 55 25 55 55 55 55 55 55 55 55 55 55 55 55 5	56 221 23	53 221 53
	RISE	0: 2120 h	-0044	10000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9 11 13 13 13 10 9	115 118 118 118 115 115 115 115 115 115
°+	SET	р 9 25 9 25 9 25 9 25 9 25 9 25 9 25 9 25	10 29 11 09 11 54 13 40	14 40 15 42 16 45 17 49 18 54	19 59 21 07 22 16 23 26 : :	0 37 2 45 3 41 4 26	5 35 5 35 6 30 7 23 7 23 7 23
+44°	RISE	E 6 9 8 7 :	1 01 2 58 3 48 3 28 3 28 4 32	5 09 6 35 6 35 6 35	7 21 7 45 8 10 9 14	55 1 15 1 15	5 32 5 49 0 17 38 38
		332 20 05 20 05 00 05 20 05 00 05 00 05 00 05 00 05 00 05 00 05 00 05 00 05 00 05 00 05 00 00	542 579 579 579 579 579 579 579 579 579 579	22222	: 10 8 8 7 7	24 9 30 10 32 11 15 12 14	55 15 30 16 01 18 30 19 29 20 21
+40°	SET	488000	111212	115115	19 22 23 23 23	0-064	40000
+	RISE	h m 220 28 221 37 23 43 23 43	0 49 9 4 49 9 4 49 1 8	4 57 5 31 6 02 6 30 6 56	7 22 7 48 8 16 8 48 9 25	10 09 11 02 13 12 04 14 25	15 40 16 53 16 53 18 05 19 15 20 23 21 30
	SET	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) 55 37 24 14 108	57 57 57	55 57 04 05 75 04	0 10 1 15 2 17 3 13 3 13	4 46 5 24 5 59 6 31 7 03 7 36
+35°		10 9 9 8 8 8 8 8 1 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10	37 10 34 11 28 12 03 14 14	44 15 21 16 54 16 53 17 18 17	51 22 23 23 23 23 23 23 23 23 23 23 23 23	326919	2112068
	RISE	: 332220 P	0-064	40000	rr 8 8 6	112121	15 16 19 20 21 21
0	SET	h m 8 03 9 13 9 48 10 26	11 06 11 50 12 37 13 27 14 20	15 15 16 10 17 05 18 01 18 01	19 54 20 52 21 52 23 55 23 58		4 37 5 56 6 32 7 07 7 07
+30°	RISE	E29293 :	51 51 51	51946133	48629522 86629522	36 31 33 38 37 47	55 02 13 13 13 13
		311220 ^h	26 00 50 33 2 12 10 33 2 10 33 2 10 33 2 10 33 2 10 33 2 10 33 2 10 2 2 10 10 10 10 10 10 10 10 10 10 10 10 10	33 24 54 59 65 59 6	51 38 38 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	39 11 39 11 33 140 12 33 140	23 15 52 18 33 19 13 20 53 21
+20°	SET	h m 8 01 9 21 10 01 10 43	11 2 1 13 0 13 0 14 4 13 0	15 3 16 2 18 0 18 5	19 5 20 4 22 3 23 3	3346	4000-10
+	RISE	h m 20 26 21 23 23 18 23 13	$\begin{smallmatrix} 0 & 07 \\ 1 & 52 \\ 2 & 42 \\ 3 & 29 \\ 3 & 29 \\ \end{bmatrix}$	4 13 4 55 5 34 6 11 6 47	$egin{array}{c} 7 & 23 \\ 8 & 00 \\ 9 & 20 \\ 10 & 06 \end{array}$	10 57 11 54 12 55 13 59 15 04	16 07 17 09 19 06 21 00 21 00
	ţ	-0040	01 10 10	11 13 13 13	11 11 11 11 11 11 11 11 11 11 11 11 11	22 23 23 23	330928
LAT.	EVENT	Mar.	(C)	۵		(A)	Ð

MOON

E

MOON

0	SET	h m 6 54 7 09 8 03 8 50	9 52 11 04 12 23 13 43 15 05	16 27 17 51 19 18 20 47 22 19	23 52 1 18 2 28 3 17	3 47 4 06 4 28 4 35 3	4 4 4 4 4 4 4 4 4 4 4 3 0 0 0 0 0 0 0 0
+60°	RISE	h m 23 58 1 19 3 28 3 28	 4 08 4 35 5 05 15 	5 23 5 33 5 33 5 33 5 33 5 33 5 33 5 33	6 06 6 28 7 28 9 13	10 44 12 20 13 56 17 02	18 33 20 03 21 32 22 57
4°	SET	h m 7 21 8 16 8 55 9 43	10 41 11 46 12 55 14 07 15 20	16 34 17 49 19 07 20 27 21 49	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 33 3 37 4 17 3 39 8 33 7 9 8 33 3 9 8 9 3 9 8	5 49 5 23 6 12 6 12
+54°	RISE	h III 23 23 0 35 2 34 2 34	3 18 3 53 4 40 57	5 13 5 27 5 57 6 15	6 39 7 10 8 49 10 01	11 22 12 47 14 13 15 37 17 00	18 21 19 42 21 01 23 26
50°	SET	h m 7 35 8 03 8 37 9 18 10 07	11 03 12 05 13 11 14 18 15 27	16 37 17 48 19 01 20 17 21 34	$\begin{array}{cccc} 22 & 51 \\ \hline 0 & 05 \\ 1 & 11 \\ 2 & 05 \\ \end{array}$	2 49 4 4 3 3 2 49 3 2 2 49 3 2 2 49 3 2 2 49 3 2 2 49 4 3 2 2 49 4 9 2 2 49 7 2 4 49 7	 4 52 5 13 5 35 6 01 6 32
+	RISE	h m 23 06 0 14 1 16 2 10	2 55 3 32 4 4 27 88 48	5 08 5 26 6 04 27 27 27	6 55 7 30 8 16 9 14 10 23	11 40 13 00 14 21 15 40 16 58	18 15 19 31 20 46 21 57 23 03
+44°	SET	h m 2 52 9 02 9 45 10 35	11 29 12 28 13 29 14 32 15 36	16 41 17 47 18 55 20 04 21 16	22 29 23 39 0 43 1 39	2 26 3 05 3 37 4 05 4 31	5 22 5 22 6 20 6 56
+	RISE	h m 22 46 23 50 .0 49 1 43	2 29 3 09 4 12 3 83 3 83 3 8	5 02 5 25 5 48 6 13 6 41	$\begin{array}{c} 7 & 14 \\ 7 & 54 \\ 8 & 43 \\ 9 & 41 \\ 10 & 48 \end{array}$	12 01 13 16 14 31 15 45 16 57	18 08 19 18 20 28 21 34 22 37
+40°	SET	ћ т 8 01 9 15 10 00 10 49	11 43 12 40 13 39 14 40 15 41	16 43 17 46 18 51 19 58 21 07	22 16 23 25 0 28 1 25	2 14 2 55 3 30 4 02 4 30	4 58 5 27 6 31 7 09
+	RISE	h m 222 35 23 37 0 35 1 28	2 15 2 56 4 32 3 32 4 32 3 32 56	4 58 5 24 6 18 6 49	7 24 8 07 8 57 9 56 11 02	12 13 13 25 14 36 15 47 16 56	18 04 19 12 20 18 21 22 22 23
+35°	SET	h m 8 11 9 30 11 05 11 05	11 58 12 54 13 50 14 48 15 46	16 45 17 45 18 47 19 50 20 56	22 03 23 09 0 13 1 10	2 01 2 45 3 23 45 45 4 30	5 01 5 33 6 06 7 22
е +	RISE	h m 222 23 23 23 0 20 1 12	22 00 2540 2540 2540	4 5 4 5 4 5 4 5 4 5 5 2 3 6 5 2 3 6 5 7 3 6 5 7 3 9 6 5 7 3 9 6 5 7 3 9 6 5 7 9 6 6 5 7 9 6 6 5 7 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7 36 8 21 9 13 10 12 11 17	12 25 13 34 14 42 15 49 16 55	18 00 19 04 21 09 22 08
+30°	SET	h m 8 20 8 59 9 42 11 19	12 11 13 05 14 00 15 51	16 47 17 44 18 43 19 44 20 47	21 52 22 56 23 59 :: 0 57	1 49 3 35 4 29 2 35	5 03 5 38 6 14 6 53 7 34
+	RISE	h m 22 13 23 11 0 06 0 58	1 46 3 3 10 4 19 19	4 51 5 23 6 28 7 05	7 46 8 33 9 26 11 29	12 36 13 42 14 48 15 52 16 54	17 56 18 57 19 58 20 58 21 55
+20°	SET	h m 8 35 9 18 10 04 11 42	12 33 13 25 14 16 15 08 15 59	16 51 17 43 18 37 19 33 20 31	21 32 22 34 23 35 35 34	1 29 2 19 3 05 47 42	5 07 5 47 6 27 7 10 7 55
+	RISE	h m 21 55 22 50 23 44 0 35	1 24 2 09 3 31 09	4 45 5 21, 5 58 6 37 7 18	8 03 8 54 9 49 10 49 11 51	12 54 13 56 14 57 15 56 16 53	17 50 18 46 19 42 20 38 21 33
LAT.	EVENT	Apr. 1 3 8 5	109876	11 13 14 15 15 15	16 17 19 20	52322	30 30 30 30 30 30 30 30 30 30 30 30 30 3

MOON

E

LAT. +20° +30° +35° +40° +40° +44° +50° +50° +54° + EVENT RISE SET RISE	June	69			•	(A)	٩	
20° +30° +35° +40° +44° +50° +54° SET RISE SE	-	200	4 0	00876 109876	122242	11 11 20 20	222222	323828
+30° +35° +40° +44° +50° +54° 54° ET RISE SET RISE RISE SET RISE SET RISE SET RISE SET RISE SET RISE SET RISE		0 03		1 50 3 25 4 34 3 47	5 27 6 27 7 31 8 37 9 42	10 45 11 45 12 42 13 37 14 32	15 26 16 21 17 16 18 10 19 03	19 53 20 39 21 22 22 02 39
30° +35° +40° +44° +50° +54° +54° SET RISE RISE SET RISE RISE SET RISE SET RISE SET RISE	1	10 50		14 13 15 06 16 03 17 03 18 06	19 12 20 16 21 17 22 13 23 03	23 47 23 23 0 28 1 07 1 45	2 23 3 45 5 18	6 08 9 8 7 7 6 3 4 5 20 3 4 5 20 3 4 5 20
+35°+40°+44°+50°+54°ETRISESETRISESETRISE	45	· · · · · · · · · · · · · · · · · · ·		1 51 2 22 3 33 4 16	5 06 6 03 8 16 9 25	10 32 11 37 12 40 13 40	15 39 16 38 17 36 18 32 19 26	20 16 21 01 22 17 22 17 22 50
35° +40° +44° +50° +54° SET RISE SET RISE SET RISE		10 34 11 29		14 14 15 13 16 14 17 19 18 27	19 35 20 40 21 40 22 32 23 17	23 57 1 07 1 40	2 13 2 49 4 09 4 55	5 45 6 37 7 32 8 26 9 21
+40°+44°+50°+54°ETRISESETRISESETRISE		· 0 25		1 51 2 20 2 51 3 26 4 06	4 53 5 50 6 54 9 15	10 25 11 33 12 38 13 42 14 44	15 46 16 47 17 48 18 46 19 40	20 29 21 13 21 52 22 26 22 56
40° +44° +50° +54° SET RISE SET RISE RI		10 25 11 22		14 15 15 17 16 21 17 29 18 38	19 48 20 54 21 52 22 43 23 26	0 03 0 36 1 06 1 37	2 07 2 40 3 16 4 41	5 31 6 24 7 20 8 16 9 13
ET RISE SET RISE SET RISE SET RISE		:00 :46:		1 52 2 17 2 17 2 45 3 17 3 54	4 39 5 34 6 38 9 03	10 17 11 28 12 37 13 44 14 49	15 54 16 59 18 01 19 01 19 56	20 45 21 28 22 04 23 04
44° +50° +54° SET RISE SET RISE SET RISE		10 14 11 14 14 14		14 17 15 21 16 29 16 29 17 40 18 52	20 04 21 10 22 55 23 35		2 01 2 31 3 04 4 26	5 15 6 09 9 04 04 04
ET RISE SET RISE SET RISE				1 52 2 15 2 40 3 43	4 26 5 19 6 23 8 53	10 09 11 24 12 36 13 46 14 54	16 02 17 09 18 14 19 15 20 11	21 00 21 41 22 16 23 10 23 10
50° +54° SET RISE SET RISE	יונ	10 05 05 05 05 05 05 05 05 05 05 05 05 05	-	14 18 15 25 16 36 17 50 19 05	20 18 21 25 22 21 23 07 23 44		1 55 2 22 3 29 4 11	5 54 5 54 6 53 8 55 8 55
+54° +54° ET RISE	ц Ч	000		1 53 2 11 2 11 3 23 3 23	4 01 4 51 5 56 8 33	9 55 11 16 12 33 13 49 15 03	16 16 17 28 18 38 19 42 20 39	21 21 22 25 25 23 23 23 23 23 23 23 23 23 23 23 23 23
54° 54° SET RISE	1	8 40 9 46 10 53		14 19 15 32 16 49 18 08 19 28	20 45 21 53 22 47 23 28 : : :	0 00 0 25 0 46 1 05 1 24	1 44 5 33 05 44 44 5 33 44 5 33 44 5 5 5 5 44 5 5 5 5	4 32 5 27 6 29 8 40
ET RISE	h h	0 20		1 54 2 23 3 06 06	3 40 5 31 6 50 8 16	9 44 11 09 12 31 13 52 15 10	16 28 17 45 18 58 20 06 21 04	21 51 22 27 22 54 23 15 23 32
RISE		9 31 9 31 10 42		14 21 15 38 16 59 16 59 18 24 19 49	21 09 22 17 23 09 23 46	0 13 0 33 1 05 1 20	1 35 2 15 3 20 3 20	5 04 5 04 7 17 8 27
+	acina m d	* 7 8 7 7 8 8 7 8 8 7 8		1 55 2 01 2 09 2 18 2 33	2 56 3 35 4 38 6 04 7 42	9 21 10 56 12 28 13 57 15 24	16 52 18 18 19 41 20 57 21 59	23 12 23 31 23 31 23 31 23 31 23 52
+60°	0	7 40 8 59 10 19		14 24 15 50 17 20 18 55 20 32	22 01 23 11 23 56 	0 38 0 49 1 04 1 11	1 18 1 28 1 59 2 28	5 24 3 6 5 24 3 6 6 24 4 3 8 02

MOON

LAT.	EVENT	July 1 2 3 5	6 8 9 10	11 13 13 13 13 13 13 13 13 13 13 13 13 1	16 17 18 19 20	@ 23 25 25 25	33328 33328 313328 312 312 312 312 312 312 312 312 312 312
÷	RISE	h m 23 14 23 48 23 48 0 23 0 59	1 38 2 22 3 12 5 11	6 18 7 26 8 32 9 35 10 35	11 32 12 27 13 22 14 17 15 11	16 05 16 58 17 49 18 36 19 20	20 01 20 39 21 48 22 48 22 23 22 57
+20°	SET	h m 10 24 11 14 12 03 12 03 13 48	14 45 15 46 16 50 17 56 19 00	20 00 20 54 21 42 23 26 23 07	23 45 	2 28 3 15 5 47 64 5 47	6 39 7 30 9 09 10 48
+	RISE	h m 23 21 23 51 23 51 0 21 0 52	1 27 2 06 3 45 4 47	5 55 7 06 8 17 9 26 10 31	11 33 12 34 13 33 13 33 14 32 15 30	16 27 17 21 18 12 18 58 18 58 19 40	20 17 20 51 21 23 22 22 22
+30°	SET	h т 10 15 11 09 12 03 13 58	14 59 16 05 17 12 18 20 19 23	20 21 21 11 21 54 21 54 23 33 23 08	23 41 0 50 1 27	5 26 2 208 5 320 5 26	6 20 9 03 10 51 10 51
+	RISE	h m 23 25 23 52 23 52 0 20 0 49	1 20 1 57 2 40 3 32 40	5 42 6 55 8 09 9 20 10 28	11 34 12 38 13 40 14 41 15 42	16 40 17 35 18 26 19 11 19 51	20 27 20 58 21 27 21 27 22 22 22 49
+35°	SET	h m 10 09 11 06 12 03 13 02 14 03	15 08 16 15 17 25 18 33 19 37	20 33 21 20 22 01 22 36 23 36	23 39 .0 10 0 42 1 17	1 56 2 39 3 27 4 18 5 13	6 09 8 03 8 59 9 55 10 52
+	RISE	h m 23 29 23 54 0 18 0 44	1 13 1 47 2 27 3 17 4 17	5 27 6 42 7 59 9 14 10 26	11 35 12 42 13 47 14 52 15 55	16 55 17 51 18 42 19 26 20 05	20 38 21 07 21 33 22 21 22 21 22 21 22 21
+40°	SET	h m 10 03 11 02 12 03 13 05 14 09	15 17 16 28 17 40 18 49 19 52	20 46 21 31 22 08 22 40 23 09	23 37 0 04 0 34 1 06	1 42 2 23 3 11 4 03 4 59	5 57 6 56 8 55 8 55 9 54 10 54
+	RISE	h m 23 34 23 55 0 17 0 40	1 06 2 15 3 03 4 02	$\begin{array}{c} 5 & 13 \\ 6 & 31 \\ 7 & 50 \\ 9 & 08 \\ 10 & 24 \end{array}$	11 36 12 46 13 54 15 02 16 07	17 09 18 06 18 57 19 40 20 17	20 48 21 14 21 38 22 00 22 21 22 43
+44°	SET	h m 9 57 10 59 12 02 13 07 14 15	15 25 16 39 17 54 19 04 20 07	20 59 21 41 22 15 22 44 23 10	23 34 23 59 0 26 0 55	1 29 29 29 29 29 29 29 29 29 29 29 29 29	5 46 6 47 8 51 9 53 10 56
Ŧ	RISE	h m 23 41 23 58 0 15 0 33	0 54 1 20 2 36 3 34	4 46 6 08 7 34 8 58 10 19	11 37 12 53 14 07 15 19 16 29	17 35 18 34 19 24 20 06 20 39	21 06 21 28 21 28 22 04 22 21 22 38
+50°	SET	h m 9 47 10 54 12 02 13 12 14 25	15 41 17 00 18 19 19 32 20 34	21 22 21 59 22 59 22 51 23 11	23 30 23 50 0 11 0 36	1 06 1 43 2 27 4 20	5 24 6 30 7 37 8 44 9 51 10 59
+	RISE	h m 23 47 0 00 0 14 0 28	0 44 1 05 2 13 3 10	4 23 5 50 7 20 8 50 10 16	11 39 12 59 14 17 15 34 16 48	17 57 18 58 19 49 20 28 20 58	21 21 21 39 22 34 22 34 22 34
54°	SET	h m 9 38 10 49 12 02 13 16 13 33	15 54 17 18 18 41 19 57 20 57	21 42 22 14 22 38 22 38 23 12 23 12	23 27 23 43 0 00 0 20	0 46 2 03 3 58 3 58	5 06 6 16 7 27 8 38 9 49 11 01
Ŧ	RISE	h m 23 59 0 05 0 10 0 17	0 25 0 36 0 54 1 24 2 15	3 33 5 10 6 53 8 33 10 09	11 41 13 10 14 38 16 05 17 29	18 47 19 53 20 43 21 16 21 37	21 51 22 01 22 08 22 14 22 20 22 20
+60°	SET	h m 9 21 10 41 12 01 13 23 14 50	16 21 17 56 19 30 20 51 21 48	22 23 22 44 22 57 23 06 23 14	23 21 23 28 23 36 23 48 23 48	0 04 0 30 2 03 12 03	5 48 5 48 7 07 9 46 11 06

MOON

(}

MOON

LAT.	EVENT	Aug.	۲	Ø		Ð	Ś
	E	-0040	00 8 7 6 10 9 8 7 6	11 13 15 15	16 117 119 20	22 23 23 23 23 23 25	33338238
Ϋ́	RISE	h m 23 34 1 00 1 51	2 50 3 54 5 02 6 11 7 17	8 20 9 21 10 19 11 15 12 11	13 06 14 01 15 46 15 46 16 34	17 19 18 01 18 39 19 15 19 50	20 24 20 58 21 33 22 11 22 11 23 41
+20°	SET	h m 11 39 12 33 13 31 14 31 15 35	16 39 17 41 18 39 19 31 20 18	21 01 21 42 22 21 23 01 23 43	0 26 1 12 2 00 2 51	3 43 5 26 6 16 7 06	7 55 8 45 9 35 10 27 11 22 12 20
т	RISE	h m 23 24 0 00 1 30	75 54 7 05 7 05	8 14 9 20 10 23 11 25 12 25	13 25 14 22 15 18 16 09 16 57	17 40 18 18 18 53 19 25 19 25	20 24 20 24 21 25 22 37 23 21 23 21
+30°	SET	h 11 47 112 45 112 45 113 47 14 52 15 58	17 03 18 03 18 58 19 45 20 27	21 04 22 50 23 50 23 27	0 50 2 27	6 58	7 52 9 41 9 41 10 38 11 37 11 37
+	RISE	h m 23 19 23 52 23 52 1 17	2 12 5 42 6 58 8 58	8 10 9 20 10 26 11 31 12 34	13 35 14 35 15 31 16 23 17 10	17 52 18 28 19 01 19 30 19 30	20 25 20 25 21 20 22 51 23 23 23 09
+35°	SET	h m 11 51 12 52 13 57 13 57 15 04 16 12	17 17 18 16 19 08 19 53 20 32	21 06 21 39 22 10 22 10 23 17	23 55 37 1 23 2 14	3 08 5 004 6 54 6 54	7 50 8 47 9 45 10 44 11 46 12 51
÷	RISE	h m 23 12 23 43 23 43 0 19 1 03	1 56 3 01 4 15 5 32 6 51	8 06 9 19 10 29 11 37 12 43	13 48 14 49 15 47 16 39 17 25	18 05 18 40 19 10 19 37 20 02	20 25 20 50 21 15 21 43 22 16 22 16 22 55
+40°	SET	h m 11 56 13 01 14 08 15 18 16 27	17 33 18 31 19 21 20 02 20 37	21 08 21 37 22 06 23 35 23 07	23 42 1 07 1 58	2 53 5 49 6 49	7 48 8 48 9 49 10 51 11 56 13 04
+	RISE	h m 23 07 23 34 0 08 0 49	1 42 2 46 5 22 6 43	8 03 9 19 10 32 11 43 12 52	13 59 15 03 16 02 16 54 17 40	18 18 18 51 19 18 19 43 20 05	20 26 20 47 21 10 22 05 22 05
+44°	SET	h m 112 00 113 08 114 18 115 30 115 30	17 48 18 45 19 32 20 10 20 10	21 10 21 36 22 01 22 28 22 28 22 57	23 30 0 52 1 43	6 5 4 3 3 6 4 40 6 4 40	7 46 8 49 9 52 10 58 13 16
+	RISE	h m 22 57 23 19 23 47 	1 14 2 19 5 03 6 30	7 56 9 18 10 37 11 54 13 09	14 21 15 28 16 30 17 23 18 06	18 42 19 10 19 33 19 53 20 10	20 27 21 21 22 21 22 21 22 21 22 21 22 22 19
+50°	SET	h m 12 09 13 21 15 54 17 09	18 16 19 11 19 53 20 26 20 52	21 14 21 34 21 54 22 15 39	23 07 23 42 23 42 0 24 1 15	2 13 2 16 5 28 6 35 6 35	7 43 8 50 9 59 11 10 12 23 13 38
+	RISE	h n 22 48 23 07 23 30 0 03	0 50 1 54 6 46 6 19	7 50 9 18 10 42 13 03 13 22	14 39 15 50 16 54 17 47 18 30	19 26 19 26 19 46 20 01 20 15	20 28 20 40 21 11 21 31 21 31 21 31
54°	SET	h h 12 15 13 33 14 53 16 15 17 33	18 40 19 32 20 10 20 38 20 38 20 38	21 16 21 32 21 32 21 48 22 05 22 24	22 48 23 19 0 00 0 50	1 50 2 56 4 06 5 17 6 28	7 40 8 51 10 04 11 20 11 20 13 57
+	RISE	h п 22 32 22 56 23 18 23 18 23 57	1 01 2 30 5 58	7 39 9 16 10 50 13 50	15 16 16 37 17 48 17 48 18 43 19 20	19 44 19 59 20 10 20 18 20 24	20 29 20 35 20 41 20 49 21 00 21 00
+60°	SET	h m 12 28 13 55 13 55 15 26 16 58 18 25	19 34 20 19 21 02 21 13	21 22 21 29 21 36 21 36 21 29 21 29 21 29	22 09 23 05 23 55 23 55	1 00 4 53 6 15 6 15	7 34 8 54 10 15 11 39 13 07 14 37

MOON

°0	SET	h m 16 05 17 20 18 14 18 47 19 07	19 20 19 29 19 36 19 43 19 51	20 00 20 12 20 31 21 01 21 46	22 47 .0 00 1 19 2 40	 4 01 5 21 6 41 8 03 9 27 	10 54 12 24 13 53 15 12 16 12
+60°	RISE	h m 21 47 22 37 23 54 1 30	3 15 6 41 8 18 9 54	11 27 12 58 14 24 15 41 16 42	17 24 17 51 18 09 18 20 18 28	18 34 18 34 18 44 18 50 18 50	19 06 19 21 19 24 20 25 21 30
\$	SET	h m 15 15 16 25 16 25 18 05 18 37	19 00 19 19 19 35 19 35 20 08	20 26 20 49 21 18 22 42 22 42	23 40 1 54 3 05	4 17 5 29 6 41 7 55 9 10	10 28 11 47 13 04 14 16 15 17
+54°	RISE	h m 222 38 23 33 0 45 2 10	3 43 5 15 6 46 9 14 9 40	11 03 12 23 13 39 15 45	16 31 17 06 17 32 17 53 18 09	18 23 18 36 18 48 19 01 19 16	19 35 20 00 22 34 22 25 22 25
50°	SET	h m 14 52 16 00 16 59 17 45 18 21	18 50 19 14 19 35 19 55 20 16	20 39 21 07 21 39 22 19 23 08		4 26 5 33 6 41 7 51 9 01	10 14 11 29 12 42 13 51 14 52
+2	RISE	h m 23 01 23 57 1 08 2 29	3 56 5 24 6 49 8 12 9 33	10 51 12 07 13 18 14 23 15 20	16 06 16 44 17 14 17 39 17 59	18 17 18 34 18 50 19 07 19 27	19 50 20 19 21 46 22 49
+44°	SET	h m 14 25 15 32 16 31 17 22 18 03	18 38 19 08 19 35 20 01 20 27	20 55 21 27 22 04 23 36	$\begin{array}{c} & \vdots \\ & 0 & 31 \\ & 1 & 30 \\ & 2 & 31 \\ & 3 & 33 \end{array}$	 4 36 5 38 6 41 7 45 8 51 	9 58 11 07 12 17 13 23 14 23
+	RISE	h m 23 28 252 1 34 2 52	 4 13 5 34 6 53 8 10 9 24 	10 37 11 47 12 54 13 56 14 51	15 39 16 19 16 53 17 22 17 47	18 10 18 31 18 52 19 15 19 39	20 07 20 41 21 23 22 15 23 17
+40°	SET	h m 14 11 15 17 16 17 17 09 17 53	18 31 19 04 19 34 20 03 20 33	21 04 21 39 22 18 23 02 23 52		4 41 5 41 6 41 7 42 8 45	9 50 10 56 12 03 13 08 14 08
+	RISE	h m 23 43 1 49 3 04	4 21 5 39 6 55 8 08 9 19	10 29 11 36 12 41 13 41 14 36	15 24 16 06 16 42 17 13 17 41	18 06 18 30 18 54 19 19 19 46	20 17 20 53 21 37 22 30 22 30 23 32
+35°	SET	h m 13 56 15 00 16 01 17 42	18 24 19 00 20 07 20 40	21 14 21 51 22 33 23 18 	0 08 1 01 2 53 3 50	5 44 5 44 6 41 7 39 8 39	9 40 10 44 11 48 12 52 13 52
+	RISE	h m 23 58 57 0 57 3 17	4 31 5 45 6 57 8 07 9 14	10 20 11 25 12 27 13 25 14 19	15 08 15 51 16 29 17 03 17 33	18 02 18 29 18 55 19 23 19 53	20 27 21 06 21 52 22 46 23 48
+30°	SET	h m 13 43 14 46 15 47 16 43 17 33	18 17 18 57 19 34 20 09 20 45	21 23 22 02 22 45 23 32 	0 22 1 15 3 04 3 58	4 53 5 47 6 41 7 37 8 33	9 32 10 33 11 35 12 38 13 38
+	RISE	h m 0 12 1 11 3 28 3 28	5 50 6 5 50 8 05 9 10	10 13 11 15 12 14 13 12 14 05	14 54 15 39 16 18 16 54 17 27	17 58 18 27 18 57 19 27 20 00	20 36 21 18 22 06 23 00
+20°	SET	h m 13 21 14 23 15 24 16 22 17 16	18 05 18 51 19 33 20 14 20 55	21 37 22 21 23 07 23 55 	0 46 1 37 2 29 3 21 4 12	5 02 5 52 6 41 8 24	9 18 10 15 11 14 12 14 13 14
+	RISE	h m 1 35 2 40 3 47	4 54 5 59 7 02 8 03 9 02	10 00 10 57 11 54 12 49 13 41	14 31 15 17 16 00 16 39 17 16	17 51 18 25 18 59 19 34 20 12	20 52 21 38 22 28 23 25
LAT.	EVENT	Sept. 1 3 3 5	6 8 10 10	₩ 112 12 13 13 13 13 13 13 13 13 13 13 13 13 13	16 17 19 20	@ 21 23 25 25	26 23 30 30

(}

MOON

	_						
a	SET	h m 16 50 17 13 17 27 17 37 17 37	17 51 17 57 18 05 18 05 18 16 18 31	18 56 19 34 20 31 23 00	$\begin{array}{c} 0 & 21 \\ 0 & 21 \\ 1 & 42 \\ 3 & 03 \\ 24 \end{array}$	$\begin{array}{c} 5 & 46 \\ 7 & 11 \\ 8 & 39 \\ 10 & 10 \\ 11 & 41 \end{array}$	13 06 14 12 14 56 15 21 15 37 15 47
+603		57 1 337 1 01 1 1	541 18 118 118 11 01 11	226 1 236 1 18 22 2 18 22 1		000 426 1 1 1	: 20 112
	RISE	ч 2 2 2 1 4 2 2 4 0 6 4 4 0 6 4 4 6 6 4 6 6 6 4 6 6 6 6	2 C 8 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	13 15 15 15 15 15 15 15 15 15 15 15 15 15	99999 19999	17 0 17 0 17 1 17 0 17 1 17 0	2322018
	SET	39 33 39 33 39 39 39 39 39 39 39 39 39 3	7 54 8 10 8 27 8 48 9 14	9 48 9 32 2 30 3 39	0 50 2 02 3 14 4 27	5 41 6 57 8 15 9 35 10 55	2 10 3 15 4 04 5 08 5 08 5 28
+54°		111166 P	118 118	23 23 23 23 23 20 23	•		15 1 13 13 13 13 13 13 13 13 13 13 13 13 1
1	RISE	h 1 11 23 43 43 12 42 42 42 12	5 41 7 09 8 35 9 59 11 20	12 34 13 38 14 29 15 08 15 37	15 59 16 17 16 31 16 44 16 56	17 09 17 23 17 23 17 23 18 03 18 33	19 16 20 14 22 51 22 51
	E	315524B	56 33 35 35	52288	28 20 230	38 38 34 34 34	18 222 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4 9
50°	SET	h 117 116 117 117	71 81 19 19	32222	:-004	29890	1222442
+	RISE	ы 53 18 18	45 25 00 00 00	11 12 12 12 12 12 12 12 12 12 12 12 12 1	482462	13 55 55 55 55	44 50 31:09 31:09
	R	4:0-04	5 8 11 11	26442	15 16 16 16	71 18 18 18	19 21 23 19 23 23
	SET	33 35 59 E	52 53 58 58 58 58	21 19 19	32420	5644 659 69	17 20 36 37 07
4	SI	h 15 11 17 17	17 18 19 19	: 3222	0-064	5 6 10 10	1212121
ŀ	RISE	E :65805: B	38 38 38 38	44 85 85 19 85 85 85 85 85 85 85 85 85 85 85 85 85	25 51 36 37	$^{19}_{21}$	$\begin{array}{c} 10 \\ 17 \\ 17 \\ 17 \\ 17 \\ 17 \\ 17 \\ 17 \\$
	RI	ч :о− <i>ю</i> 4	5 9 10 9 8 0 10 9 8 0	122244	15 16 16 16	17 18 18 19	20 23 23 23 23
	SET	30242a	13029	54 33 33 33 33	31331	33 36 56 84 18 85 85	8265988
÷9	S	h 17 15 15 17 17	18 19 20 20	: 3222	0-064	50180	1222642
ŀ	RISE	28 13 74: B	55 55 55 55 55 55 55 55 55 55 55 55 55	45 6 2829	5140 583 1042 583 583 583 583 583 583 583 583 583 583	35318823	25 25 31 55 56
	RI	ч∶0-∞4	5 8 10 10 10	120141	15 16 16 16	17 18 18 19	22 23 23 23
	E	щ 135 29 29	01 34 08 25 25	10 52 52 52 52	44 33 33 33 33	$31 \\ 33 \\ 33 \\ 33 \\ 33 \\ 33 \\ 33 \\ 31 \\ 32 \\ 32$	46 48 53 53
+35°	SET	н 15 15 15 17 17	18 19 20 20	: 33212	0-064	50180	112214
+	RISE	ш 57 08 33 33	52 52 43 12 000 243	11 12 12 12 12 14 12 12 14 12 14 14 14 14 14 14 14 14 14 14 14 14 14	58 33 04 58 33 04	SS 28 25	41 46 55 05 05
	RI	τ :00ω4	5 8 10 10	12004	15 16 16 16	17 17 18 19 19	23 23 23 23 23
	SET	п¥\$26652	03 39 37 37	24 06: 05 06: 05	355 39 39 39 39	38238	46 02 33 33 10 21 33 33 10 21 33
30°	SI	h 154 156 116 116 117	18 19 20 20	21 23 0	0-0.04	59286	112214
+	RISE	36 28 18 00 B	58 43 01 58 49	01 57 36 36	58 59 58 58 58 58	02 16 30 29 02 16 30 29	55 55 59 06
	RI	^р 10 10 70 4	5 6 10 10 10	112214	14 15 16 16 16	17 18 18 19 20	20 21 22 1
0	SET	855 24 11 24 25 24 24 24 24 24 24 24 24 24 24 24 24 24	58 228 58 28 58 58 58 58 58 58 58 58 58 58 58 58 58	38 30 32 33	45 35 35 35 35 35 35 35 35 35 35 35 35 35	0601188 0801188	350009
+ 20°	SI	441 151 161 171 171	18 19 20 20 20	21 23 23	-0004	50100	01122254
+	RISE	43 6 3 3 3 6 B	444444	33 33 33 33 33 25 25 25	38 51 53 59	33 35 35 35	19 19 25 27
	RI	40-004	59286	132210	15 15 16 16	17 18 19 20	21 23 10 1
	Ę	-004v	6 8 10 10	1121131131131131131131131131131131131131	110 117 20 20	522322	33028230
LAT.	EVENT	ن	۲	(PA)		Ð	69
-	ш	Oct.					
				71			

	SET	5 00 5 13 5 21 5 21	5 34 5 53 7 25 9 20	0 38 1 59 3 20 5 11	2 01 3 23 6 14 7 46	9 20 2 51 3 29 3 29	3 47 3 58 4 11 4 11
°09+		166515 ^ћ	110 117 119 119	0: 23 0		901256	<u> </u>
+	RISE	EE8463	0522031	29225	3326106	64 a 6 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 7 8	33 12 12 21 21 21
	2	ч-049r	e 11554	41 44 44 4 4 5	15 15 15 15 15	15 116 117 118 119	23 23 23
	SET	E\$0464	55555	5: 432	36 15 15 15 15	8888454 8888454	14 53 08 36 22 22 22
+54°	S	16 16 15 h	17 19 20	21 23 23 0	06400	22190	<u> </u>
+	RISE	847498E	22434	533366	99 16 16 16 16 16 16 16 16 16 16 16 16 16	33 15 33 33	20 20 20 20 20
	RI	40401p	8 11 13 13 13	214141	15 15 15 16 16	16 17 18 19 20	23 0: 23
	SET	E496562	30 39 39 38	56 56 04:	122240	$^{18}_{240}$	823882
+50°	SI	н 15 116 116 116 116	17 18 118 119 20	21 23 1	004NL	8 10 12 12	26644
+	Ε	18 8 3 1 5 H B	43 59 43	19 10 10 10 10	02 56 21 21	53 36 31 57	201: 40 201: 40
	RISE	ц-α4 <i>2</i> 7	8 11 12 12 12 12	66444	15 15 16 16	$^{16}_{19}$	$^{-1}$: 33
	Н	1952533B	52 05 05 05 05	131:08	4325916	55 07 11 00	33 33 33 33 33 33 33 33 33 33 33 33 33
° 4	SET	h 15 115 116 116	$^{11}_{210}$	10°	00400	10	266644
+44°	щ	E402842	16 15 15 15 15	524 54 18 18 18	40 10 10 10 10 10 10 10 10 10 10 10 10 10	201047	36 52 06 20
	RISE	F100401	80012	20044	16 15 15	118 119 210 210	⁵ 1: 33
	L L	2862393B	23822	119 118 118	3322198	46 58 58 58 58 58 56 56 56 56 56 56 56 56 56 56 56 56 56	203338
0	SET	425156	210 20 20 21 21 21 21 21 21 21 21 21 21 21 21 21	10^{-1}	00400	P 8 9 11	26644
+40°	щ	55 55 33 20 9 10 10 10 10 10 10 10 10 10 10 10 10 10	00115100	3126161	51 249	31 19 33 33	58 19 19
	RISE	400400	800115	210124	16 15 15	$^{11}_{210}$	$^{-1}$: 33
	E I	383325JB	208468	33 24 24	23 19 23 23 23 23 23 23 23 23 23 23 23 23 23	361333	31 235
2°	SET	ћ 115 116 117	21 20 19 18 21 20 20 21	10^{-1}	00400	$\begin{array}{c} & & 2\\ & & 8\\ & & 11\\ & & 11\end{array}$	226144
+35°	щ	433245B	5888244	33 33 33	052569	45 333 45	56 05 113 19
	RISE	F00400	P 8 6 0 11	26644	422361	11 19 20 21 21	5 ¹⁰ : 5
	Ч	828 H 833 333 24	49 55 55 28	45 40 33: 40 29	11 11 12 12 12 12 12 12 12 12 12 12 12 1	18 223 19 19	3355586
ء ا	SET	h 115 116 117	520218	10: 232	0,0400	v 8 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	22664
+30°	ш	33262B	3445	29 29 29 29	58 59 12 34 12 34	51 58 58	12:12:08
	RISE	400400	C 8 9 0 11	22664	412512	218 12	23 (0 1 0 2 1 0
		0293888 0293888	1236	05 57 37 37	58 008 58 58	280502	357 335
2	SET	h 151551515151515515515515515515515515551551555155515555	221 18 22 19 22 12 22 12 2 2 2	23 23 23 0 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	004555 01-005	00000 00000	122224
+20°	Е	26229 26228	06151425	2349	31 31 30 30	122218	21 22
	RISE	400400	C8001	1212124	411911	22118	23 53 5 5 - 0 - 5 7 - 7
		-0040	008970	112212	20118	552322	328228
E.	EVENT	۲	1	 @	0C	<u>1111111111111111111111111111111111111</u>	89 100 100 100 100 100 100 100 100 100 10
LAT.	EV	Nov.					
		Z		70			

MOON

E

72

MOON

LAT.	EVENT RI	Dec. 0 2 2 1		11 11 12 12 13 12 14 13 15 14 16 13	16 14 17 15 18 16 19 16 19 16 10 17	21 19 22 23 23 21 25 23 23 21 25 23 23 21 23 21 24 21 25 22 25 2	₹ 26 27 30 31 28 29 29 29 29 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20
+20°	RISE SET	m h m 16 15 15 15 13 15 56 11 11 16 39 12 10 17 26 39 18 16 17 26	04 19 57 20 330 21 10 22	46 23 28 21 ··· 54 0 17 28 1 06 02 1 56	39 2 48 20 3 43 20 3 43 59 5 43 58 6 47	02 7 50 07 8 50 13 9 44 16 10 33 16 11 17	.: 11 58 14 12 37 11 13 15 07 13 55 04 14 36 01 15 21
+	RISE	^н ¹ 5 22 6 30 3 30 3 30 3 30 3 30 3 30 3 30 5 27 4 30 5 27 4 30 5 27 4 30 5 27 4 30 5 27 4 30 7 5 27 7 5 5 7 5 7 5 7 5 7 5 7 7 7 7 7 7 7 7	8 0 0 0 1 1 0 0 8 0 0 1 1 0 0 0 1 1 0 0 0 0	11 59 12 29 12 58 13 27 13 56	14 29 15 05 15 47 16 36 17 33	18 38 19 46 20 56 23 09	0 13 2 17 3 18 4 19
30 [±]	SET	h m 15 07 15 43 16 22 17 05		23 18 1 05 2 00	2 56 3 56 4 59 6 05 11	8 14 9 12 10 03 11 26	12 02 13 09 13 43 14 20
θ+	RISE	h m 3 25 4 31 6 41 7 44		12 06 13 06 13 26 13 53	14 23 14 56 15 36 16 23 17 19	18 23 19 33 20 45 21 57 23 05	0 12 2 22 3 26 3 26
35°	SET	h m 15 02 15 35 16 51 16 52		23 12 1 04 2 02	3 01 5 10 6 17 7 25	8 29 9 25 10 14 11 32	12 04 12 35 13 35 13 35 14 11
ч +	RISE	h 33 5 5 4 38 6 5 5 4 38 6 5 5 4 38 8 6 5 5 6 7 8 10 8 6 5 7 8 10 8 10 8 10 8 10 8 10 8 10 8 10 8 10		12 14 12 39 13 25 13 49	14 16 14 46 15 23 16 08 17 02	18 07 19 19 20 34 21 48 23 01	3 36 11 3 36 11 3 36 11
40°	SET	h m 14 57 15 27 16 00 16 38 16 38		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 07 5 23 6 32 41 41	8 45 9 41 10 27 11 05 11 38	12 06 12 34 13 01 13 29
+	RISE	h 5 5 4 3 7 08 8 14 8 14 8 14 8 14 8 14 8 14 8 14 8 1		12 21 12 43 13 04 13 25 13 46	14 10 14 37 15 11 15 53 16 47	17 52 19 05 20 23 21 41 22 57	0 11 0 11 2 34 55 75
- 7	SET	h m 14 52 15 19 15 49 16 25 16 25		22 59 1 03 2 06	3 12 4 21 5 33 6 46 7 57	9 01 9 55 10 38 11 14 11 43	12 09 12 53 13 50 13 50
+	RISE	h m 3 39 4 57 6 15 7 31 8 43	• • • •	12 34 12 52 13 08 13 23 13 40	13 58 14 21 14 49 15 27 16 18	17 23 18 40 20 03 21 27 22 50	
50°	SET	h H 15 04 15 29 16 00		22 47 23 54 2 10 2 10	3 21 4 36 5 53 7 11 8 26	9 30 10 21 11 00 11 29 11 53	12 13 12 31 13 10 13 33
Ŧ	RISE	ь 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15		12 45 12 59 13 11 13 23 13 35	13 49 14 07 14 31 15 04 15 52	16 58 18 18 19 47 21 16 22 44	0 08 2 53 1 31
54°	SET	h m 14 36 14 53 15 13 15 13 15 14		22 38 23 49 2 13 2 13	3 29 4 48 6 11 7 34 8 51	9 55 10 43 11 17 11 42 11 42 12 01	12 16 12 30 12 59 13 18
Ŧ	RISE	h 3 5 2 2 2 2 2 2 2 2 2 0 2 0 2 0 2 0 2 0 2 0		13 06 13 12 13 15 13 16 13 21 13 25	13 31 13 40 13 53 14 15 14 55	16 01 17 31 19 12 20 54 22 32	0 06 3 10 4 42
+60°	SET	h H 14 23 14 30 14 40 14 55 14 55		22 19 23 38 23 38 0 58 2 19	6 13 9 22 48 88 48	10 53 11 32 11 54 11 54 12 07 12 16	12 22 12 28 12 33 12 40

ECLIPSES DURING 1983

In 1983 there will be four eclipses, two of the Sun (one total and one annular) and two of the Moon (one partial and one penumbral).

1. June 11: Total Eclipse of the Sun

This is entirely an Eastern Hemisphere event. Also, the path of totality remains south of the equator. It begins in the Indian Ocean, crosses Java, Celebes, New Guinea, and ends in the South Pacific Ocean near the New Hebrides. The path of totality is in contact with Earth from $3^{h}11^{m}$ to $6^{h}14^{m}$ UT on June 11.

2. June 25: Partial Eclipse of the Moon

This is generally visible from the Pacific, South America, and North America except the northern part. Also, the end of the umbral phase will not be visible from the northeastern part of either North America or South America. Magnitude of eclipse* = 0.339

Moon enters penumbra	05 ^h	43.0 ^m	UT
Moon enters umbra	07	14.4	
Middle of eclipse	08	22.3	
Moon leaves umbra	09	30.1	
Moon leaves penumbra	11	01.6	

- 3. December 4: Annular Eclipse of the Sun
 - The path of annularity is confined to the North Atlantic Ocean and central Africa near the equator. A partial eclipse is visible from nearly all of Africa, much of Europe and the Near East, northeastern South America, and the Atlantic Provinces of Canada. In the latter case the Sun rises partially eclipsed, but this lasts only a few minutes. The path of annularity is in contact with Earth from $10^{h}47^{m}$ to $14^{h}13^{m}$ UT.
- 4. December 19/20: Penumbral eclipse of the Moon This is generally visible from North America and Europe, and much of Africa and South America. Penumbral magnitude of the eclipse* = 0.914

Moon enters penumbra	23 ^h	45.9 ^m	UT
Middle of eclipse	01	49.0	
Moon leaves penumbra	03	52.3	

^{*}The magnitude of a partial or total lunar eclipse is the fraction of the lunar diameter within the umbra of Earth's shadow at greatest obscuration, measured along the common diameter. Hence the magnitude ≥ 1 for a total lunar eclipse. For a penumbral lunar eclipse, the magnitude is the fraction of the lunar diameter within the penumbra at greatest obscuration.

OCCULTATIONS BY THE MOON

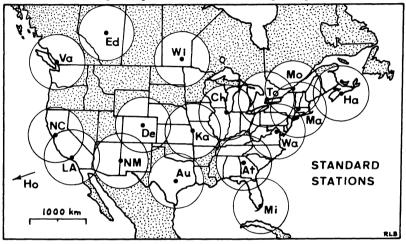
Predictions by the International Lunar Occultation Centre Tokyo, Japan

The Moon often passes between Earth and a star, an event called an occultation. During an occultation a star suddenly disappears as the east limb of the Moon crosses the line between the star and observer. The star reappears from behind the west limb some time later. Because the Moon moves through an angle about equal to its own diameter every hour, the longest time for an occultation is about an hour. The time is shorter if the occultation is not central. Occultations are equivalent to total solar eclipses, except they are eclipses of stars other than the Sun.

Since observing occultations is rather easy, provided the weather is suitable and equipment is available, amateur astronomers are encouraged to try this activity. The slow, majestic drift of the Moon in its orbit is an interesting part of such observations, and the disappearance or reappearance of a star at the Moon's limb is a remarkable sight, particularly when it occurs as a *graze* near the Moon's northern or southern edge. In the latter case the star may disappear and reappear several times in succession as mountains and valleys in the Moon's polar regions pass by it. On rarer occasions the moon occults a planet. A memorable event observed by the editor a few years ago was a graze involving Saturn. At one point only a portion of Saturn's rings were visible over a lunar valley, resembling a pale rainbow above that stark landscape.

Lunar occultation and graze observations are used to refine our knowledge of the Moon's orbit and the shape of the lunar profile. These observations complement those made by other techniques, such as laser-ranging and photographs. Improved knowledge of the lunar profile is useful in determinations of the Sun's diameter from solar eclipse records. Occultation observations are also useful for detecting double stars and measuring their separations. Binaries with separations as small as 0.01 have been discovered visually during grazes. Doubles with separations in this range are useful for filling the gap between doubles which can be directly resolved visually and those whose duplicity has been discovered spectroscopically.

Analysis of lunar occultation observations is currently being done at the U.S. Naval Observatory and the International Lunar Occultation Centre (ILOC). The latter organization is the world clearing house for such observations. Readers who are interested in pursuing a systematic program of lunar occultation observations should write to the ILOC (address on the inside front cover under "Kubo") for their booklet: *Guide to Lunar Occultation Observations*.


Observers in North America should also contact the International Occultation Timing Association (IOTA), P.O. Box 596, Tinley Park, IL 60477, U.S.A. IOTA provides predictions and coordination services for occultation observers. Detailed predictions for any grazing occultation are available (\$1.50 U.S. each); instructions concerning the use of predictions are also available (\$2.50 U.S.). Annual membership in IOTA is \$11.00 U.S. in North America, \$16.00 U.S. overseas. Membership includes free graze predictions, descriptive materials, and a subscription to Occultation Newsletter (available separately for \$5.50 U.S.).

The main information required in a lunar occultation observation is the time of the event and the observer's location. Supplementary information includes the seeing conditions, size of telescope used, method used, estimate of accuracy, etc. The timing should be as precise as possible, preferably to 0.5s or better. (A shortwave radio time signal and cassette tape recorder provide a simple, permanent time record). The observer's latitude, longitude, and altitude should be known to the nearest second of arc and 20 metres respectively. These can be determined from a suitable topographical map. For Canada these are available from the Canada Map Office, 615 Booth Street, Ottawa, ON K1A 0E9. In the United States east of the Mississippi write to: U.S. Geological Survey, 1200 S. Eads St., Arlington, VA 22202; west of the Mississippi the address is: U.S. Geological Survey, Denver Federal Centre, Bldg. 41, Denver, CO 80225.

The following pages give tables of predictions, and a table and maps of northern or southern limits for many cases where grazing occultations may be seen.

1. TOTAL OCCULTATION PREDICTIONS

The total occultation predictions are for the 18 standard stations identified on the map below; the coordinates of these stations are given in the table headings. The tables are generally limited to stars of magnitude 6.0 or brighter. More detailed lists, including over 100 events with stars as faint as 8^m1, are also available. These can be obtained for any location in North America from Walter V. Morgan, 10961 Morgan Territory Rd., Livermore, CA 94550, U.S.A., provided that accurate geographical coordinates and a long, stamped, self-addressed envelope are provided.

The first five columns in the tables give for each occultation the date, the Zodiacal Catalogue number of the star, its magnitude, the phenomenon (DD or DB = disappearance at dark limb or bright limb, respectively; RD or RB = reappearance at dark limb or bright limb, respectively), and the elongation of the Moon from the Sun in degrees (see page 20). Under each station are given the universal time of the event, factors *a* and *b* (see below), and the position angle (from the north point, eastward around the Moon's limb to the point of occurrence of the phenomenon). In certain cases, predictions have been omitted due to the Moon being too near or below the horizon, no occultation, interference of sunlight, or other difficulties. If *a* and *b* are insignificant, they are omitted.

The terms a and b are for determining corrections to the times of the phenomena for stations within 500 km of the standard stations. Thus if λ_0 , ϕ_0 , be the longitude and latitude of the standard station and λ , ϕ , the longitude and latitude of the observer, then for the observer we have: UT of phenomenon = UT of phenomenon at the standard station $+ a(\lambda - \lambda_0) + b(\phi - \phi_0)$ where $\lambda - \lambda_0$ and $\phi - \phi_0$ are expressed in degrees and a and b are in minutes of time per degree. Due regard must be paid to the algebraic signs of the terms. Also, to convert UT to the standard time of the observer, see page 15.

As an example, consider the occultation of ZC 1702 on April 24, 1983 as seen from Ottawa. For Ottawa, $\lambda = 75.72^{\circ}$ and $\phi = 45.40^{\circ}$. The nearest standard station is Montreal, for which $\lambda_{\circ} = 73.60^{\circ}$ and $\phi_{\circ} = 45.50^{\circ}$. Therefore, the UT of the disappearance at the dark limb ("DD") is 4^h30^m6 -2^m4(75.72 - 73.60) + 0^m0(45.40 - 45.50) = 4^h25^m5. Note that almost the same result is obtained by using Toronto as the standard station. The elongation of the Moon is 140° which means that the Moon is in the waxing gibbous phase (between first quarter and full). The position angle of disappearance is about 65°.

3

DA	TE	ZC	MAG	i Pl	1 El		Ha L		.IFAX, B°6, N a		PA			TREAL ?6, N a		PA			ONTO, ?4, N a		PA
Jan Feb		1773 2589 639 654 668 817	4.8 6.0 6.0 3.6	8 R 9 D 9 D 9 D	י כ	10 95 96 97	10 2 4	41.9 34.6 42.1	m/° -0.5 -1.4 -0.8 -0.2	-0.4 0.7 -1.4 -0.7	。 321 284 91 65 37	2 4	30.4 24.2 38.9	m/° -0.3 -1.1 -1.1 -0.4 -0.4	1.2 -1.3 -0.8	。 322 275 92 70 48	4	38.2 13.2	m/° -1.3 -0.5 0.1 -0.4	-1.0 -0.9	。 99 80 77 60
Mar	22	916 929	5.8	B D) (90 91	5	3.9	-1.2			2 5		-1.3 -0.2		51 75	2 5		-1.4 -0.2		63 85
Apr	1 19 24 29 29	2209 2213 2218 1050 1702 2302 2302 2303	5.8 5.8 4.2 2.9	RI RI DI DI DI RI	14	23 24 74 40 04 05	4 6 2 6 7	14.1 50.4 33.5 42.7	-0.7 -0.8 -0.1 -1.4 -1.8 -1.8	-1.2 -1.4 -1.3 -0.6	334 95 143 257	6 2 4 6 7	4.8 47.1 30.6 19.8 22.5	-0.6 -0.9 -0.3 -2.4 -1.0 -2.2 -2.2	-0.5 -1.6 0.0 -1.2 -0.0	321 104 65 153 252	5 2 4	59.8 48.5 18.1 17.5 7.9	-0.3 -2.1	0.4 -0.1 -1.9 -0.4 -1.7 0.8 0.7	308 115 83 166 241
May		2719 2864			23			39.1			201	6	27.9	-1.2	07	292					
	24 28 30	2022 2523 2809	5.5 4.9 4.9	i Di Ri Ri	0 19 0 19 0 21	50 97 19	4	44.2	-0.5 -1.9 -2.0	-0.9 2.5	107 281 224			-0.8 -1.9					-1.0 -2.0	-1.7 0.0	
	9 22	MERC MERC 2209 3164	0.7 5.9	RI	3 33 0 33 0 14 0 22	36 13	9 3	28.6 51.7	0.2 -0.2 -2.0 -2.4	1.6 -0.2	259 58			-0.1 -2.3 -2.4		67	3		0.1 -2.4 -2.3	1.3 0.0 0.1	78
lug	9 9 10 10 20 20 20 14	454 MARS MARS MERC 2303 2302 2302 2022 2022 2523	1.8 1.8 -1.8 -1.8 5.1) 39 3 3 1 1 2 3 1 2 3 1 2 3 1 2 3 7	50 51 2 26 26 27 72	19 20 12 13 3 4	58.5 45.0 29.9 29.8 17.7 17.8 29.2 37.3	-0.0 -1.1 0.2 -1.4 -0.8 -1.4 -1.4 -0.8 -1.4 -0.8	-0.2 -2.5 0.1 3.3 -1.7 -1.7	54 316 126 225 121 122	19 20 12 13 3 4	43.2 19.7 25.2 1.2 1.3	-1.2 -0.2	-2.3 0.9 2.5 -1.4 -1.4	64 306 111 239 121 122	20 12 13 2 2 4	45.1 14.3 17.7 54.1 54.3	-0.5 -0.5 -0.4 -1.7 -1.7		109 240 126 127
	19 19	2672 2672 3089 18	2.9 2.9 5.3	DI Ri Di) 13	81 81 54	2 3 5	22.3 21.2 31.9	-2.2 -0.9 -1.4 -1.1	-1.7 0.1 -0.7	133	5	9.3 16.9	-2.0 -1.5 -1.5 -0.9	-0.0 -0.0	232 62	25	59.6 7.6	-2.0 -1.8 -1.6 -0.8	-0.8 0.3 0.3 2.0	232 58
-	19 19	766 3164 3175	4.7) 27) 14) 14	14 16	1 5	6.9	-1.4 -0.5	1.6 0.1	240 31 41			-1.4 -0.3	2.2 0.9	22 22			-1.5 -0.3	2.5 1.4	23 16
1	25 25 25	322 327 354	4.5	R) 21) 21) 21	12			-0.3 -0.8		252 262	2	11.7	-0.6	1.5	273	2 10		-0.4 -1.5	1.4 -1.6	
		593 1070 700	5.2	R) 23) 27) 21	77	9	16.8	l		195		13.5 37.8	-0.8	3.7	214 173	9	31.6 2.9 37.2	-0.5	3.8	170 212 184
	6 15	URAN 5	6.0) 2				-1.1		53 23	20	20.5	-1.7	-0.0	50	20	9.7	-2.1	0.1	56
	16 18 23 27	18 249 936 1544	6.0 4.7 5.9 5.7	DI DI RI RI) 12) 15) 21) 27	27 50 12	0 0 0	50.6 45.6 27.9 13.7	-2.6 -1.5 -0.5	-0.3 1.4 0.5 0.5	65 305 262	009	34.7 22.5 52.5	-1.9 -1.0 -2.2	1.9 1.7	49 327 250	0	25.8 34.0	-1.8 -0.8	1.3 2.1	72 44 231
		3158 1484	5.8 3.6) 23	35	24 4	15.1	-1.3 -1.0	-2.0	336	4	0.7 2.5	-+.3	-1.1	84 347	23 4	0.8	-1.5	-0.8	342

							LON	AR UCI	JUL 17	111	0113 1	505							
DATE	ZC	MAG	PH E	ELG	Wi V UI	1 97	NIPEG 2, N a		PA		EDM W 113 UT		, AB N 53: b	6 РА	1	W 12		ER, B N 49 b	2:2
Feb	1 654 1 668	4.2 5.9 4.6 6.0 6.0 3.6 4.8	RD 2 RD 2 DD DD DD	278 290 94 96 97	4 1	8.5 9.9 4.5	m/° -1.5 -0.9 -0.4 -0.8	-1.0	° 232 74 70 74 59	13 1 4 5	30.1 46.3 29.6	-1.2 -1.1 -1.2 -0.7	0.1 1.4 0.1 -0.9		13 3 5	32.3 47.7 47.9	-1.0	1 -1.	6 310 7 283 1 71 2 88
2 2 2	2 916 2 929 6 577 9 1050 4 1702	6.0 4.3 5.8 6.0 5.8 4.2 5.1 2.9 2.9 5.1	DD DD DD DD DD DD 2 DD 2 RD 2	204	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7.9 4.3 6.4	-1.6 -0.7 -0.2 -0.8 -1.7	-1.3 -1.3 -1.9	51 87 94 116 190 194 215 219		29.8 20.3			88 103		18.1 24.6	-1.3	3 -1.4	358 5 107
2 2 2	3 1921 4 2022 4 2033 8 2523 9 3164	5.9 5.5 4.3 4.9 4.7	DD 1 DD 1 RD 1	149 151 197	54	5.3	-1.3 -1.5 -1.0	-1.3 1.0 0.6	268	5	54.9	-1.1	-0.8	127	54	13.6 18.5 18.2	-0.9) -1.(180 146 182
1 2 2 Aug 1 1 1 1		1.8 1.8 -1.8 2.9 2.9 5.9 4.3 5.9 2.9 2.9 2.9 2.9 5.3	RD 3 DD RB 1 DD 1 RB 1 DD DD 1 DD 1 RB 1	351 2 126 126 126 73 98 130	20 1 12 2 13 2 3 3 1 2 2 2	9.7 20.9 22.6 21.8 17.3 21.6 28.2	0.2 -0.3 -1.2	0.3 -2.0 1.7 1.5 -0.5 -0.5 0.2 0.8 1.3	296 77 274 134 270	19 12 13 2 3 4 4 2	34.1 23.8 5.4 8.8 7.3 20.1	-1.3 0.6 -0.1 -0.6 -1.7 -0.7 -1.1 -1.7	-1.7 1.9 1.1 -0.2 0.6 -1.7 -1.6	301 55 298 147 259 114	19 4 13 1 2 4 4 5 4 1	4.9 6.6 2.8 51.3 7.0 5.2	0.1 -0.4 -0.9	-0.7 0.8 -1.8 -1.7 -1.6	284 299 176 234 120 121 145
Sep 1 2 3 3 Oct 1 2 3	1 792 6 2809 4 249 7 593 0 1070 0 1092 1 2434 6 3130	5.1 4.9 4.7 5.8 5.2 5.8 5.6 5.5 5.7 4.7	RD 2 DD 1 RD 2 RD 2 RD 2 RD 2 DD 1 RD 2	282 114 205 238 277 279 58 114 219	9 2 5 5 9 0 1 3 3 5	25.3 64.3 7.1 13.4	-0.1 -0.6 -1.2 -2.0 0.0 0.6	2.2 1.8	189 220 253 55 101 226	9 11 6 9 1 4	38.2 40.6 0.4 5.2 10.4	0.0 -0.7 0.0 -0.4 -1.3 0.1	2.2 0.8	224 210 240 277 91 245	9 2 6 3 11 2 5 5 8 5	9.7 8.1 8.0 3.1 6.9	0.2	2.0 -0.8 1.5 1.7 1.2	227 65 205 243 277 226
1 1 2 Dec 1 1 1 1 2	8 249 7 1544 1 2022 6 2750 6 2750 9 3158 3 3536 6 322 6 327	4.2 6.0 5.8 4.2 6.0 4.7 5.5 2.1 5.5 2.1 5.5 4.7 5.7 5.5 5.5 0.8 0.8	DD 1 DD 1 DD 1 DD 1 DD 1 DD 1 RD 2 RD 3 RD 3 RD 1 DD 1 DD 1 DD 1 DD 1 DD 1 DD 1 3	24 107 127 150 269 323 28 62 98 129 130 134 306	5 4 0 3 9 2 13 2 22 3 23 2 1 1 2 3	4.6 1.9 3.8 2.3 3.7 2.0 9.4 9.7	-2.2 -0.9 -0.1 -1.1 0.2 -1.2 -1.8 -2.0	0.7 1.9 2.5 2.2 -2.0 0.4 0.7 0.2	357	19 5 0 9 21 22 5 1	30.0 0.5 44.5 18.6 40.0 28.5 52.3 4.3 10.5	-1.5 -1.4 -0.4 -0.5 -0.5 -1.6 -1.1 -0.7 -0.8	-1.3 -0.4 2.1 1.7 -0.7 0.1 -1.1	78 91 49 35 349 266 140 215 74 71 65 8	4 5 6 2 9 21 2 22 1 5 4 0 4 1 5 10 14 4	6.9 7.4 3.0 8.3 9.5 3.8 1.7 0.2	-1.8 -0.7 -1.5 -1.7 -1.1 -0.6 -0.8 -0.5 -1.8	-0.7 0.9	87 50 254 147 213 78 67 60 33 80

			ACHUSETTS		Wa	WASH W 77°)N, D(;	Ch	CHI0 W 873			
DATE ZC	MAG PH ELC		5,N 42°5 a b	PA		T	a a	b	PA	ι	JT (a a	b	PA
Jan 5 1773 Feb 5 2213	5.1 RD 258 5.9 RD 278		m/° m/° -0.3 0.0 3	。 311	h	m	m/°	m/°	0	h 11	m 53.5	m/°	m/°	226
8 2589 18 249 21 639	4.8 RD 310 4.7 DD 57 6.0 DD 95	10 28.0	-1.3 1.3 2 -1.1 -1.7 1		1	16.6 10.1 32.4		1.8	343	2		-1.7	-1.7	
21 654 21 668 22 817	6.0 DD 96 3.6 DD 97 4.8 DD 110	4 41.9	-0.3 -1.0	78 56		44.8 21.8			93 72	6	35.9 15.4 15.8	0.0	-1.2	91 89 74
Mar 19 593 21 752 22 916	5.8 DD 63 4.7 DD 77 4.3 DD 90		-1.2 -0.2	60	2	50.4 38.2 40.0		3.7 -0.7	14 15 77		28.8 23.3	-1.6	-0.4	9 76
22 929 Apr 1 2213 1 2218	5.8 DD 91 5.9 RD 223 5.6 RD 224	5 5.4 4 43.9	-0.1 -1.0	81 306	5 4 6	9.2 38.9 2.8	0.0 -0.9	-1.2	94 290 300	5	3.6 51.1	-0.3	-1.4	99
16 577	4.6 RD 235 -1.9 DB 239 6.0 DD 35			110		48.3 58.3	0.1	2.0	6	2	43.1 35.0 49.6			
19 1050 24 1702 29 2302 29 2302 29 2303	5.8 DD 74 4.2 DD 140 2.9 DB 204 2.9 RD 205 5.1 RD 205	4 33.6	-1.1 -1.6 1 -2.4 0.1 2	72 157 247	4 6 7	26.0 29.4 9.9 11.0			90 176 232 234		2.5			
May 2 2719 20 1544	5.8 RD 239 5.7 DD 96	6 27.2 0 30.3	-3.1 1.4	60	-	18.3		1.0						
24 2022 28 2523 Jun 9 MERC	5.5 DD 150 4.9 RD 197 0.7 RD 336	6 28.0 9 24.1	-0.8 -1.7 1 -2.1 -0.4 2 0.0 1.5 2	277 263	9	18.8 19.2	-2.3 0.1	-1.8 0.0 1.4	269 261	5	43.2 55.8	-2.1	-1.7 0.6 0.1	
22 2209 29 3164	5.9 DD 143 4.7 RD 223	7 11.9	-2.5 -0.1 2	71 288	3	22.2 0.3		0.2			56.6 37.8		0.4	
10 MERC 20 2303 20 2302 20 2302	5.8 RD 304 1.8 DB 350 1.8 RD 351 -1.8 RB 2 5.1 DD 126 2.9 DD 126 2.9 RB 127 5.5 DD 72	19 49.7 20 49.8 12 18.6 13 17.6 3 7.4 3 7.6		72 298 228 228 25 25	20 12 13 3 4	54.6	-0.5 -1.0 -0.1 -1.8 -1.8 -1.5	-1.5 0.1 3.2 -1.7 -1.7 -1.0	283 126 221 132 133	20 12 13 2	42.6 9.4 11.2 42.2 42.6	-0.9 -0.2 -0.2 -1.7 -1.6	-1.5 1.0 2.1 -1.2	280 103 245 135 136
Aug 14 2022 19 2672 19 2672 22 3089 26 18	5.5 DD 72 2.9 DD 131 2.9 RB 131 5.3 DD 164 6.0 RD 208	2 5.8 3 10.6	-1.7 -0.1	133 226 69	23		-2.3 -1.8 -2.0	-1.6 0.9 0.1 2.1	140 221 70	2	36.3 41.8 52.1 2.1	-2.2	0.9 0.9	
Sep 19 3164 19 3175 25 327 25 354	4.7 DD 144 4.8 DD 146 4.5 RD 212 5.5 RD 216	0 49.2 · 5 1.0 · 2 7.8 ·	-0.6 0.7	28 33 268		33.5 55.0 0.5	-0.8	2.4 0.9 1.4	33 34 266	4 2 10	24.2 54.7 1.9 12.2	0.3 -0.1 -1.9	-1.4	
27 593 30 1070 Oct 11 2434 16 3130 25 700	5.8 RD 238 5.2 RD 277 5.6 DD 58 5.5 DD 115 5.7 RD 219	8 58.0	1	90						8	32.4 53.3 49.6 3.6 36.8		3.3 -0.9	188 216 72 130 197
16 18 18 249	6.0 DD 24 6.0 DD 127 4.7 DD 150 5.9 RD 212	20 22.7 - 0 28.6 - 0 30.3 - 0 23.4 -	-2.2 0.7 -1.2 1.8	84 55	0	14.6 15.5 18.4	-2.3	-0.1 0.9 1.9	65 83 55	0	50.5 0.2 16.2	-1.5	0.3 1.7 2.2	66 64 37
27 1544	5.7 RD 269 5.8 DD 62 3.6 RD 235	9 48.0 24 6.0 -	-1.5 -1.4 -0.8 -1.0 3	236 94 330	24 4						41.8 57.3			71 342

								LUN		ULIA	(110	115 15	000							
DAT	E	ZC	MAG	рн	ELG		MIA W 80	MI, FI 1°3, N a	25°8	PA		ATLA W 849	NTA, 3, N a	GA 33°.8 b	PA	Au	AUS W 97 JT	TIN, ?8, N a	TX 30%2 b	PA
Jan Feb	27	1544 1050 249 654 668 792 817	5.7 5.8 4.7 6.0 3.6 5.1 4.8	DD DD DD DD DD DD	155 57 96 97 108	3 0 5 2	41.3 38.1 17.8 29.3	m/° -0.5 -2.5 -1.2 -2.2 0.2	0.4 0.8 0.7	83 51 161 63	0 4 6 2		-0.7 -0.2 0.3 -2.1		51 15 118 111 27 94	1	5.7 40.6 56.9		2.0	57 163 147 40
Mar Apr	21 22 22	752 766 916 929 2213	4.7 6.0 4.3 5.8 5.9	DD DD DD	77 78 90 92 223	4 2 5	39.2 54.1	-1.2 -0.3 -0.8 0.6	0.0 -2.2		4 2 5	16.7	-0.7 -1.4 0.1	0.6 0.7 -1.3 -1.7 1.5	117	42	29.3 20.1	-2.0 -0.8 -1.9 0.6	-0.3	71 124 153
	1 2 2 2	2218 2218 2353 JUPI	5.6	DD RD RD DB RD	223 224 235 239 239	5 5 13	49.3 5.2 52.7	-2.7 -0.5 -0.7	-0.9	254 304 89	5 5 13 9	50.3 0.6 44.8 57.3	-1.7 0.0 -0.6 -1.0	0.8 -0.7 -0.4 1.8	274 325 64 248	13		-1.4 -1.4		196 220 63 313
	24	1050 1702	5.8 4.2	DD				-1.6			4	17.1	-1.8	-3.6 -1.3 1.6	115	4	1.8	-1.2	-2.3	150
May Jun	18 20 24 28	2719 1308 1544 2022 2523 3089	5.8 4.7 5.7 5.5 4.9 5.3	DD DD DD RD	238 71 95 150 197 243	4 0 7	26.9 20.7 23.1	-2.3 -1.9 -1.0 -3.8	-1.8 -2.3	27 130 143	7	1.9	-1.1	-1.9 1.0	128		52.3	-1.3 -1.3 -2.8	-2.3	146
oun	13 22 29	1092 2209 3164 3175	5.8 5.9 4.7	DD DD RD	26 143 223 225	3) -2.5 5 -2.6						-0.5 0.6		2 6	42.2 13.1	-1.4 -1.4 -3.8	-1.1 1.0	136 272
Jul	9	766 MARS MARS	1.8	DB RD	350 351	20 21	7.3	8 -0.6 8 -1.4	-2.8 0.4	137 238	20	54.9	-1.1	-1.8 -0.7 -0.4	259	19	35.5	-0.1 -1.5 -2.4	0.7 -3.7 1.6	141
Aug	10 20 20 20 14 19	MERC 2303 2302 2302 2022 2672	2.9 2.9 5.5 2.9	RB DD DD RB DD DD	2 126 126 127 72 130	3	33.2			168 226	3 4 1 1	50.2 1.5 2.0 12.0 19.4 56.0	0.5 -1.8 -1.8 -2.0	3.3 -2.1 -2.2 -0.3	214 147 148 251 81 159	2 2	47.3 54.4 56.0 31.1	0.6	2.3	224 181 183 227
	19 22 26 28	2672 3089 18 249	5.3 6.0	DD RD	131 164 208 231	2	30.3	2 -3.2 3 -0.6 2 -0.9	2.8		4	37.0 53.2 47.4		0.5 2.2		4	16.5	-2.5	1.3	65
Sep		3164 3175 327 354	4.8 4.5	DD RD	144 146 212 216	4	40.1 41.2	3 -1.8 7 -2.0 2 0.0 5 -1.3	0.6 1.5	61 243	4	8.7 42.1 52.0 22.3	-1.2 -0.1	2.4 1.3 1.3 0.2	44 34 262 243	9	54.8	-1.1 -2.2	0.6	16 247
0ct	27 3 11	614 1484 2434 1030 1170	5.7 3.6 5.6	RD RD DD RD	241 317 59 246	9	7.8			346	ļ			-1.1		11	15.1	-2.6 -1.9	-0.3	269 90
Nov	7	URAN 2513	6.0 4.3	DD		20 23	11.: 40.0	3-2.5 50.1	-0.6 1.8	94 32	19			-0.1 1.9	79 14		23.8 54.0	-2.4		103 353
	15 17	3089 18 249 1773	A 7	DD	1/10	23	59.	5 -0.1 7 -3.8 9 -1.3 3 -1.1	14	- 75	23 24 10	1.4	-2.1 -0.8 -0.4	1.3 2.0 -2.8	81 54 352			-0.6		
Dec	9 10 24	3158 3164 1484 SATU	5.8 4.7 3.6 0.8	DD DD RD DB	62 63 235 307	1 4	48. 2. 23.	6 -0.6 1 -0.4 6 -2.4	0.1 0.8 0.5	60 273 63	23 1 4	53.6 52.0	-2.5	-1.1 1.1 0.0	97 27 304	1 15	47.4 32.6	0.3 -3.2	2.4, 0.2	11 79
		SATU	0.8	RD	307	17	12.	4 -1.2	-3.6	346						16	37.1	-1.2	-2.9	343

E

DA	TF	zc	MAG	рн	ELG	Ka			(TY, N 39:0 b	PA		W 105	/ER, C 5°0, N a	.0 I 39°8 b			W 10	MEXIO 9°0, N a		
	27 21 21 21 21 22 22	1050 639 654 668 792	5.8 6.0 6.0 3.6 5.1 4.8	DD DD DD DD DD DD	155 94 96 97 107 110 196	h 3 2 4 6	m 46.9 2.1 35.5 19.2	m/° -2.2 -0.8 0.0	m/° -2.2 -1.8 -1.6 -1.2	° 9 115 106	4 6	23.2 16.1	m/° -2.4 -1.3 -0.3 -0.9	-1.9 -2.0	107	4 6 1 6	33.9 34.4 31.3 58.9 13.6	m/° -0.4 -3.4 -1.3 0.2 -0.8 0.0	-4.6 -4.1 -2.3	13 14 36 12
Mar Apr	21 22 22	766 916	4.7 6.0 4.3 5.8	DD DD DD	77 78 90 91 223	2 5	34.4 13.7	-1.8 -0.3	1.7 1.2 -0.7 -1.9 1.1		4	53.3	-1.8 -1.3 -2.0 -0.5	-0.3	34 43 89 124	1		-1.2 -2.4		е 11 15
	2 2 16 19	JUPI JUPI 577 1050 1702	-1.9 -1.9 6.0 5.8	DB RD DD DD	239	13 14 2 2	38.3 15.6 41.8 56.6	-0.7 -1.7 0.3 0.0	0.8 -3.6 -2.1 -3.7 -1.0	38 338 118 152	13 2 2	31.1 49.6 42.0 56.3 35.6	0.1 -1.4	-2.7 -1.1	125 174	14	5.8	-2.1 -2.0 -1.0		
May Jun	24 28 1	1308 2022 2523 3089	4.9 5.3	DD RD RD	71 150 197 243	5	37.8	-2.3	-1.7 1.5 -0.4	250	5	14.5	-1.4 -2.5 -2.0	2.9	232	6 9	29.1 21.4	-1.6 -1.2 -1.9	-2.3 0.3	19 29
	22 29	3343 2209 3164 3175	5.9 4.7 4.8	DD RD DD		6 10	25.2 13.4	-1.4	-0.1 0.7	291 341			-0.9			6	4.7	-1.6 -0.8	1.1	27
Jul	9 10 10	MARS MARS MERC MERC 2302	1.8 1.8- 1.8- 1.8-	RD DB RB	350 351 2 126	20 12 13 2	38.3 5.9 4.8 36.1	-1.4 0.0 0.0 -1.4	-0.8 0.9 1.9 -1.5	264 102 246 149	20 13	21.0 6.9	-1.8	-0.3 1.5	258 260	20	10.0	-2.3 -2.4 0.4	1.5	23
Aug	20 14 16 19 19	2303 2302 2033 2275 2672 2672 3089	2.9 4.3 5.9 2.9 2.9	RB DD DD DD RB	126 126 74 98 130 131 164	3 1 2	47.4	-2.4 -1.1 -2.8		256 154 221	4 5 1	38.3 2.0 25.1 48.9	-3.0 -0.5 -1.5 -1.9	-2.0	130 162 174 206			-0.6		
	25 27 27 30	3175 354 593 614 1070 2434	5.5 5.8 5.7 5.2 5.6	RD RD RD RD DD	238 240 277 58	10 5 11 8 0	26.7 10.2 43.1 43.6	0.5 -2.8 0.0 -1.4	-3.4 3.1 -0.7	193 305 215 74	5 8	30.4 32.1 44.6	-0.1	2.1	234	5 10 8	20.1 36.9 31.9	0.3	2.4 2.4	20 30 21
	25 6	3130 700 URAN	5.7 6.0	RD DD	114 219 24	3	43.8 32.4 32.7	0.5		201	3 19	38.8 9.1	-2.3 0.4 -2.0	2.0 0.5	93		0.2	-2.4		
	15 18 22 29 1	3349 18 249 839 1773 2022	6.0 4.7 5.3 5.1 5.5	DD DD RD RD RD RD	149 205 296 323	0 9	45.9 6.5 47.8	-0.4	2.3	34 22	0	6.1 43.9		2.4	23 20	10	0.9	-0.5 -0.3 -1.0	-1.3	3
	16 16 24 29	3158 322 327 1484 SATU SATU	4.5 3.6 0.8	DD DD RD DB	62 129 130 235 306 306	3	29.5 57.0		-1.1		2	11.1 14.8		-0.1 1.0	107 68	2 15	0.5	-2.4 -2.6 -1.3	0.1	1

81

LUNAR O	CCULTAT	IONS	1983
---------	---------	------	------

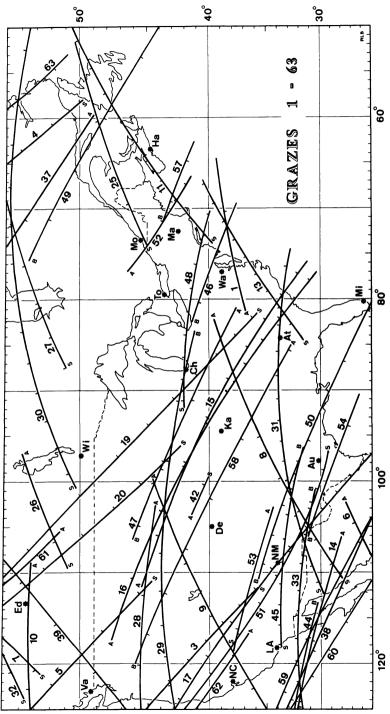
												505							
DATE	zc	MAG	РН	ELG			ANGE 8°3, i a			NC L		CALIF 22°0, a			1		IOLULU 57°9, a		3 PA
Jan 4	1702	4.2	RD	° 251	h	m	m/°	m/°	0	h 14	m 48.9	m/° ∂ -1.6	m/° -1.4	。 290	h	m	m/°	m/°	0
22 24 26 26	322 577 916 929	5.7 6.0 4.3 5.8	DD DD DD DD	92 116 145 147					054						6 11	54.3 23.2	-0.5 -2.1 -2.0 -0.5	1.3 1.9 1.1 0.0	46 53
	2353 2630 654	4.6 5.1 6.0	RD	290 313 96		17.9		1.5	254 137			5 -2.3 5 -2.2			15	33.1	-0.9	0.3	283
21 22 25	668 817 1308 1702	3.6 4.8 4.7 4.2	DD DD DD	97 110 150		35.9 4.6	-1.1		163 129	6 5	12.6 50.3	5 -0.7 3 -1.5	-3.7 -2.0	133 114	6	20.9	-1.5	3.4	46
Mar 2	1950	5.8	RD	223		0.,		-2.5	555		50.4	. 0.,	2.5	550	13		-2.9 -3.2		
5 21 21	2322 766 792	4.3 6.0 5.1	DD	260 78 81	4	3.8	-1.6	-0.3	75	3	57.5	5 -1.7	0.2	62	16 9		-0.2		
22 Apr 2	929 JUPI	5.8	DD DB RD	91 239			-3.0 -2.0			12				156 45 349	12		-0.1		257
18 19 24	916 1070 1702	4.3 5.2 4.2	DD DD DD	64 76 140	3	34.0	-0.3	-3.8	178	3	20.1	-0.7	-2.3	164	8 6	58.2 51.3	-2.0	0.3	175 69
	2322 2602	4.3 5.5													11		-0.9		
18	2607 1308 1702	5.9 4.7 4.2	RD DD		3	34.0	-1.6	-0.8	86						ii	52.4	-1.9	-0.3	292
24	2022	4.2 5.5 5.7	DD	149	6	20.7	-0.5	-3.0	173	6	8.3	3 -0.5	-2.5	171			-2.1		
Jun 1 1	3089 3106	5.3 5.4	RD	243 244	9		-1.3	0.6		9		-1.0		295	12	40.5	-2.3	-0.4	294
3 16	3343 3349 1544	4.2 5.7	RD DD	266 70			-1.6		221		20.4	1 -1.5	2.0	229			-0.7 -1.3		
	2213 2376	5.9 4.6			3	33.5	-3.1	2.1	68	10	44.8	3		161					
9	5 18 MARS MARS 2209 322 327	4.7 6.0 1.8 1.8 5.9 5.7 4.5	RD DB RD DD RD	260 350 350 118 264	18 19	38.4 47.8	-2.6 -2.4	-1.7 2.2	124 229	18 19	26.0 45.6) -2.2 5 -2.1	-0.3 1.1	245	15 17 18 10 13	16.4 21.2 14.9 8.9 36.1	-1.5 -1.2	2.6	208 114 219 95 252
3 13 14 16	577 1921 2033 2275 2719	4.5 6.0 5.9 4.3 5.9 5.8	RD DD DD DD		4 5		-0.9	-2.2	141 180	4	29.0	-0.4) -1.0 5 -1.5	-2.1	135 135 165	12	49.5	-1.5	2.9	
20	2861 3089 404	5.7 5.3 5.2	DD DD	145 164	3	41.1	-1.6	2.0	58	3	43.5	5 -1.5	2.2	52			-3.1 ·		99 287
Sep 1 14 14	792 2513 2523 2809 249 936	5.1 4.3 4.9 4.9 4.7 5.9	RD DD DD DD RD	281 92 93 114 205			-1.4 -1.5					5 0.8 5 -1.3 5 -1.4		199 110 88	4 8 5 9		-2.6 -0.9 -3.1 -0.4	-2.1 0.3 0.0 3.4	137 61 95
30 Oct 10	1070	5.2 4.1	RD DD		8	34.9	0.3	1.8	236		42.0 18.9		1.5	251 161	9	29.5	-2.7 ՝	-1.9	08

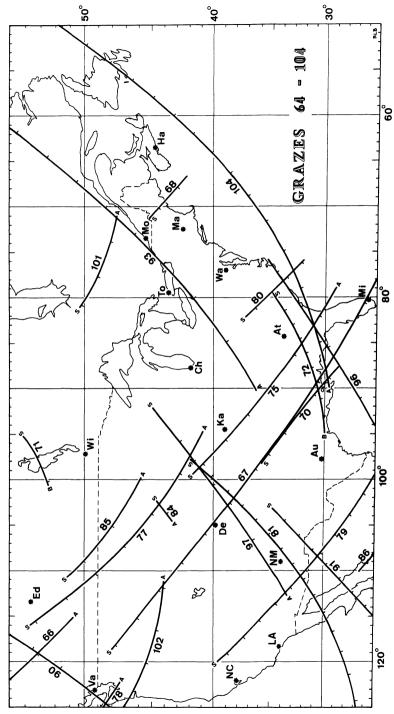
E

LUNAR OCCULTATIONS 1983

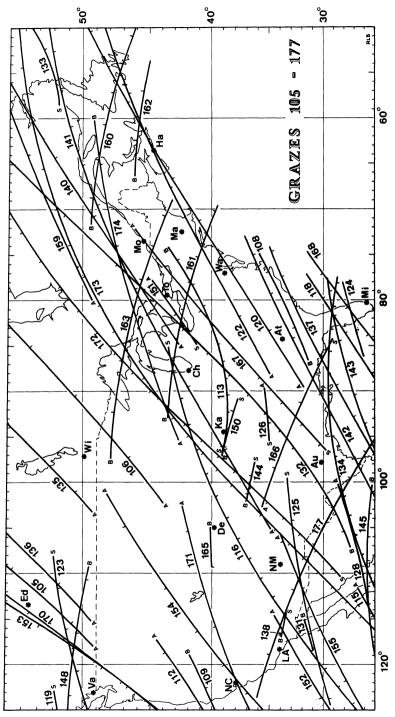
		LA LOS ANGELES W 118°3, N		NC N. CALI W 122°0,		Ho HONOLULU, W 157°9, N	
DATE ZC	MAG PH ELG		b PA			UT a	b PA
	0	h m m/° r	m/°°			h m m/°	m/° °
Nov 6 URAN 14 3349	6.0 DD 23 4.2 DD 108				.9 0.1 124 .4 -1.0 83	5 12.3 -2.5	1.6 57
14 3343 14 3343	5.8 DD 107 5.8 RD 107			5 19.7 5 34.3	135 156		
22 839	5.3 RD 205	12 34.5 -1.0 -	2.1 297		.1 -2.9 310	11 13.1 -2.4	1.2 250
23 1030 24 1170	3.2 RD 220 3.7 RD 232			14 14.5 -0.		14 59.3 -2.5 13 6.1 -2.6	0.5 250 3.4 226
28 1689	5.5 RD 285		0 975			14 57.5 -1.5	-1.0 308
Dec 1 2022 13 3536	5.5 RD 323 4.7 DD 98		1.0 2/5	6 20.0	13 9	4 37.1 -4.0	0.0 93
13 3536 16 327	4.7 RD 98 4.5 DD 130		1.0 93	6 30.1 1 35.8 -1.	155 3 1.5 79		
16 354	5.5 DD 134	10 9.1 -0.2 -					
18 628 21 1117	4.8 DD 160 5.1 RD 200					13 54.7 -1.3 14 18.1 -1.2	
29 SATU	0.8 DB 306	14 39.8 -1.8 -0			.6 0.2 108		
29 SATU 31 URAN	0.8 RD 306 6.0 RD 331		1.3 318	15 50.5 -1.	.5 -1.1 320	17 36.6 -1.4	0.0 288

2. GRAZE PREDICTIONS


The table on the next page lists lunar graze predictions for much of North America for 1983. The events are limited to stars of magnitude 7.5 or brighter which will graze the limb of the Moon when it is at a favourable elongation from the Sun and at least 10° above the observer's horizon (5° in the case of stars brighter than 5^m.5 and 2° for those brighter than 3^m.5). For each is given: the Zodiacal Catalogue number and magnitude of the star, the time of the beginning of each graze track (the west end of the track), the percent of the Moon sunlit (a minus sign indicates a waning Moon), and whether the track is the northern (N) or southern (S) limit of the occultation.

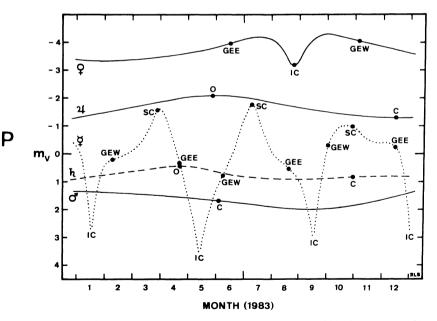

The maps show the predicted graze tracks. Each track is keyed by a number to the table. Several tracks begin and/or end with a letter A, B, or S indicated. A denotes that the Moon is at a low altitude, B that the bright limb interferes, and S that daylight interferes. The tick marks along the tracks indicate multiples of 5 minutes of every hour. e.g. If the time for the west end of a track is $3^{h}16^{m}11^{s}$, the tick marks proceeding eastward correspond to $3^{h}20^{m}00^{s}$, $3^{h}25^{m}00^{s}$, etc. Also, the tick marks are located on the side of each line that the star is occulted.

To avoid clutter, only international boundaries have been indicated on the maps. With the aid of a scale or divider, the latitude-longitude grid can be used to transfer any graze track to a detailed map of the observer's area. Also, as mentioned on page 75, detailed predictions for any graze are available from the International Occultation Timing Association.

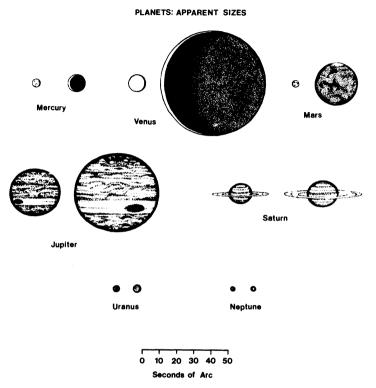

	·								
No	zc	^m v	UT at Start of Track in West	8	L	No	ZC	m _v	UT at Start of % L Track in West % L
1	1544	5.7	h m s Jan. 3 3 16 11	-81	N	86	1950	5.8	h m s Jul.17 2 41 7 50 N
3	1923	7.1	6 13 34 8	-45	S	90	303	6.6	Aug. 1 10 5 9 -56 N
4	2020	6.6	7 10 57 45	-36	S	91	308	6.7	1 10 56 44 -56 N
5	2020	6.7	9 14 13 23	-18	S	93	527	6.3	3 6 56 2 -36 N
6	3228	6.5	17 1 37 21	-18	S	96	859	6.5	5 9 27 59 -16 N
	3349	4.2	18 0 39 29	12	S	97	865	6.1	5 10 6 36 -16 N
8	3480	7.3	19 1 16 37	20	S	101	2022	5.5	14 1 24 34 34 N
	3480	6.8	19 1 10 37	20	S	101	2022	7.3	14 4 11 40 36 N
10	3464	6.9	22 6 38 45	50	S	102	249	4.7	28 3 27 34 -81 N
11	398	6.7	22 22 32 26	58	S	105	784	6.2	Sep. 1 7 43 21 -40 N
13	523	6.5	23 23 30 8	69	s	106	954	6.1	2 7 42 21 - 29 N
14	577	6.0	24 8 24 47	72	Ň	108	2491	6.7	14 2 20 54 50 S
15	1976	6.9	Feb. 3 7 47 29	-64	s	109	2507	6.7	14 4 46 43 51 N
16	1978	6.6	3 8 17 2	-64	ŝ	112	2652	6.4	15 5 13 52 60 S
17	2097	7.1	4 10 59 2	- 53	Š	113	2780	6.9	16 1 2 59 69 N
19	2213	5.9	5 11 13 10	-43	Ŝ	115	2809	4.9	16 7 39 52 70 S
20	2218	5.6	5 12 35 46	-42	S	116	614	5.7	27 9 38 25 -75 N
25	5	4.7	15 22 36 24	8	S	118	898	6.0	29 6 24 24 -56 N
26	18	6.0	16 1 8 10	8	S	119	936	5.9	29 13 31 46 -53 N
27	368	6.3	18 23 44 59	31	S	120	1058	7.0	30 6 6 52 -45 N
28	393	6.8	19 5 6 4	33	S	122	1208	6.4	Oct. 1 6 57 22 -33 N
29	504	7.3	20 3 55 42	43	S	123	1239	6.4	1 12 20 37 -30 N
30	629	7.5	21 0 42 5	53	S	124	1484	3.6	3 8 54 33 -13 N
31	639	6.0	21 1 46 16	54	S	125	1499	7.3	3 11 54 49 -12 N
32	643	6.7	21 2 10 24	54	S	126	2033	4.3	8 0 8 43 3 N 10 1 38 32 15 N
33	654	6.0	21 4 23 5	55	S	128	2296	7.1	10 1 38 32 15 N 14 1 49 6 52 N
37	817	4.8	22 6 28 39	66	N	131	2879	6.6	16 1 30 15 71 S
38	828	6.5	22 7 58 59 22 22 36 40	67 75	N	132 133	3130 3349	5.5 4.2	17 21 11 41 85 N
39	946	3.2		- 9	S S	133	882	5.0	26 9 31 21 -79 N
42	3106	5.4	Mar.11 12 43 54 20 4 36 11	- 9	S	134	1015	5.0 6.4	27 4 13 56 -71 N
44	617 755	6.6 6.3	20 4 30 11 21 2 29 4	39	S	135	1013	6.5	27 5 2 58 -71 N
45	752	4.7	21 2 29 4	39	N	130	1020	3.2	27 6 29 36 -70 N
40	766	6.0	21 4 38 36	39	N	138	1058	7.0	27 13 19 7 -68 S
48	907	6.9	22 0 48 19	49	s	140	1157	6.0	28 4 17 24 -60 N
49	916	4.3	22 2 55 28	50	Ň	141	1168	6.8	28 6 0 46 -59 N
50	923	6.9	22 3 57 0	50	Ň	142	1170	3.7	28 6 3 35 -59 N
51	2659	6.4	Apr. 4 11 1 36	- 58	s	143	1180	7.1	28 8 15 16 -58 N
52	2792	6.8	5 8 45 12	-50	S	144	1195	6.7	28 12 12 59 -57 S
53	577	6.0	16 2 57 55	9	S	145	1334	7.0	29 11 17 9 -46 N
54	725	6.9	17 2 35 53	16	N	148	1586	7.5	31 12 48 54 -23 N
57	865	6.1	18 0 12 20	24	N	150	1702	4.2	Nov. 1 12 8 50 -14 S
58	887	7.0	18 3 31 7	25	N	151	2657	6.7	8 22 56 27 17 S
59	1052	6.8	19 3 56 29	36	N	152	3227	6.4	13 6 18 32 55 S 14 2 33 11 63 S
60	1200	6.9	20 5 18 7	48	N	153	3336	7.2	
61	1222	7.2	20 8 2 28	49	N	154	3343	5.8	14 5 21 20 64 S 14 7 1 4 64 S
62	1221	6.2	20 8 13 6	49	N	155	3349	4.2	26 3 54 0 -64 N
63	1462	7.4	22 5 9 21	70	N	159	1393	6.7	26 3 54 0 -64 N 27 7 36 47 -51 S
66	1178	6.2	May 17 6 37 54	24	N	160	1535 1544	7.1 5.7	27 8 58 26 -50 S
67	1308	4.7	18 3 44 12 20 0 47 22	33	N N	161	1647	5.7	27 8 38 20 -30 3 28 7 6 51 -40 S
68	1544 1773	5.7 5.1	20 0 47 22 22 1 47 54	55 77	N N	162	1659	6.8	28 9 11 9 -39 S
71	3089	5.1	June 1 9 24 24	-73	N	165	1773	5.1	29 9 40 9 -28 N
72	3214	6.6	2 8 50 32	-64	N	166	2016	6.5	Dec. 1 11 32 59 -10 S
75	1514	6.1	16 2 47 43	31	N	167	3160	7.0	9 23 53 15 26 S
	1647	6.7	17 5 9 11	43	N	168	3158	5.8	10 0 23 31 26 S
78	1659	6.8	17 7 30 20	44	N	170	3408	7.0	12 1 42 3 45 S
79	1755	6.8	18 4 2 22	54	Ň	171	3536	4.7	13 6 22 1 56 S
80	1856	6.6	19 1 22 16	64	N	172	322	5.7	16 0 52 43 82 S
81	3536	4.7	July 2 9 33 51	-60	N	173	327	4.5	16 1 50 30 82 S
84	766	6.0	8 10 34 33	- 6	N	174	1484	3.6	24 3 43 40 -78 N
85	1725	7.5	15 4 17 17	29	N	177	1985	7.0	28 10 52 38 -31 S
L						1			

E

E


PLANETS, SATELLITES, AND ASTEROIDS

Date		Planet						
UT	M	V	Е	M	J	S		
Jan. 1.0	23°	313°	100°	342°	235°	208°		
Feb. 1.0	191	2	132	2	237	209		
Mar. 1.0	274	47	160	19	239	209		
Apr. 1.0	35	97	191	37	242	210		
May 1.0	194	146	220	54	244	211		
June 1.0	285	196	250	71	246	212		
July 1.0	53	244	279	86	249	213		
Aug. 1.0	208	293	308	101	251	214		
Sep. 1.0	298	342	338	116	254	215		
Oct. 1.0	78	30	7	129	256	216		
Nov. 1.0	221	80	38	143	258	217		
Dec. 1.0	307	128	68	156	261	218		
Jan. 1.0	103	179	100	170	263	219		


PLANETARY HELIOCENTRIC LONGITUDES 1983

The heliocentric longitude is the angle between the vernal equinox and the planet, as seen from the Sun. It is measured in the ecliptic plane, in the direction of the orbital motion of the planets (counterclockwise as viewed from the north side of the ecliptic plane). Knowing the heliocentric longitudes, and the approximate distances of the planets from the Sun (page 9), the reader can construct the orientation of the Sun and planets on any date.

The heliocentric longitude of Uranus increases from 245° to 250° during the year; that of Neptune from 267° to 269° , and that of Pluto from 207° to 210° .

The magnitudes of the five, classical (naked eye) planets in 1983. Oppositions (O), conjunctions (C), inferior and superior conjunctions (IC, SC), and greatest elongations east and west (GEE, GEW) are indicated. (For planetary symbols see page 8.)

The apparent maximum and minimum observable size of seven planets is illustrated along with characteristic telescopic appearance. The large satellites of Jupiter (not shown) appear smaller than Neptune.

Note: Pronunciations of the names of the planets are given on p. 103.

THE PLANETS FOR 1983

By TERENCE DICKINSON

MERCURY

At just over one-third Earth's distance from the Sun, Mercury is the solar system's innermost planet and the only one known to be almost entirely without an atmosphere. Mercury is a small world only 6% as large as the Earth by volume—barely larger than our moon.

Until the advent of interplanetary probes, virtually nothing was known about the surface of Mercury. Only the vaguest smudges have been seen through Earth-based telescopes. In 1974 the U.S. spacecraft Mariner 10 photographed one hemisphere of Mercury revealing it to be extremely heavily cratered, in many respects identical in appearance to the far side of Earth's moon. There is no interplanetary mission planned to photograph the other hemisphere.

Mercury's orbit is the most elliptical of any planet except Pluto's. Once each orbit Mercury approaches to within 0.31 A.U. of the Sun and then half an orbit (44 days) later it is out to 0.47 A.U. This amounts to a 24 million km range in distance from the Sun, making the Sun in Mercury's sky vary from about four times the area we see it to of 59 days combines with the 88 day orbital period of the planet to produce a solar day (one sunrise to the next) of 176 days—the longest of any planet.

Of the five planets visible to the unaided eye Mercury is by far the most difficult to observe and is seldom conveniently located for either unaided eye or telescopic observation. The problem for observers is Mercury's tight orbit which constrains the planet to a small zone on either side of the Sun as viewed from Earth. When Mercury is east of the Sun we may see it as an evening star low in the west just after sunset. When it is west of the Sun we might view Mercury as a morning star in the east before sunrise. But due to celestial geometry involving the tilt of the Earth's axis and Mercury's orbit we get much better views of Mercury at certain times of the year.

The best time to see the planet in the evening is in the spring, and in the morning in the fall (from the northern hemisphere). Binoculars are of great assistance in searching for the planet about 40 minutes to an hour after sunset or before sunrise during the periods when it is visible. Mercury generally appears about the same colour and brightness as the planet Saturn.

Telescopic observers will find the rapidly changing phases of Mercury of interest. The planet appears to zip from gibbous to crescent phase in about three weeks during each of its elongations. In the table below data concerning the six greatest elongations of Mercury during 1983 are presented.

Ρ

Date, UT	Elongation	Magnitude	Apparent Diameter
Feb 8	26 [°] W	+0.2	6.8
Apr 21	20 E	+0.3	7.7
Jun 8	24 W	+0.7	8.2
Aug 19	27 E	+0.5	7.2
Oct 1	18 W	-0.2	7.1
Dec 13	21 E	-0.2	6.5

GREATEST ELONGATIONS OF MERCURY IN 1983

Date Oh UT	Magnitude	Apparent Diameter	% of Disk Illuminated	Distance From Sun	RA	Dec
Apr 10	-0.9	5.9	78	15°	2 ^h 06 ^m	+14°09'
Apr 14	-0.5	6.4	64	18	2 32	17 02
Apr 18	0.0	7.1	50	19	2 54	19 15
Apr 22	+0.5	7.9	36	20	3 12	20 45
Apr 26	+1.0	8.8	25	19	3 24	21 31
Apr 30	+1.5	9.8	15	16	3 30	21 34

MERCURY TELESCOPIC OBSERVING DATA FOR FAVOURABLE EASTERN (EVENING) ELONGATION 1983

Mercury's phases have been glimpsed with telescopes of 75 mm aperture or less, but generally a 100 mm or larger telescope is required to distinguish them. In larger instruments under conditions of excellent seeing (usually when Mercury is viewed in the daytime) dusky features have been glimpsed by experienced observers. Recent analysis has shown only a fair correlation between these visually observed features and the surface of the planet as photographed by Mariner 10.

VENUS

Venus is the only planet in the solar system that closely resembles Earth in size and mass. It also comes nearer to the Earth than any other planet, at times approaching as close as 41 million km. Despite the fundamental similarity, Earth and Venus differ greatly according to findings of recent spacecraft missions to the planet.

We now know that Venus is infernally hot over its entire surface, ranging little from a mean of $+455^{\circ}$ C. The high temperature is due to the dense carbon dioxide atmosphere of Venus which, when combined with small quantities of water vapour and other gases known to be present, has the special property of allowing sunlight to penetrate to the planet's surface but not permitting the resulting heat to escape. In much the same way as the glass cover of a greenhouse keeps plants warm, an atmosphere of carbon dioxide can heat up a planetary surface to a higher temperature than would be achieved by normal sunlight.

Venus' atmosphere has a surface pressure 91 times Earth's sea-level atmospheric pressure. A haze layer extends down from about 65 km above the surface to about 50 km, where a dense two- to three-km-thick cloud deck occurs. The haze continues to within about 30 km from the surface where the atmosphere clears. The Soviet Venera 9 and 10 spacecraft which landed on Venus in 1975 and photographed the planet's surface showed that sunlight similar to that received on Earth on a heavily overcast day does penetrate down to the surface. The clouds and haze that cloak the planet, consisting chiefly of droplets of sulphuric acid, are highly reflective, making Venus brilliant in the nighttime sky. However, telescopically, the planet is virtually a featureless orb.

In 1978 Soviet and American landing devices detected what appears to be evidence of periods of continuous lightning in the atmosphere and of a glow at night near Venus' surface. The source of the glow and the mechanism that produces the lightning in Venus' atmosphere are unknown. Recent findings also show that below the clouds Venus' atmosphere is remarkably uniform in temperature and pressure at all latitudes and in both day and night hemispheres. Winds at the surface range from 2 to 10 km/h.

Date Oh UT	Magnitude	Apparent Diameter	% of Disk Illuminated	Distance From Sun	RA	Dec
May 31 Jun 20 Jul 5 Jul 15 Jul 25 Jul 30 Aug 4 Aug 9 Aug 14 Aug 19 Aug 24 Aug 29 Sep 3 Sep 8 Sep 18 Oct 3 Oct 18 Nov 7	$\begin{array}{r} -3.8 \\ -4.0 \\ -4.1 \\ -4.2 \\ -4.2 \\ -4.1 \\ -4.0 \\ -3.9 \\ -3.7 \\ -3.4 \\ -3.2 \\ -3.3 \\ -3.6 \\ -3.8 \\ -4.2 \\ -4.3 \\ -4.2 \\ -4.0 \end{array}$	20.0 24.8 30.2 35.1 41.1 45.7 48.2 51.5 54.9 57.3 58.4 58.1 56.6 54.0 46.9 37.4 30.3 23.9	58 47 38 30 22 17 13 8.7 4.9 2.4 1.2 1.7 3.7 7.0 16 29 40 52	45°E 45 44 41 36 33 29 24 18 12 8 E 10 W 16 22 32 41 45 47	$7^{h} 43^{m}$ 9 06 9 55 10 19 10 34 10 37 10 34 10 27 10 34 10 27 10 17 10 05 9 53 9 36 9 34 9 37 10 40 11 52	23° 56′ 18 13 135 9 6 4 490 2 2 300 5 58 4 558 4 558 4 558 4 1 5 58 4 1 4 3

VENUS NEAR INFERIOR CONJUNCTION 1983

Based on extensive radar data returned from the Pioneer Orbiter, nearly the entire planet has been mapped. Sixty percent of Venus' surface is relatively flat, rolling plains varying in height by only about 1 km between high and low points. Only 16 percent of the surface could be described as lowlands (perhaps comparable to ocean basis on Earth). Only eight percent is true highland, ranging to a maximum altitude of 10.6 km above the rolling plains. Venus' crust appears to be thicker than Earth's—thick enough to choke off plate tectonics. Apparently, Venus' crust is one huge tectonic plate. There is no evidence of features like Earth's midocean ridges.

Despite the differences between Venus and Earth, there is growing evidence from analysis of the Pioneer readings that about four billion years ago, Venus probably had a global ocean of water almost identical to Earth's for several hundred million years. At that time the Sun was only two-thirds of its present brightness, but as solar radiation slowly increased toward present levels, the Venus ocean was doomed. Evaporation fuelled a massive buildup of atmospheric carbon dioxide, which ultimately led to the greenhouse situation seen today.

Ρ

Venus is the brightest natural celestial object in the nighttime sky apart from the Moon and whenever it is visible is readily recognized. Because its orbit is within that of the Earth, Venus is never separated from the Sun by an angle greater than 47 degrees. However, this is more than sufficient for the dazzling object to dominate the morning or evening sky.

Like Mercury, Venus exhibits phases although they are much easier to distinguish because of Venus' greater size. When it is far from us (near the other side of its orbit) we see the planet nearly fully illuminated, but because of its distance it appears small—about 10 seconds of arc in diameter. As Venus moves closer to Earth the phase decreases (we see less of the illuminated portion of the planet) but the diameter increases until it is a thin slice nearly a minute of arc in diameter. It takes Venus several months to run through from one of these extremes to the other compared to just a few weeks for Mercury.

As 1983 opens, Venus is visible very low in the west just after sunset. Within a few weeks it moves away from the Sun and to a more favourable declination, becoming a prominent evening object for the next six months. Throughout this period the planet is approaching Earth, its distance decreasing from 1.64 AU on

January 1 to 0.287 AU at inferior conjunction on August 25. The corresponding increase in apparent diameter ranges from $10^{\prime\prime}$ 2 on January 1 to $13^{\prime\prime}$ 2 on April 1, and 58^{\prime\prime}.9 at inferior conjunction. On those same dates the portion of the disk of Venus illuminated by sunlight is 97%, 81%, and 1.0% respectively. Other values for the months around inferior conjunction are given in the table.

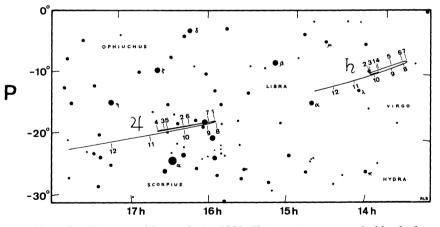
When Venus is about a 20% crescent even rigidly-held, good quality binoculars can be used to distinguish that the planet is not spherical or a point source. A 60 mm refractor should be capable of revealing all but the gibbous and full phases of Venus. Experienced observers prefer to observe Venus during the daytime, and indeed the planet is bright enough to be seen with the unaided eye if one knows where to look.

Venus appears to most observers to be featureless no matter what type of telescope is used or what the planet's phase. However, over the past century some observers using medium or large size telescopes have reported dusky, patchy markings usually described as slightly less brilliant than the dazzling white of the rest of the planet. We now know that there are many subtle variations in the intensity of the clouds of Venus as photographed in ultraviolet by spacecraft and Earth-based telescopes. But when the ultraviolet photos are compared to drawings of the patchy markings seen by visual observers the correlation is fair at best.

When Venus is less than 10% illuminated the cusps (the points at the ends of the crescent) can sometimes be seen to extend into the night side of the planet. This is an actual observation of solar illumination being scattered by the atmosphere of Venus. When Venus is a thin sliver of a crescent the extended cusps may be seen to ring the entire planet.

MARS

Mars is the planet that has long captivated the imagination of mankind as a possible abode of life. One of the major objectives of the Viking spacecraft which landed on Mars in 1976 was the quest for Martian microorganisms. The Viking biology experiments completed the search in 1977 and, although the results are somewhat ambiguous, there is no convincing evidence of life we are familiar with.


The landscapes photographed by the Viking landers were basically desert vistas strewn with rocks ranging up to several metres wide. Judging by their texture and colour, and chemistry analysis by Viking, the rocks are fragments of lava flows. The soil composition resembles that of basaltic lavas on the Earth and Moon. About 1% of the soil is water, chemically bound in the crystal structure of the rock and soil particles. Some planetary scientists speculate that water in the form of permafrost exists a few metres below the surface. However, Viking and its predecessors have shown that water was once abundant enough on Mars to leave major structures on the planet resembling riverbeds. Analysis of high resolution Viking Orbiter photographs of these structures has led most investigators to conclude that they were likely carved during the planet's early history.

The red planet's thin atmosphere has an average surface pressure only 0.7% of Earth's and consists of 95% carbon dioxide, 2.7% nitrogen, 1.6% argon, 0.6% carbon monoxide, 0.15% oxygen and 0.03% water vapour. Winds in the Martian atmosphere reach velocities exceeding 300 km/h and in so doing raise vast amounts of dust that can envelop the planet for weeks at a time. The dust storms were thought to occur with seasonal regularity shortly after Mars passed the perihelion point of its elliptical orbit, but the Viking observations revealed more complex weather patterns.

In many ways Mars is the most interesting planet to observe with the unaided eye. It moves rapidly among the stars—its motion can usually be detected after an interval of less than a week—and it varies in brightness over a far greater range than any other planet. Mars may be distinguished by its orange-red colour, a hue that originates with rust-coloured dust that covers much of the planet. Telescopically Mars is usually a disappointingly small featureless ochre disk except within a few months of opposition when its distance from the Earth is then near minimum. If Mars is at perihelion at these times the separation can be as little as 56 million km. Such close approaches occur at intervals of 15 to 17 years; the most recent was in 1971. At a perihelion opposition the telescopic disk of Mars is 25 seconds of arc in diameter and much detail on the planet can be distinguished with telescopes of 100 mm aperture or greater. At oppositions other than when Mars is at perihelion, the disk is correspondingly smaller.

Throughout 1983 Mars will be swinging around the far side of its orbit for Earthbound observers and, consequently, appears relatively faint (below magnitude +1.3) and remains within 75° of the Sun. It is in Capricornus, low in the southwest evening sky at the beginning of the year. Moving through Aquarius and Pisces, it becomes lost in the solar glare by spring. (On the evening of February 18, Mars will be only half a degree north of Venus, the pair being low in the west just after sunset.) Conjunction is on June 3. Mars reappears in the morning sky in Gemini in August. Moving through Cancer and Leo, it is in Virgo at the end of the year. The right ascension of Mars at the beginning of each month is (month, h, min): J2119, F2252, M0012, A0139, M0305, J0436, J0605, A0735, S0858, O1013, N1124, D1229, J1334. These figures can be used in conjunction with the star charts in the back of this book to locate the approximate position of Mars at any time during the year (Its path lies near the celiptic.).

This year is very unfavourable for observing the red planet. The diameter of Mars varies from 4".6 to 3".7 and back to only 5".8 at the end of the year, its angular surface area remaining less than 16% of its value at the unfavourable opposition of 1982. However, the next opposition (1984) will be better than any since 1973, with Mars attaining an apparent diameter of 17".6.

The paths of Jupiter and Saturn during 1983. Their positions are marked for the first day of each month, where l = January, 2 = February, etc. Jupiter is at opposition on May 27 at magnitude -2.1. Saturn is at opposition on April 21 at magnitude +0.4. The path of Uranus (see page 99) is north of Antares and just below Jupiter's path, while that of Neptune (see page 101) is east of Jupiter's, at the left edge of the chart. (To avoid clutter, the paths of Uranus and Neptune are not shown on the chart.) On February 17 and again on May 16 Jupiter passes 0.8° north of Uranus. On September 24 Jupiter passes only 0.4° north of Uranus.

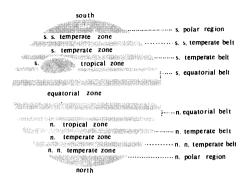
JUPITER

Jupiter, the solar system's largest planet, is a colossal ball of hydrogen and helium without any solid surface comparable to land masses on Earth. In many respects Jupiter is more like a star than a planet. Jupiter likely has a small rocky core encased in a thick mantle of metallic hydrogen which is enveloped by a massive atmospheric cloak topped by a quilt of multi-coloured clouds.

The windswept visible surface of Jupiter is constantly changing. Vast dark belts merge with one another or sometimes fade to insignificance. Brighter zones—actually smeared bands of ammonia clouds—vary in intensity and frequently are carved up with dark rifts or loops called festoons. The equatorial region of Jupiter's clouds rotates five minutes faster than the rest of the planet: 9 hours 50 minutes compared to 9 hours 55 minutes. This means constant interaction as one region slips by the other at about 400 km/h. It also means that there are basically two rotational systems from the viewpoint of week-to-week telescopic observation.

In the table below the two quantities L(1) and Δ can be used to calculate the longitude of the central meridian of the illuminated disk of Jupiter. System I is the most rapidly rotating region between the middle of the North Equatorial Belt and the middle of the South Equatorial Belt. System II applies to the rest of the planet. For a given date and time (U.T.) of observation, the central meridian longitude is equal to L(1) for the month in question plus Δ times the number of complete days elapsed since 0 h U.T. on the first of the month plus either 36.58° (for system I) or 36.26° (for system II) times the number of hours elapsed since 0 h U.T. The result will usually exceed 360°; if so, divide the result by 360 and then multiply the decimal portion of the quotient by 360°. This procedure, which is accurate to 1°, is readily computed using a modest calculator.

Jupiter's rapid rotation also makes the great globe markedly oval so that it appears about 7% "squashed" at the poles. Jupiter's apparent equatorial diameter ranges from 45" at opposition on May 27 to a minimum of 31" at conjunction on December 14.


D- t-	App.		Syst	em I	System II	
Date U.T.	Vis. Mag.	Equat. Diam.	L(1)	Δ	L(1)	Δ
Jan 1.0 Feb 1.0 Mar 1.0 Apr 1.0 May 1.0 Jun 1.0 Jul 1.0 Aug 1.0 Sep 1.0 Oct 1.0 Nov 1.0 Dec 1.0 Jan 1.0	$\begin{array}{c} -1.3 \\ -1.5 \\ -1.7 \\ -1.9 \\ -2.0 \\ -2.1 \\ -2.0 \\ -1.9 \\ -1.7 \\ -1.5 \\ -1.4 \\ -1.3 \\ -1.3 \end{array}$	32 ² .2 34.4 37.3 41.0 44.2 45.4 43.8 40.5 37.0 34.2 32.3 31.4 31.6	133°.6 345.3 85.6 301.7 1.9 221.0 280.3 134.3 345.1 365.1 243.7 293.5	157°80 157.87 157.94 158.01 158.03 157.98 157.87 157.77 157.70 157.67 157.66 157.68	328°.6 303.8 190.4 170.0 1.3 343.8 174.2 151.7 126.0 308.1 279.2 100.1	$150^{\circ}17$ 150.23 150.31 150.38 150.40 150.35 150.24 150.14 150.07 150.04 150.03 150.05

JUPITER: EPHEMERIS FOR PHYSICAL OBSERVATIONS 1983

JUPITER'S BELTS AND ZONES

Viewed through a telescope of 150 mm aperture or greater, Jupiter exhibits a variety of changing detail and colour in its cloudy atmosphere. Some features are of long duration, others are shortlived. The standard nomenclature of the belts and zones is given in the figure.

Ρ

The Great Red Spot, a towering vortex whose colour may possibly be due to organic-like compounds that are constantly spewed from some heated atmospheric source below, is a conspicuous and longest-lived structure on the visible surface of Jupiter. The spot and the changing cloud structures can be easily observed in small telescopes because the apparent size of the visible surface of Jupiter is far greater than that of any other planet. Occasionally (as in 1981 and 1982) the Red Spot loses its prominence, becoming difficult to detect in smaller telescopes, only to return to its normal state a year or two later.

Two Voyager spacecraft swung through the Jovian system in 1979 and transmitted to Earth superbly detailed photographs of the planet and its five inner moons. Among the most surprising finds was a ring of dust-size particles around the giant planet's equator. The ring apparently extends from the Jovian clouds out to 59 000 km.

The smallest of telescopes will reveal Jupiter's four large moons, each of which is equal to or larger than Earth's satellite. The moons provide a never-ending fascination for amateur astronomers. Sometimes the satellites are paired on either side of the belted planet; frequently one is missing—either behind Jupiter or in the planet's shadow. Even more interesting are the occasions when one of the moons casts its shadow on the disk of the planet. The tiny black shadow of one of the moons can be particularly evident if it is cast on one of the bright zones of Jupiter. According to some observers this phenomenon is evident in a good 60 mm refractor. Both the satellite positions and the times of their interaction with the Jovian disk are given elsewhere in the HANDBOOK. Jupiter's other satellites are photographic objects for large instruments.

As 1983 opens, Jupiter, in Libra, is the most prominent object in the morning sky. By March it becomes visible in the late evening sky and is ideally placed for telescopic viewing for the next six months. Despite the fact that it is five times Earth's distance from the Sun, Jupiter's giant size and reflective clouds make it a celestial beacon which is unmistakable, particularly around opposition.

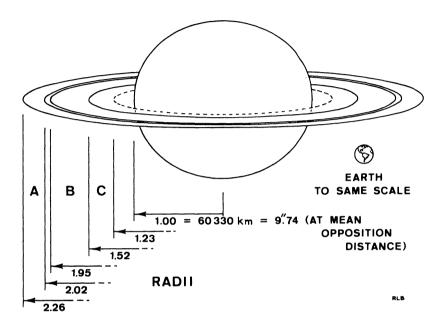
Opposition this year occurs on May 27, when the giant planet is 649 million km (4.34 A.U.) from Earth. Minimum possible distance between the two planets is 590 million km.

SATURN

Saturn is the telescopic showpiece of the night sky. The chilling beauty of the small pale orb floating in a field of velvet is something no photographs or descriptions can adequately duplicate. According to recent Voyager spacecraft findings, the rings consist of billions of particles that range in size from microscopic specks to flying mountains kilometres across. The reason "rings" is plural and not singular is that gaps and brightness differences define hundreds of distinct rings. However, from Earth only the three most prominent components—known simply as rings A, B, and C—can be distinguished. (See the diagram on p. 98.)

The outer ring A has an external diameter of $273\,000$ km and is 15000 km wide. Separating ring A from the 26000-km-wide ring B is a 4000 km gap known as Cassini's Division. The gap was discovered in 1675 and is visible when the ring system is well inclined to our view from Earth in good-quality telescopes of 60 mm aperture. The Voyager spacecraft revealed Cassini's Division as a region less densely populated with ring particles than adjacent rings A and B. Ring B, the brightest, overpowers ring C to such an extent that ring C is seen only with difficulty in small telescopes. Ring C, also known as the crepe ring, extends 17000 km toward Saturn from the inner edge of ring B. Other ring structures beyond these three are not visible in amateur telescopes.

In addition to the rings, Saturn has a family of at least twenty satellites. Titan, the largest, is easily seen in any telescope as an eighth-magnitude object orbiting Saturn in about 16 days. At east and west elongation Titan appears about five ring diameters from the planet. Titan is the only satellite in the solar system with a substantial atmosphere, now known to be primarily nitrogen and 4.6 times as massive as Earth's, with a surface pressure of 1.6 Earth atmospheres.


Telescopes over 60 mm aperture should reveal Rhea at 10th magnitude less than two ring-diameters from Saturn. The satellite Iapetus has the peculiar property of being five times brighter at western elongation $(10^{m}1)$ than at eastern elongation $(11^{m}9)$. One side of the moon has the reflectivity of snow while the other resembles dark rock. The reason for this is unknown. When brightest, Iapetus is located about 12 ring-diameters west of its parent planet. Of the remaining moons Tethys and Dione may be glimpsed in a 150 mm telescope but the others require larger apertures or photographic techniques. (See page 115 for an ephemeris for the five brightest satellites of Saturn.)

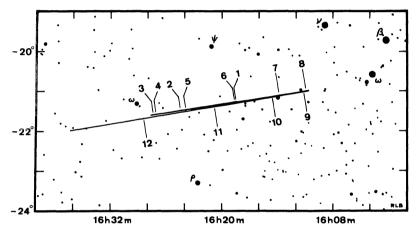
The disk of Saturn appears about 1/6 the size Jupiter appears through the same telescope with the same magnification. In telescopes less than 100 mm aperture probably no features will ever be seen on the surface of the planet other than the shadow cast by the rings. As the size of the telescope is increased the pale equatorial region and the darker polar regions become evident. Basically, Saturn has a belt system like Jupiter's but it is much less active and the contrast is reduced. Seldom in telescopes less than 200 mm aperture do more than one or two belts come into view. In 1980, the planet's rotation period was established at 10 hours, 40 minutes, four per cent longer than previous estimates. Very rarely a spot among the Saturnian clouds will appear unexpectedly, but less than a dozen notable spots have been recorded since telescopic observation of Saturn commenced in the 17th century.

From year to year the rings of Saturn take on different appearances. The planet's orbit is an immense 29.5 year circuit about the sun, so in the course of an observing season the planet moves relatively little in its orbit (and thus appears to remain in about the same general area of the sky) and maintains an essentially static orientation toward Earth. In 1973 the rings were presented to their fullest extent (27°) as viewed from Earth, with the southern face being visible. In apparent width the rings are equal to the equatorial diameter of Jupiter.

SATURN

MAIN RING FEATURES VISIBLE FROM EARTH

As 1983 opens, the rings are tilted 16.7° with respect to Earth, with the northern face being visible. The tilt remains near this value until April when it decreases slightly, reaching 14.6° in June. From then until October, when Saturn is too close to the Sun for observation, the ring inclination slowly increases to near 17° . By December 31, when Saturn is visible in the morning sky, the rings have opened to 20.4°.


P

Saturn is in Virgo and rises about 2 a.m. as 1983 begins. Opposition is on April 21, when the planet is 1.31 billion km (8.77 AU) from Earth. At that time Saturn is 19".0 in equatorial diameter and the rings are 42".8 in width. By the end of 1983, Saturn has slipped into Libra, where it will remain for most of the following two years.

URANUS

Although Uranus can be seen with the unaided eye under a clear, dark sky it was apparently unknown until 1781 when it was accidentally discovered by William Herschel with a 150 mm reflecting telescope. It can be easily seen with binoculars, and a telescope will reveal its small, greenish, featureless disk.

Jupiter, Saturn, Uranus and Neptune are rather similar in the sense that their interiors consist mainly of hydrogen and helium and their atmospheres consist of these same elements and simple compounds of hydrogen. Unlike the three other giant planets, the axis of Uranus is tipped almost parallel to the plane of the solar system. This means that we can view Uranus nearly pole-on at certain points in its 84 year orbit of the Sun. The northern hemisphere of Uranus is now directed toward the Earth and we will be viewing the planet almost exactly toward its north pole in 1985. Uranus has five satellites, all smaller than Earth's moon, none of which can be detected in small or moderate sized telescopes.

The path of Uranus at the Ophiuchus-Scorpius border, 1983. Its position is marked for the first day of each month, where 1 = January, 2 = February, etc. The faintest stars shown are of magnitude 9. The magnitude of Uranus is about 6. The coordinates are for 1950.

The 1977 discovery of at least five rings encircling Uranus is regarded as one of the major planetary finds in recent years. Their detection emerged during a relatively routine occultation observation from an airborne observatory—an experiment initially intended to provide a more accurate measure of the diameter of Uranus. Refinement of the observations and results from another occultation in 1978 indicates there is evidence for eight (possibly nine) rings relatively evenly spaced from 16 000 to 24 000 km above the cloudy surface of Uranus. The outer ring is about 100 km wide but curiously eccentric. The others are estimated to be between 5 and 10 km across.

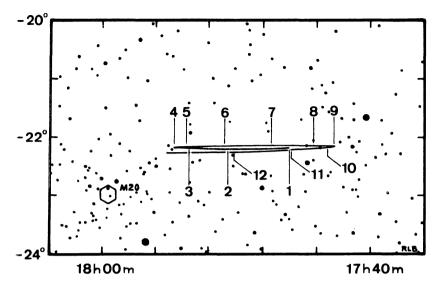
These dimensions are markedly different from Saturn's three major rings, each of which is thousands of kilometres wide. The rings are not as dense as Saturn's major ring since the occulted star did not completely disappear during passage behind them. Also, the albedo of the individual particles is believed to be low suggesting a dark substance compared to Saturn's brilliantly reflective ring material. The Uranian rings are invisible by direct visual observation because of their small dimensions and the enormous distance that separates us from Uranus.

Estimates of Uranus' diameter made over the last half century range from 46 000 to 56 000 km depending on the technique employed. Some recent work supports the high end of this range. If this proves to be correct then Uranus, like Saturn, has an average density less than that of water. The long-quoted rotation period of Uranus (about 11 hours) has come into question recently and may be in error by a factor of at least 2, since several recent studies have yielded values in the 12 to 24 hour range. Uranus' nearly pole-on aspect in recent years is the primary impediment to obtaining an accurate value for the planet's spin.

Uranus is near the Scorpius/Ophiuchus border during 1983, close to Omega Ophiuchi. Opposition is on May 29, when the planet is 2.68 billion km (17.93 AU) from Earth. At this time its magnitude is +5.8 and its apparent diameter is 3.8 seconds of arc.

NEPTUNE

The discovery of Neptune in 1846, after its existence in the sky had been predicted from independent calculations by Leverrier in France and Adams in England, was regarded as the crowning achievement of Newton's theory of universal gravitation. Actually Neptune had been seen—but mistaken for a star—several times before its "discovery".


Telescopically the planet appears as a 2.5 second of arc, featureless, bluish-green disk. Neptune's large moon Triton can be seen by an experienced observer using a 300 mm telescope. Recent measurements using NASA's Infrared Facility on Mauna Kea (Hawaii) show Triton and Pluto to have many common characteristics. Triton is likely smaller than Earth's moon, thus effectively eliminating the possibility that Triton is the largest moon in the solar system. Triton varies from 8 to 17 seconds of arc from Neptune during its 5.9 day orbit. A third moon of Neptune was tentatively identified in 1981. This object will probably prove to be one of a large number of smaller as-yet-undetected bodies in orbit around the planet.

Since the discovery of Uranus' rings in 1977, numerous searches for a Neptunian ring system have failed to reveal one. However, recent analysis of decade-old records of an occultation by Neptune suggests there may indeed be a tenuous ring about 3000 to 7000 km above the planet's equator. Other occultation records are being scanned to confirm the suspected dimming of starlight near Neptune. Neptune's diameter was determined with high precision from occultation observations in 1969.

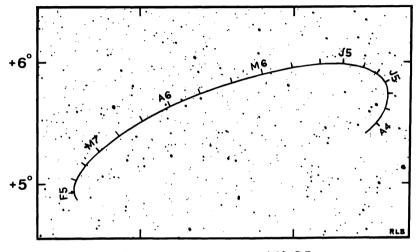
P

Uncertainties in the rotation period of Neptune may have narrowed in 1981 with the results from over 300 infrared observations of the planet made with a 1.3-metre telescope at Kitt Peak. Astronomers Michael Belton, Lloyd Wallace and Sethanne Howard conclude that Neptune's rotation period is 18.2 hours, with an uncertainty of plus or minus 24 minutes.

In 1983 Neptune is buried in the Milky Way in western Sagittarius and is not well placed for northern observers. At opposition on June 19 Neptune is magnitude +7.7 and 4.38 billion km (29.25 AU) distant from Earth.

The path of Neptune in western Sagittarius, 1983. Its position is marked for the first day of each month, where 1 = January, 2 = February, etc. The faintest stars shown are of 9th magnitude, somewhat dimmer than 7.7 magnitude Neptune. The bright (5th magnitude) star northwest of the path is 58 Ophiuchi. Southeast of the path is the Trifid Nebula (M20). The coordinates are for 1950.

PLUTO


Pluto, the most distant known planet, was discovered at the Lowell Observatory in 1930 as a result of an extensive search started two decades earlier by Percival Lowell. The faint star-like image was first detected by Clyde Tombaugh by comparing photographs taken on different dates.

The most important advance in our knowledge of Pluto since its discovery came in 1978 as a result of routine examinations of photographs of the planet taken at the U.S. Naval Observatory, Flagstaff, Arizona. James W. Christy detected an elongation of Pluto's image on some of the photos which has been confirmed as a large satellite revolving once every 6.3867 days—identical to the planet's rotation period. This means that the moon is visible only from one hemisphere of Pluto. Calculations made some years ago suggest that this is the only stable orbit a satellite could have with Pluto's slow rotation rate. The moon too would likely have one side constantly turned to Pluto. The name Charon has been proposed for the new-found object.

Recent speckle-interferometry observations by D. Bonneau and R. Foy using the Canada-France-Hawaii Telescope reveal Pluto and Charon as a unique double planet, 4000 and 2000 km in diameter respectively, orbiting 22 000 km apart. This amounts to an apparent separation of 1.02 seconds of arc at Pluto's present distance. The derived mass for Pluto is one-quarter the mass of Earth's moon. Charon is about one-tenth as massive. The albedo of both objects is about 20%. These values yield a density of 0.5 that of water, definitely indicating Pluto and Charon are fluffy balls of ice, most likely water, methane, and ammonia. This conclusion is supported by recent observations of a tenuous methane atmosphere on Pluto. However, since Pluto's surface gravity is too feeble to retain a primordial methane atmosphere it is possible that as the planet nears perihelion, the Sun is evaporating its frosty surface.

Besides being the solar system's smallest planet, Pluto is different from the other eight in almost every respect. Its unique characteristics include its orbit which is relatively higher inclined and so elliptical that the planet will be closer to the Sun than Neptune from 1980 to 1999. Just where such a freak fits into the solar system's origin and evolution is unknown. Perhaps Pluto is the largest member of a group of small, icy, comet-like structures beyond Neptune.

At opposition on April 18, Pluto's astrometric position is R.A. (1950) $14^{h} 07^{m}8$, Dec. (1950) $+5^{\circ} 46'$ and its distance from Earth will be 4.33 billion km (28.93 A.U.). With an apparent magnitude of +13.7, Pluto is a difficult target in moderate-sized amateur telescopes.

14h05m

P The path of Pluto in eastern Virgo, 1983. Its position is marked at 10-day intervals, beginning at February 5 (F5). The faintest stars shown are of magnitude 14. The bright star at the right edge of the chart is of 6th magnitude and lies about 3.4 degrees north of the star τ Virginis. Pluto reaches opposition on April 18 at magnitude 13.7. The chart is based on Vehrenberg's Atlas Stellarum (1950.0).

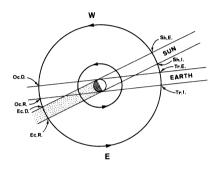
Mercury	mûr'kyoo-rē
Venus	vē'nŭs
Earth	ûrth
Mars	mars
Jupiter	jōo'pĭ-tēr
Saturn	sat'ûrn
Jupiter	joo'pĭ-tẽr

PRONUNCIATION OF PLANET NAMES

PRONUNCIATION OF SATELLITE NAMES

Adrastea Amalthea Ananke Ariel Callisto Carme Charon Deimos Dione Elara	à-drăs'tē-à àm''l-thē'à ànăn-kê âr'ē-ēl kà-līs'tō kàr'mē kâr'ěn dī'mõs dī-ŏ'nē ā'làr-à	Himalia Hyperion Iapetus Io Leda Lysithea Mimas	yoo-rō'pà găn'ĕ-mēd' hīm'à-lī-à hī-pēr'ĭ-ĕn ī-āp'ŭ-tŭs ī'ō lē'dà līs'ī-thē'-à mī-rān'dà	Nereid Oberon Pasiphae Phobos Phoebe Rhea Sinope Tethys Titan Titania	fõ'bŏs fē'bē rē'a sī-nō'pē tē'thĭs tī't'n
Dione Elara	di-o'ne ē'lar-a	Mimas Miranda	mi mas mĭ-răn'da	Titan	ti t n tī-tā'nē-à
Enceladus	ĕn-sĕl'a-dŭs	Moon	moon	Triton Umbriel	trī't'n ŭm'brē-ĕl'

 $\frac{1}{100} \frac{1}{100} \frac{1}$


JUPITER

PHENOMENA OF THE GALILEAN SATELLITES

The following tables give the various transits, occultations, and eclipses of the four great satellites of Jupiter. All such phenomena are given except when Jupiter is within a few weeks of conjunction (December 14 in 1983). Since the phenomena are not instantaneous but require up to several minutes, the predicted times are for the middle of each event. The abbreviations are: I = Io, II = Europa, III = Ganymede, IV = Callisto; Ec = eclipse, Oc = occultation, Tr = transit of the satellite, Sh = transit of the shadow, <math>I = ingress, E = egress, D = disappearance, R = re-appearance.

The general motions of the satellites, and the successive phenomena are shown in the diagram at right. Satellites move from east to west across the face of the planet, and from west to east behind it. Before opposition, shadows fall to the west, and after opposition, to the east (as in the diagram). The sequence of phenomena in the diagram, beginning at the lower right, is: transit ingress (Tr.I.), transit egress (Tr.E.), shadow ingress (Sh.I.), shadow egress (Sh.E.), occultation disappearance (Oc.D.), occultation reappearance (Oc.R.), eclipse disappearance (Ec.D.) and eclipse reappearance (Ec.R.), but this sequence will depend on the actual Sun-Jupiter-Earth angle.

Ρ

Over half the phenomena listed will not be visible from any one locality because they occur when Jupiter is below the horizon or when daylight interferes. To determine which phenomena are visible from a given locality (latitude ϕ) on a certain date, note the local time that Jupiter transits and its declination δ (see The Sky Month By Month section). Jupiter will be above the horizon for a time of (1/15) cos⁻¹ (-tan ϕ tan δ) hours on either side of the time of transit. A second time interval corresponding to nighttime can be determined from the Twilight table. The region of overlap of these two time intervals will correspond to Jupiter being both above the horizon and in a dark sky. Those phenomena in the table which fall within this time "window" will be visible.

In practice, the observer usually knows when Jupiter will be conveniently placed in the night sky, and the table can simply be scanned to select those events which occur near these times. For example, an active observer in Victoria, British Columbia, on June 6 would know that Jupiter is well placed in the late evening sky. If he planned to observe from 10 pm to 2 am PDT (7 h behind UT), he could scan the table for events in the interval June 7, 5 h to 9 h UT. He would find two events, at 1019 and 0134 PDT, both involving the satellite Ganymede.

SATELLITES OF JUPITER, 1983

UNIVERSAL TIME OF GEOCENTRIC PHENOMENA

[an a		JANU	ARY			
$ \begin{array}{c} \mathbf{d} & \mathbf{h} & \mathbf{m} \\ 0 & 2 & 45 \\ 5 & 541 \\ 15 & 09 \\ 17 & 20 \\ 18 & 14 \\ 20 & 30 \\ 23 & 53 \\ 1 & 0 & 39 \\ 2 & 03 \\ 2 & 49 \\ 12 & 59 \\ 12 & 59 \\ 12 & 59 \\ 13 & 46 \\ 15 & 20 \\ 21 & 14 \\ 2 & 0 & 11 \\ 18 & 22 \\ 19 & 99 \\ 20 & 31 \\ 21 & 19 \\ 9 & 32 \\ 15 & 42 \\ 18 & 41 \\ 4 & 5 & 08 \\ 7 & 18 \\ 8 & 8 & 26 \\ 10 & 39 \\ 15 & 49 \\ 10 & 39 \\ 15 & 00 \\ 15 & 49 \\ 10 & 39 \\ 15 & 00 \\ 15 & 49 \\ 5 & 0 & 43 \\ 22 & 26 \\ 7 & 4 & 39 \\ 7 & 70 \\ 19 & 740 \\ 18 & 50 \\ 22 & 56 \\ 7 & 4 & 39 \\ 7 & 40 \\ 19 & 70 \\ 21 & 18 \\ 22 & 36 \\ 8 & 0 & 50 \end{array} $	I. Ec.D. I. Oc.R. III. Ec.R. III. Ec.R. III. Oc.D. III. Oc.D. I. Sh.I. I. Sh.I. I. Tr.I. I. Sh.I. I. Tr.I. I. Sh.I. I. Tr.I.E. I. Sh.I. I. Sh.E. I. Sh.I. I. Sh.I. I. Sh.E. I. Sh.I. I. Sh.I. I. Sh.I. I. Sh.I. I. Sh.I. I. Sh.I. I. Sh.E. I. Sh.I. I. Sh.I. I. Sh.E. I. S	$ \begin{array}{c} {}^{d} {} {}^{h} {}^{m} {}^{m} {}^{3} {}^{1} {}^{4} {}^{7} {}^{2} {}^{3} {}^{9} {}^{3} {}^{5} {}^{6} {}^{4} {}^{4} {}^{8} {}^{1} {}^{4} {}^{00} {}^{15} {}^{15} {}^{45} {}^{16} {}^{20} {}^{18} {}^{05} {}^{23} {}^{07} {}^{9} {}^{2} {}^{2} {}^{10} {}^{2} {}^{0} {}^{15} {}^{23} {}^{10} {}^{12} {}^{18} {}^{12} {}^{2} {}^{23} {}^{18} {}^{12} {}^{2} {}^{23} {}^{11} {}^{12} {}^{18} {}^{12} {}^{2} {}^{2} {}^{11} {}^{12} {}^{16} {}^{12} {}^{47} {}^{14} {}^{4} {}^{44} {}^{15} {}^{38} {}^{16} {}^{5} {}^{37} {}^{7} {}^{7} {}^{27} {}^{7} {}^{27} {}^{12} {}^{21} {}^{$	I. Sh.I. I. Sh.E. II. Sh.E. II. Sh.E. II. Sh.I. II. Sh.E. II. Sh.I. II. Sh.I.		II. Tr.E. I. Ec.D. I. Oc.R. I. Sh.I. I. Tr.I. I. Sh.E. I. Tr.E. II. Ec.D. I. Oc.R. II. Sh.E. I. Tr.E. II. Sh.E. I. Sh.E. I. Sh.E. I. Sh.E. I. Sh.E. I. Sh.E. I. Sh.E. I. Sh.E. I. Tr.E. II. Sh.E. I. Tr.E. II. Sh.E. I. Tr.E. II. Sh.E. I. Tr.E. II. Sh.E. I. Tr.E. I. Sh.I. I. Sh.I. I. Sh.I. I. Tr.E. I. Sh.I. I. Sh.E. I. Tr.E. I. Sh.I. I. Sh.E. I. Tr.E. I. Sh.I. I. Sh.E. I. Tr.E. I. Sh.E. I. Tr.E. I. Sh.E. I. Tr.E. I. Sh.I. I. Tr.E. I. Sh.E. I. Tr.E. I. Sh.E. I. Tr.E. I. Sh.I. I. Tr.I. I. Sh.I. I. Tr.I. I. Sh.I. I. Tr.I. I. Sh.I. I. Tr.I. I. Sh.I. I. Tr.I.	$ \begin{array}{c} \mathbf{d} & \mathbf{h} & \mathbf{m} \\ 24 & 2 & 12 \\ 3 & 15 \\ 17 & 17 & 48 \\ 21 & 22 \\ 25 & 0 & 36 \\ 17 & 01 \\ 19 & 11 \\ 19 & 35 \\ 20 & 40 \\ 21 & 21 \\ 21 & 44 \\ 23 & 32 \\ 26 & 8 & 25 \\ 10 & 34 \\ 10 & 34 \\ 10 & 35 \\ 10 & 15 & 50 \\ 27 & 12 & 59 \\ 14 & 04 \\ 15 & 50 \\ 16 & 13 \\ 28 & 2 & 35 \\ 7 & 10 & 19 \\ 13 & 34 \\ 29 & 6 & 59 \\ 7 & 28 \\ 8 & 33 \\ 9 & 12 \\ 9 & 37 \\ 10 & 43 \\ 11 & 28 \\ 30 & 0 & 02 \\ 21 \\ 34 \\ 47 \\ 8 & 03 \\ 31 & 1 & 56 \\ 3 & 03 \\ 31 & 1 & 55 \\ 20 & 31 \\ 23 & 15 \\ \end{array} $	I Sh.E. I. Tr.E. II. Co.R. II. Oc.R. II. ShI. II. ShI. III. ShI. III. ShI. III. ShI. III. Tr.E. III. Tr.E. III. Tr.E. III. ShI. III. Tr.E. III. ShI. III. Tr.E. III. ShI. III. Tr.E. III. ShI. III. SHI.

SATELLITES OF JUPITER, 1983

UNIVERSAL TIME OF GEOCENTRIC PHENOMENA

FEBRU	ARY	
d h m I. Oc.R. d h m 20 24 I. Sh.I. 22 18 I. Sh.I. 20 59 III. Sh.I. 23 28 I. Sh.I. 21 32 I. Tr.I. 23 28 I. Sh.E. 23 9 III. Sh.E. 9 0 27 I. Sh.E. 23 41 I. Tr.E. 138 I. Tr.E. 138 I. Tr.E. 24 1. Sh.E. 0 56 III. Sh.E. 137 III. Sh.E. 23 44 III. Tr.E. 7 54 III. Tr.I. 13 33 II. Sh.I. 13 19 II. Sh.E. 15 54 II. Tr.I. 15 54 II. Tr.I. 15 33 II. Tr.E. 18 12 II. Tr.E. 10 66 I. Sh.I. 17 62 I. Sh.I. 17 75 I. Tr.E. 18 10 I. Tr.E. 20	ARY d h m 15 153 II. Oc.R. 301 I. Ec.D. 6 24 I. Oc.R. 16 0 I. Sh.I. 124 I. Tr.I. 200 333 I. Tr.E. 333 I. Tr.E. 333 I. Tr.E. 4 54 11. Sh.I. 7 1201 III. Sh.E. 9 53 18 101 18 25 18 31 1. Tr.E. 21 30 18 10 19 53 1. Tr.E. 21 30 1. Tr.E. 21 0 11 1. Sh.I. 12 1. Sh.I. 13 1. Coc.R. 14 20 15 1. Coc.R. 15 1. I. Co.D. 13 1. Sh.I.	d h m 22 200 II. Ec. R 211 III. Oc. R 431 II. Oc. R 454 I. Ec. D 8 18 I. Oc. R 205 I. Sh. I. 319 I. Tr. I. 414 I. Sh. E. 528 I. Tr. E. 857 III. Sh. E. 1357 III. Sh. E. 1357 III. Sh. E. 1357 III. Tr. I. 2059 I. Sh. E. 2107 II. Tr. I. 2221 I. Ec. D. 2325 II. Tr. I. 2033 I. Sh. E. 2033 I. Sh. E. 2357 I. Tr. E. 242 I. Sh. E. 2357 I. Tr. E. 242 I. Sh. E. 250 II. Oc. R. 251 I. Oc. R. 253 I. Tr. E. 254 II. Oc. R. 158 II. Oc. R. 1616

Ρ

UNIVERSAL TIME OF GEOCENTRIC PHENOMENA

MARCH d 24 h m 11 07 h ь 5 d 1 ћ 2 4 m I. Tr.E. III. Sh.I. III. Tr.I. 8 12 04 I. Oc.R. 16 30 II. Ec.D. II. Ec.R. 13 I. Éc.D. II. Tr.I. 20 44 546 7 7 7 35 I. Sh.I. I. Tr.I. I. Sh.E. I. Tr.E. 9 $\frac{5}{7}$ 52 $\overline{22}$ 57 III. Sh.E. 10 4 48 II. Oc.D. II. Sh.E. III. Tr.E. 06 10 $\bar{6}$ 47 I. Ec.D. II. Oc.R. 89 17 1 43 III. Tr.I. 34 01 7 08 III. Tr.I. III. Sh.I. III. Tr.E. II. Sh.E. II. Tr.I. I. Ec.D. $\frac{2}{3}$ 18 ġ 26 II. Tr.E. 11 I. Oc.R. 15 10 48 10 13 I. Oc.R. III. Sh.I. $\frac{16}{18}$ 47 III. Sh.I. III. Sh.E. III. Tr.I. II. Sh.I. III. Tr.E. 59 52 I. Sh.I. 4 2 3 58 I. Tr.I. I. Sh.E. I. Tr.E. 21 23 23 25 07 I. Sh.I. 4 42 4 5 13 I. Tr.I. I. Sh.E. I. Tr.E. ôĩ 5 16 5 45 $\frac{1}{6}$ 07 II. Tr.E. I. Oc.R. 67 16 25 6 59 23 22 57 8 $1\dot{2}$ 50 III. Sh.I. 23 19 II. Ec.D. 2 05 II. Sh.E. 15 01 III. Sh.E. 10 I. Sh.I. I. Tr.I. I. Sh.E. I. Tr.E. II. Ec.D. $\begin{array}{r} 2 & 13 \\ 3 & 26 \\ 4 & 23 \\ 5 & 35 \\ 5 & 35 \end{array}$ II. Tr.I. I. Ec.D. II. Tr.E. I. Oc.R. $\frac{10}{17}$ 20 57 III. Tr.I. III. Tr.E. 2 13 18 26 22 I. Ec.D. 1 03 3 08 II. Ec.R. 1 41 21 23 12 II. Sh.I. II. Sh.E. ā 30 $\overline{42}$ II. Oc.D. II. Oc.R. 6 32 1 20 43 23 05 23 12 23 29 **4** 01 23 41 II. Tr.I. 4 41 22 35 23 44 I. Oc.R. I. Sh.I. 0 20 I. Sh.I. II. Ec.R. II. Oc.D. 11 I. Tr.I. I. Sh.E. I. Sh.E. I. Tr.E. II. Ec.D. 34 $\frac{15}{58}$ I. Ec.D. II. Tr.E. 1 3 1 I. Tr.I. 2 29 I. Ec.D. 1 4 22 23 I. Oc.R. I. Sh.I. 3 43 40 26 I. Sh.E. I. Tr.E. III. Ec.D. III. Ec.R. II. Oc.R. 27 0 18 07 19 1 31 45 20 29 20 40 2 51 I. Tr.I. II. Ec.R. I. Oc.R. 1 $\overline{33}$ 41 I. Sh.I. I. Tr.I. 14 37 II. Oc.D. 20 42 $\begin{array}{r} 16 & 53 \\ 18 & 07 \end{array}$ $\begin{array}{ccc} 21 & 53 \\ 22 & 51 \end{array}$ $\tilde{2}\tilde{1}$ 36 I. Ec.D. 36 I. Sh.E. I. Tr.E. 4 0 III. Ec.R. II. Sh.I. III. Oc.D. I. Ec.D. II. Tr.I. 23 II. Oc.R. I. Sh.E. 00 1 50 19 18 II. Ec.D. 15 32 1 00 I. Oc.R. 0 03 I. Tr.E. 19 51 12 20 17 54 II. Ec.R. 19 51 20 23 20 27 21 24 22 39 23 08 I. OC.R. I. Sh.I. I. Tr.I. I. Sh.E. I. Tr.E. $18 48 \\ 20 02$ 10 40 III. Ec.D. III. Ec.R. 18 19 06 II. Oc.D. II. Sh.E. 12 55 I. Ec.D. II. Oc.R. I. Oc.R. 44 58 15 15 15 17 17 34 35 III. Oc.D. III. Oc.R. II. Tr.E. $\overline{20}$ 20 26 II. Sh.I. $\tilde{2}\tilde{2}$ 23 08 11 $\begin{array}{c} 15 & 35 \\ 17 & 40 \\ 17 & 54 \\ 17 & 56 \\ 17 & 58 \\ 20 & 13 \\ 20 & 13 \end{array}$ III. Oc.R. I. Oc.R. III. Ec.D. III. Ec.R. III. Oc.D. I. Sh.I. I. Tr.I. I. Sh.E. I. Tr.E. II. Sh.E. 43 13 6 5 16 55 II. Tr.I. I. ECD. I. Sh.I. 28 17 04 18 10 8 57 18 19 I. Tr.I. I. Sh.E. 11 19 11 45 04 II. Sh.I. III. Oc.R. II. Tr.E. 13 13 02 19 20 I. Oc.R. 21 18 20 I. Tr.E. 20 II. Sh.E. II. Tr.I. 2 III. Ec.D. 6 45 I. Sh.I. I. Tr.I. I. Sh.E. 12 36 II. Ec.D. **4**7 21 15 10 29 59 III. Ec.R. I. Ec.D. II. Oc.R. I. Ec.D. II. Tr.E. 16 21 17 20 51 III. Oc.D. 44 28 ġ 59 29 48 III. Oc.R. II. Sh.I. I. Oc.R. 19 I. Oc.R. 18 30 I. Tr.E. 10 II. Sh.E. II. Tr.I: $\frac{12}{12}$ I. Sh.I. I. Tr.I. I. Sh.E. $\begin{array}{ccc} 11 & 32 \\ 12 & 39 \\ 13 & 42 \end{array}$ I. Sh.I. I. Tr.I. I. Sh.E. 22 10 00 30 13 17 II. Ec.D. 14 57 30 26 $\begin{array}{c} 12 & 22 \\ 12 & 26 \end{array}$ I. Ec.D. II. Tr.E. 14 15 II. Ec.R. 14 12 I. Ec.D. 1514 16 39 I. Tr.E. 12 27 II. Oc.D. 14 48 I. Tr.E. I. Oc.R. 17 36 14 46 II. Oc.R. III. Sh.I. III. Sh.E. II. Sh.I. I. Ec.D. III. Tr.I. I. Sh.I. I. Tr.I. I. Sh.E. 39 $\frac{7}{9}$ 25 47 15 46 I. Oc.R. 31 4 II. Ec.D. 23 15 11 II. Ec.R. $\frac{6}{7}$ 53 24 $\frac{12}{13}$ 38 I. Sh.I. I. Tr.I. I. Sh.E. ğ II. Oc.D. I. Ec.D. 23 9 39 32 5647 10 49 8 47 I. Tr.E. 10 33 14 II. Oc.R. I. Oc.R. 11 48 9 13 12 15II. Tr.I. II. Sh.E. I. Tr.E. 9 35 12 58 49 II. Ec.D. II. Ec.R. 13 55 8 477 9 43 11 III. Tr.E. II. Tr.E. III. Sh.I. $\begin{array}{ccc} 0 & 42 \\ 2 & 55 \\ 4 & 51 \end{array}$ 11 15 7 I. Sh.I. 24 23 II. Oc.D. 16 45 III. Sh.E. II. Sh.I. 11 51 I. Tr.I. 8 58 9 54 8 40 I. Ec.D. 58 12 02 I. Oc.R. ğ 43 II. Oc.R. I. Sh.E

UNIVERSAL TIME OF GEOCENTRIC PHENOMENA

APRIL						
d h m I. Sh.I. 7 06 I. Tr.I. 8 10 I. Sh.E. 9 15 I. Tr.E. 9 15 I. Tr.E. 2 1 54 II. Ec.D. 6 28 II. Oc.R. 3 15 I. Ec.D. 6 28 II. Oc.R. 3 0 29 I. Sh.I. 1 33 I. Tr.I. 2 38 I. Sh.E. 1 S6 29 I. Oc.R. 3 42 I. Tr.L. 238 I. Sh.E. 1 S6 20 40 II. Sh.I. 1. Ec.D. 20 40 II. Sh.E. 21 43 I. C.D. 23 00 II. Tr.E. 1. Sh.E. 23 00 I. Tr.E. 1. Sh.E. 1. Oc.R. 1. Oc.R. 10 10 1. Tr.E. 1. Sh.E. 1. Oc.R. 1. Oc.R. 22 09 I. Tr.E. 1. Sh.E. 1. Oc.R. <th>d h m 8 11 04 I. Tr.E. 9 4 30 II. Ec.D. 5 08 I. Ec.D. 8 17 I. Oc.R. 8 53 II. Oc.R. 10 2 22 I. Sh.I. 3 21 I.Tr.I. 4 32 I. Sh.I. 23 13 II. Sh.I. 23 13 II. Sh.I. 23 13 II. Sh.I. 23 13 II. Sh.I. 23 37 I. Ec.D. 10 48 III. Tr.I. 23 37 I. Ec.D. 11 048 III. Tr.I. 23 III. Oc.D. 244 1 05.I. I. Sh.I. 21 11 N.E. 23 58 I. Tr.I. 23 58 I. Tr.I. 23 58 I. Tr.I. 23 15 19 I. Sh.I. 18 05 I. Ec.D.</th> <th>d h m 16 7 07 10 04 I. Oc.R. 11 16 II. Oc.R. 11 16 I. Oc.R. 17 4 16 I.Sh.I. 6 26 I.Sh.E. 7 18 1. Tr.E. 18 1. Ec.D. 14 16 II.Sh.I. 28 III.Ec.D. 1.46 28 III.Ec.R. 1.0 3 10 I.Ec.N. 3 10 I.Ec.N. 4 06 I.Sh.E. 5 45 III.Oc.R. 22 44 I.Sh.I. 23 5 I.Tr.I. 19 54 I.Sh.E. 19 54 I.Sh.I. 145 I.Sh.I. 15 02 I.Sh.I. 19 23 I.Sh.E. 19 23 I.Sh.I. <t< th=""><th>d h m I. Sh.I. 6 10 I. Sh.I. 6 55 I. Tr.I. 9 05 I. Tr.E. 25 3 23 I. Ec.D. 4 19 H. Sh.I. 6 16 I. Oc.R. 4 19 H. Sh.E. 6 16 I. Oc.R. 6 39 HI. Sh.E. 8 03 HI. Tr.E. 8 03 HI. Co.D. 11 33 HI. Oc.R. 26 0 38 I. Sh.E. 21 331 I. Tr.E. 22 0 H. Sh.E. 23 00 HI. Ec.D. 23 00 H. Sh.I. 19 48 I. Tr.I. 19 48 I. Tr.E. 21 17 I. Sh.I. 19 97 I. Sh.I. 19 96 I. Sh.E. 20 <t< th=""></t<></th></t<></th>	d h m 8 11 04 I. Tr.E. 9 4 30 II. Ec.D. 5 08 I. Ec.D. 8 17 I. Oc.R. 8 53 II. Oc.R. 10 2 22 I. Sh.I. 3 21 I.Tr.I. 4 32 I. Sh.I. 23 13 II. Sh.I. 23 13 II. Sh.I. 23 13 II. Sh.I. 23 13 II. Sh.I. 23 37 I. Ec.D. 10 48 III. Tr.I. 23 37 I. Ec.D. 11 048 III. Tr.I. 23 III. Oc.D. 244 1 05.I. I. Sh.I. 21 11 N.E. 23 58 I. Tr.I. 23 58 I. Tr.I. 23 58 I. Tr.I. 23 15 19 I. Sh.I. 18 05 I. Ec.D.	d h m 16 7 07 10 04 I. Oc.R. 11 16 II. Oc.R. 11 16 I. Oc.R. 17 4 16 I.Sh.I. 6 26 I.Sh.E. 7 18 1. Tr.E. 18 1. Ec.D. 14 16 II.Sh.I. 28 III.Ec.D. 1.46 28 III.Ec.R. 1.0 3 10 I.Ec.N. 3 10 I.Ec.N. 4 06 I.Sh.E. 5 45 III.Oc.R. 22 44 I.Sh.I. 23 5 I.Tr.I. 19 54 I.Sh.E. 19 54 I.Sh.I. 145 I.Sh.I. 15 02 I.Sh.I. 19 23 I.Sh.E. 19 23 I.Sh.I. <t< th=""><th>d h m I. Sh.I. 6 10 I. Sh.I. 6 55 I. Tr.I. 9 05 I. Tr.E. 25 3 23 I. Ec.D. 4 19 H. Sh.I. 6 16 I. Oc.R. 4 19 H. Sh.E. 6 16 I. Oc.R. 6 39 HI. Sh.E. 8 03 HI. Tr.E. 8 03 HI. Co.D. 11 33 HI. Oc.R. 26 0 38 I. Sh.E. 21 331 I. Tr.E. 22 0 H. Sh.E. 23 00 HI. Ec.D. 23 00 H. Sh.I. 19 48 I. Tr.I. 19 48 I. Tr.E. 21 17 I. Sh.I. 19 97 I. Sh.I. 19 96 I. Sh.E. 20 <t< th=""></t<></th></t<>	d h m I. Sh.I. 6 10 I. Sh.I. 6 55 I. Tr.I. 9 05 I. Tr.E. 25 3 23 I. Ec.D. 4 19 H. Sh.I. 6 16 I. Oc.R. 4 19 H. Sh.E. 6 16 I. Oc.R. 6 39 HI. Sh.E. 8 03 HI. Tr.E. 8 03 HI. Co.D. 11 33 HI. Oc.R. 26 0 38 I. Sh.E. 21 331 I. Tr.E. 22 0 H. Sh.E. 23 00 HI. Ec.D. 23 00 H. Sh.I. 19 48 I. Tr.I. 19 48 I. Tr.E. 21 17 I. Sh.I. 19 97 I. Sh.I. 19 96 I. Sh.E. 20 <t< th=""></t<>			
10 51 III. Sh.E.	15 37 I. Oc.R. 16 24 III. Tr.I.	21 55 III. Tr.E.	15 45 I. Sh.E.			

Ρ

UNIVERSAL TIME OF GEOCENTRIC PHENOMENA

	МАҮ						
d h m 1 8 03 8 41 10 14 10 50 2 5 16 6 52 8 01 8 04 9 12	I. Sh.I. I. Tr.I. I. Sh.E. I. Tr.E. I. Ec.D. II. Sh.I. I. Oc.R. II. Tr.I. II. Sh.E.	d h m 8 12 35 9 7 09 9 25 9 45 10 19 11 46 12 35 14 22 18 18	I. Tr.E. I. Ec.D. II. Sh.I. I. Oc.R. II. Tr.I. II. Sh.E. II. Tr.E. III. Ec.D. III. Oc.R.	d h m 16 12 33 14 20 14 50 18 20 21 36 17 6 20 6 36 8 31 8 46	II. Tr.I. II. Sh.E. III. Tr.E. III. Ec.D. III. Oc.R. I. Sh.I. I. Sh.E. I. Tr.E.	d h m 24 0 53 8 14 8 20 10 25 10 30 25 5 25 7 39 9 26 11 54	III. Oc.R. I. Sh.I. I. Tr.I. I. Sh.E. I. Tr.E. I. Ec.D. I. Oc.R. II. Ec.D. II. Oc.R.
$ \begin{array}{r} 10 & 20 \\ 10 & 24 \\ 12 & 42 \\ 12 & 54 \\ 14 & 57 \\ \end{array} $	II. Tr.E. III. Ec.D. III. Ec.R. III. Oc.D. III. Oc.R.	10 4 26 4 52 6 37 7 01	I. Sh.I. I. Tr.I. I. Sh.E. I. Tr.E.	18 3 31 5 55 6 49 9 38	I. Ec.D. I. Oc.R. II. Ec.D. II. Oc.R.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I. Sh.I. I. Tr.I. I. Sh.E. I. Tr.E. I. Ec.D.
3 2 32 3 07 4 42 5 16 23 44	I. Sh.I. I. Tr.I. I. Sh.E. I. Tr.E. I. Ec.D.	$\begin{array}{cccccccc} 11 & 1 & 38 \\ & 4 & 11 \\ & 4 & 13 \\ & 7 & 22 \\ & 22 & 54 \\ & 23 & 18 \end{array}$	I. Ec.D. I. Oc.R. II. Ec.D. II. Oc.R. I. Sh.I. I. Tr.I.	19 0 49 1 02 2 59 3 12 22 00	I. Sh.I. I. Tr.I. I. Sh.E. I. Tr.E. I. Ec.D.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I. Oc.R. II. Sh.I. II. Tr.I. II. Sh.E. II. Tr.E. III. Sh.I.
$\begin{array}{cccccc} 4 & 1 & 37 \\ & 2 & 27 \\ & 5 & 05 \\ & 21 & 00 \\ & 21 & 33 \\ & 23 & 11 \\ & 23 & 43 \end{array}$	 II. Ec.D. I. Oc.R. II. Oc.R. I. Sh.I. I. Tr.I. I. Sh.E. I. Tr.E. 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I. Sh.E. I. Tr.E. I. Ec.D. I. Oc.R. II. Sh.I. II. Tr.I.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I. Oc.R. II. Sh.I. II. Tr.I. II. Sh.E. III. Tr.E. III. Sh.I. III. Tr.I. III. Sh.E.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	111. Sh.I. 111. Tr.E. 111. Tr.E. 111. Sh.E. 1. Sh.I. 1. Tr I. 1. Tr.E. 1. Sh.E.
5 18 13 20 08 20 53 21 11 22 29 23 28	I. Ec.D. II. Sh.I. I. Oc.R. II. Tr.I. II. Sh.E. II. Tr.E.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	II. Sh.E. II. Tr.E. III. Sh.I. III. Tr.I. III. Sh.E. III. Tr.E. I. Sh.I.	11 19 19 17 19 28 21 28 21 38 21 38	III. Tr.E. I. Sh.I. I. Tr.I. I. Sh.E. I. Tr.E. I. Ec.D.	28 18 21 20 32 22 43 29 1 07 15 38	I. Oc.D. I. Ec.R. II. Oc.D. II. Ec.R. I. Tr.I.
6 0 28 2 40 2 45 4 42 15 29	III. Sh.I. III. Tr.I. III. Sh.E. III. Tr.E. I. Sh.I.	17 23 17 44 19 34 19 53 14 14 35	I. Sn.I. I. Tr.I. I. Sh.E. I. Tr.E. I. Ec.D.	21 10 28 18 47 20 08 22 46 22 13 46	I. Dc.R. I. Oc.R. II. Ec.D. II. Oc.R. I. Sh.I.	15 40 17 48 17 51 30 12 47	I. Sh.I. I. Tr.E. I. Sh.E. I. Oc.D.
15 29 15 59 17 39 18 09 7 12 41	I. Sn.I. I. Tr.I. I. Sh.E. I. Tr.E. I. Ec.D.	17 03 17 31 20 31 15 11 51	I. Oc.R. II. Ec.D. II. Oc.R. I. Sh.I.	13 54 15 57 16 04 23 10 57	I. Tr.I. I. Sh.E. I. Tr.E. I. Ec.D.	15 01 17 00 17 06 19 17 19 27	I. Ec.R. II. Tr.I. II. Sh.I. II. Tr.E. II. Sh.E.
$ \begin{array}{c} 7 & 12 & 41 \\ 14 & 55 \\ 15 & 19 \\ 18 & 14 \\ 8 & 9 & 57 \end{array} $	I. Ec.D. II. Ec.D. I. Oc.R. II. Oc.R. I. Sh.I.	$ \begin{array}{r} 12 \ 10 \\ 14 \ 02 \\ 14 \ 20 \\ 16 \ 9 \ 03 \end{array} $	I. Tr.I. I. Sh.E. I. Tr.E. I. Ec.D.	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	I. Oc.R. II. Sh.I. II. Tr.I. II. Sh.E. II. Tr.E.	31 2 03 4 36 10 04 10 09	III. Oc.D. III. Ec.R. I. Tr.I. I. Sh.I.
10 26 12 08	I. Tr.I. I. Sh.E.	11 29 11 58	I. Oc.R. II. Sh.I.	22 17	III. Ec.D.	$\begin{array}{rrrr}12&14\\12&20\end{array}$	I. Tr.E. I. Sh.E.

UNIVERSAL TIME OF GEOCENTRIC PHENOMENA

JUNE							
$ \begin{array}{c} \mathbf{d} & \mathbf{h} & \mathbf{m} \\ 1 & 7 & 13 \\ 9 & 29 \\ 11 & 51 \\ 14 & 25 \\ 2 & 4 & 30 \\ 4 & 37 \\ 6 & 40 \\ 6 & 48 \\ 3 & 1 & 39 \\ 3 & 58 \\ 6 & 60 \\ 3 & 1 & 39 \\ 3 & 58 \\ 6 & 60 \\ 6 & 23 \\ 8 & 24 \\ 8 & 45 \\ 15 & 49 \\ 16 & 22 \\ 17 & 55 \\ 18 & 41 \\ 12 & 25 \\ 18 & 41 \\ 12 & 21 \\ 7 & 55 \\ 18 & 41 \\ 22 & 16 \\ 23 & 06 \\ 4 & 1 & 06 \\ 1 & 17 \\ 20 & 05 \\ 22 & 26 \\ 5 & 0 & 59 \\ 3 & 44 \\ 17 & 22 \\ 17 & 35 \\ 19 & 32 \\ 19 & 45 \\ \end{array} $	I. Oc.D. I. Ec.R. II. Oc.D. II. Ec.R. I. Tr.I. I. Sh.E. I. Sh.E.	d h m 9 6 14 6 32 8 24 8 43 10 3 23 5 52 8 20 8 57 10 39 11 19 9 06 20 21 21 13 22 41 11 0 40 1 00 2 50 3 11 21 49 12 0 21 3 14 6 20 19 07 19 29 21 17 21 40 13 16 15 18 49 21 28 22 14 23 46	I. Tr.I. I. Sh.I. I. Sh.I. I. Sh.I. I. Sh.I. I. Sh.I. I. Sh.I. I. Sh.I. II. Sh.I. II. Sh.I. III. Sh.I. III. Sh.E. III. Sh.E. I. Sh.I. I. Sh.I. I. Sh.I. I. Sh.I.		I. Oc.D. I. Ec.R. II. Tr.I. II. Sh.I. III. Sh.E. III. Sh.E. III. Sh.E. III. Sh.E. III. Sh.I. III. Sh.I. III. Sh.I. III. Sh.I. I. Sh.E. I. Sh.E.	$ \begin{array}{c} \begin{array}{c} 4 & h & m \\ 24 & 12 & 52 \\ 14 & 06 \\ 15 & 11 \\ 16 & 28 \\ \end{array} \\ \begin{array}{c} 25 & 1 & 45 \\ 3 & 56 \\ 4 & 11 \\ 4 & 18 \\ 4 & 50 \\ 6 & 21 \\ 6 & 39 \\ 7 & 01 \\ \end{array} \\ \begin{array}{c} 6 & 39 \\ 7 & 01 \\ \end{array} \\ \begin{array}{c} 6 & 39 \\ 7 & 01 \\ \end{array} \\ \begin{array}{c} 26 & 1 \\ 1 & 22 \\ 23 \\ 23 & 19 \\ \end{array} \\ \begin{array}{c} 27 & 0 & 48 \\ 22 & 38 \\ 23 & 19 \\ 1 & 29 \\ 19 & 46 \\ 22 & 38 \\ 23 & 19 \\ 1 & 29 \\ 19 & 46 \\ 22 & 38 \\ 28 & 2 & 00 \\ \end{array} \\ \begin{array}{c} 3 & 24 \\ 4 & 20 \\ 5 & 16 \\ 15 & 19 \\ 17 & 74 \\ 17 & 74 \\ 17 & 47 \\ 18 & 10 \end{array} $	II. Tr. I. II. Sh.I. II. Sh.E. II. Sh.E. III. Tr.E. III. Tr.E. III. Sh.I. I. Tr.E. III. Sh.I. I. Tr.E. II. Sh.E. I. Sh.E. II. Sh.E. I. Sh.E.
19 32	I. Tr.E.	21 28	II. Tr.I.	11 57	III. Oc.D.	17 34	III. Oc.R.

Ρ

UNIVERSAL TIME OF GEOCENTRIC PHENOMENA

UNIVERSAL TIME OF GEOCENTRIC PHENOMENA

AUGUST					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sh.E. D. C. D. C. D. Ec. Sh.E. E. Ec. Sh.E. E. Ec. Sh.E. E. Ec. Sh.E. E. Ec. Sh.E. E. Ec. Sh.E. E. Ec. Sh.E. E. Ec. Sh.E. E. E. Sh.E. E. E. E. E. E. E. E. E. E.				

Ρ

UNIVERSAL TIME OF GEOCENTRIC PHENOMENA

UNIVERSAL TIME OF GEOCENTRIC PHENOMENA

Ρ

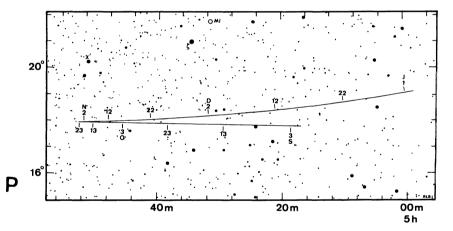
SATURN

EPHEMERIS FOR THE BRIGHTER SATELLITES

The table below may be used to determine the orbital position of each of the five brightest satellites of Saturn at any time in 1983. The northern side of the rings and orbital planes of the five satellites now face Earth, being tilted approximately 16° from edge-on during the part of the year when Saturn is conveniently placed in the night sky (The orbit of Iapetus deviates most from this figure since it is itself tilted 15° to the ring plane). Hence the satellites pass (east to west) in front of and south of the centre of Saturn, and (west to east) behind and north of the centre of Saturn.

For each satellite, the table gives the visual magnitude, orbital period,* distance from the centre of Saturn in units of the radius of Saturn's rings (the outer radius of ring A), and time of the first eastern elongation in each month. For example, to find the position of Rhea on May 19, 1983 at 22 h EDT (May 20, 2 h UT): The first eastern elongation in May occurs on May 2 at 10.0 h. May 20, 2 h is 17.667 d or 3.911 periods later. Thus Rhea will be $0.911 \times 360^\circ = 328^\circ$ from eastern elongation. Hence it will be behind Saturn, $3.9 \times \cos 328^\circ = 3.3$ ring radii east of the centre of Saturn, and somewhat north.

*Note: Sidereal periods rather than synodic periods are listed since, due to Earth's orbital motion, the sidereal period yields less error in predictions during the months near opposition. Predictions based on this table are accurate to within a couple of degrees.


	Tethys	Dione	Rhea	Titan	Iapetus
mv P r	10.3 1.888 ^d 2.2	10.4 2.737 ^d 2.8	9.7 4.517 ^d 3.9	8.4 15.945 ^d 9.0	~11 79.331 ^d 26.1
Jan. Feb. Mar. Apr. May June	1 ^d 11 ^h .8 2 14.1 1 00.4 2 02.3 2 07.0 1 11.7	0 ^d 10 ^h 8 2 07.2 1 16.0 3 11.9 3 14.0 2 16.3	0 ^d 11 ^h 5 1 02.8 4 17.6 5 08.0 2 10.0 3 00.4	15 ^d 02 ^h 6 16 00.7 3 23.1 4 18.7 6 13.8 7 09.4	11 ^d 11 ^h 2 30 21.9
July Aug. Sep. Oct. Nov. Dec.	1 16.6 2 19.0 2 00.2 2 05.6 1 10.9 1 16.3	2 18.8 1 21.5 1 00.5 1 03.6 3 00.5 3 03.7	4 15.2 5 06.4 1 09.6 3 01.5 3 17.6 5 09.6	9 06.4 10 05.0 11 04.9 13 05.8 14 07.0 16 07.9	18 16.8 7 10.8 27 19.3

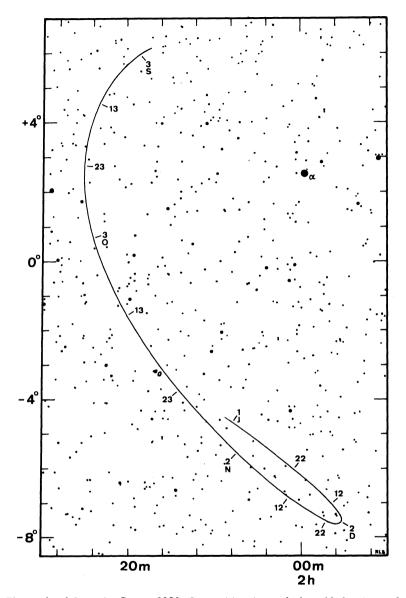
EPHEMERIDES FOR THE BRIGHTEST ASTEROIDS 1983

PROVIDED BY BRIAN G. MARSDEN

The following are the ephemerides for the brightest asteroids in 1983: those asteroids which will be brighter than photographic magnitude 11.0 and more than 90° from the Sun. The tables give the number and name of the asteroid, the date at $0^{\rm h}$ E.T. (which differs only slightly from U.T.), the right ascension and declination for the epoch 1950 (for convenience in plotting on commonly-used star charts) and the *photographic* magnitude (which is normally about $0^{\rm n}$? *fainter* than the visual magnitude). These data were derived from current osculating elements, and were generously calculated and provided by Dr. Brian G. Marsden of the Smithsonian Astrophysical Observatory.

Maps are provided for two of the brighter asteroids in 1983, Juno and Vesta. The maps are based on the A.A.V.S.O. Variable Star Atlas and show the predicted paths of the asteroids during a four month interval around opposition. The coordinates are for 1950. Readers can make maps for other asteroids by using the ephemerides and an appropriate star atlas.

The path of Vesta near the Taurus-Orion border, 1983. Its position is marked at 10-day intervals, beginning with September 3, where S = September, O = October, etc. The faintest stars shown are of magnitude 9. During September Vesta is about 9th magnitude, but brightens to 7.2 when near opposition in mid-December and 1.6 AU from Earth. Near the top edge of the chart is the Crab Nebula (M1).


	(1) Ceres	
Date Oh E.T. May 26 June 5 15 25 July 5 Aug. 4 8 Sept. 3 13 23 Oct. 3 23 Nov. 2 12	$ \begin{array}{c} \textbf{R.A.} (1950) \\ 22^h 03^m 1 \\ 22 09.1 \\ 22 13.1 \\ 22 15.0 \\ 22 14.6 \\ 22 11.8 \\ 22 06.6 \\ 21 59.6 \\ 21 51.2 \\ 21 42.4 \\ 21 34.2 \\ 21 27.3 \\ 21 22.5 \\ 21 20.1 \\ 22.8 \\ 21 27.5 \\ 21 34.0 \\ \end{array} $	Dec. (1950) -21°03' -21 18 -21 28 -22 28 -24 26 -25 36 -25 36 -26 47 -27 50 -28 41 -29 15 -29 15 -29 30 -29 27 -29 07 -28 35 -27 51 -26 58 -25 58	Mag. 9.0 8.8 8.2 8.0 8.2 8.5 8.8 9.1
	(2) Pallas	
Date Oh E.T. Apr. 16 26 40 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		Dec. (1950) +15°02' +16 40 +18 14 +19 42 +20 57 +22 34 +22 34 +22 45 +22 29 +21 45 +22 45 +19 03 +17 16 +15 20 +13 20 +11 21 + 9 27 + 7 40	Mag. 10.6 10.5 10.3 10.2 10.1 10.2 10.3 10.5 10.7
	(3) Juno	
Date Oh E.T. July 25 Aug. 4 24 Sept. 3 13 23 Oct. 3 13 23 Nov. 2 12 22 Dec. 2 12 22	R.A. (1950) 1 1 37.9 1 50.5 2 01.7 2 11.2 2 18.5 2 23.2 2 25.1 2 24.0 2 20.1 2 14.2 2 07.6 2 01.5 1 57.1 1 55.4 1 56.6 2 00.9	Dec. (1950) + 7°47' + 7°51 + 7°55 + 6°58 + 5°58 + 4°33 + 2°45 + 0°40 - 1°35 - 3°44 - 5°34 - 6°52 - 7°32 - 7°32 - 7°03 - 6°03	Mag. 10.1 9.7 9.2 8.7 8.3 8.3 8.6 9.0

		(4) Vesta	
Date	m	D & (1950)	Dec. (1950)	Nor
Oh E. Sept.		R.A. (1950) 5 ^h 38 ^m 5	Dec.(1950) +18°01'	Mag. 8.7
Oct.	3	5 45.7	+18 01	•••
	13	5 50.5	+17 59	8.4
Nov.	23 2	5 52.7 5 51.9	+17 58 +17 59	8.0
	12	5 48.0	+18 02	
	22	5 41.2	+18 09	7.7
Dec.	2 12	5 31.8 5 21.0	+18 19 +18 31	7.2
	22	5 09.9	+18 47	
		(5) Astraea	
Date				
0h E		R.A.(1950) 11 ^h 0073	Dec.(1950) + 6°12'	Mag.
Jan.	6 16	11 ^h 00 ^m 3 11 03.9	+ 6°12' + 6 23	10.9
	26	11 04.3	+ 6 58	10.5
Feb.	5	11 01.6	+ 7 56	
	15 25	10 56.2 10 48.9	+ 9 11 +10 37	10.1
Mar.	23	10 41.0	+12 00	9.9
	17	10 34.0	+13 11	
•	27	10 28.9	+14 03	10.4
Apr.	6 16	10 26.6 10 27.2	+14 31 +14 36	10.9
	26	10 30.8	+14 20	
		(6) Hebe	
Date				
0h E	.т. 16	R.A.(1950) 18 ⁶ 0677	Dec.(1950) - 6°03'	Mag. 10.9
Apr.	26	18 09.0	- 5 17	10.9
May	6	18 08.8	- 4 34	10.5
	16 26	18 05.9 18 00.3	- 3 57 - 3 31	10.1
June	20 5	18 00.3 17 52.5	- 3 21	10.1
0 2000	15	17 43.1	- 3 29	9.8
	25 5	17 33.2	- 3 58 - 4 46	• •
July	15	17 23.7 17 15.9	- 5 50	9.9
	25	17 10.3	- 7 08	10.1
Aug.	4 14	17 07.6	- 8 33 -10 03	
	24	17 07.9 17 11.0	-11 33	10.4
Sept	. 3	17 16.9	-13 01	10.6
	13	17 25.3	-14 25	
		(7) Iris	
Date	-	D A (1050)	Dec (1050)	M
0h E May	. T.	R.A.(1950) 175972	Dec.(1950) -24°02'	Mag. 10.9
	16	17 54.6	-23 47	
-	26	17 47.3	-23 30	10.5
June	5 15	17 38.0 17 27.5	-23 09 -22 44	9.8
	25	17 16 .9	-22 17	2.0
July	5	17 07.3	-21 49	10.4
	15 25	16 59.6 16 54.5	-21 24 -21 03	10.7
Aug.	4	16 52.3	-20 48	
	14	16 52.9	-20 39	11.0
	24	16 56.2	-20 37	

	(8) Flora	
Date Oh E.T. Apr. 16 26	R.A.(1950) Dec.(1950) 15 ⁵ 08 ^m 7 - 8°20' 14 59.6 - 7 34	Mag. 10.7
May 6	14 49.4 - 6 52	10.5
16 26 June 5	14 39.2 - 6 19 14 30.1 - 5 59 14 23.1 - 5 55	10.8
D-+-	(10) Hygiea	
Date Oh E.T.	R.A.(1950) Dec.(1950) 13 ^h 52 ^m 4 -17 [°] 09'	Mag.
Mar. 7 17	13 ^h 52 ^m 4 -17°09' 13 49.6 -17 09	10.8
27 Apr. 6	13 44.6 -16 53 13 38.0 -16 24	10.4
16 26	13 30.4 -15 43 13 22.9 -14 54	10.0
May 6 16	13 16.1 -14 04 13 11.0 -13 19	10.3
26 June 5	13 08.0 -12 42 13 07.3 -12 18	10.6
15 25	13 08.9 -12 07 13 12.7 -12 09	10.9
	(15) Eunomia	
Date Oh E.T.	R.A.(1950) Dec.(1950)	Mag.
Jan. 26	R.A.(1950) Dec.(1950) 12 ^h 19 ^m 0 -15 [°] 39' 12 17.4 -16 27	11.0
15	12 13.6 -16 58	10.8
25 Mar. 7	12 07.6 -17 12 11 59.9 -17 05	10.5
17 27	11 51.1 -16 38 11 42.1 -15 55	10.4
Apr. 6 16	11 33.8 -15 00 11 27.0 -14 00	10.7
26 May 6	11 22.2 -13 01 11 19.6 -12 09	10.9
16	11 19.2 -11 27	
	(18) Melpomene	
Date Oh E.T. Mar. 7		Mag
Mar. 7	R.A.(1950) Dec.(1950) 10 ^b 48 [*] 1 +11°06'	Mag. 11.0
17	10 39.3 +12 31	
	(20) Massalia	
Date		Neg
Oh E.T. Sept. 3	R.A.(1950) Dec.(1950) 1 ^h 54 % 6 +12°02'	Mag. 10.8
13 23	1 53.6 +11 54 1 49.7 +11 30	10.4
Oct. 3	1 43.1 +10 50 1 34.6 + 9 57	9.8
23 Nov. 2	1 25.2 + 8 58 1 16.2 + 8 01	10.0
NOV. 2 12 22	1 09.0 + 7 13 1 04.4 + 6 41	10.3
Dec. 2	1 02.9 + 6 29	
12 22	1 04.5 + 6 36 1 09.1 + 7 02	10.7

Ρ

Date Oh E.T. Dec. 12	(29) Amphitrit R.A.(1950) Dec.(1950) 8 ⁵ 58 ⁷⁷ 7 +25°25'	e Mag. 10.8
Dec. 12 22	8 56.5 +25 49	10.0
Date Oh E.T. Nov. 22	(39) Laetitia R.A.(1950) Dec.(1950) 5 ^h 11 ^m 5 + 6°41'	Mag. 10.8
Dec. 2 12 22	5 03.0 + 6 19 4 53.8 + 6 12 4 45.2 + 6 21	10.7
	(40) Harmonia	
Date Oh E.T. July 5	R.A.(1950) Dec.(1950) 19 ^b 54 ^m 5 -23°00'	Mag. 10.8
15 25	19 44.5 -23 52 19 34.0 -24 38	10.7
Aug. 4	19 24.5 -25 16	
D . 1	(44) Nysa	
Date Oh E.T. Oct. 13	R.A.(1950) Dec.(1950) 2 ^b 25 ^m 8 + 7°54'	Mag. 10.7
23 Nov. 2	2 17.3 + 6 58 2 07.8 + 6 03	10.4
12 22	1 58.7 + 5 19 1 51.2 + 4 50	10.7
Dec. 2	1 46.2 + 4 42	
Data	(68) Leto	
Date Oh E.T. Oct. 13	R.A.(1950) Dec.(1950) 1 ^h 52 ^m 0 + 6°30'	Mag. 10.9
23 Nov. 2	1 42.5 + 6 19 1 33.4 + 6 14	11.0
12	1 25.8 + 6 17	
Date	(80) Sappho	
Oh E.T. Oct. 13	R.A.(1950) Dec.(1950) 2 ^h 20 ^m 6 +17°24'	Mag. 10.7
23 Nov. 2	2 13.1 +15 28 2 05.0 +13 25	10.4
12	1 58.0 +11 29	

The path of Juno in Cetus, 1983. Its position is marked at 10-day intervals, beginning with September 3, where S = September, O = October, etc. The faintest stars shown are of magnitude 9. Juno reaches magnitude 8.3 when near opposition in late October and 1.05 AU from Earth. On October 19 Juno passes within 0.2° of Mira (omicron Ceti), the famous variable star.

PLANETARY APPULSES AND OCCULTATIONS

A planetary appulse is a close approach of a star and a planet, minor planet (asteroid), or satellite (moon) as seen from Earth. At certain locations on Earth, the appulse may be seen as an occultation, a "solar eclipse", but of a star other than our Sun. Carefully executed observations of such events can provide valuable information on the position, size, and shape of the occulting body, plus the presence of possible satellites and/or atmosphere surrounding the body. In the case of asteroids, information of this sort is not currently obtainable in any other way. Only within the past decade have computers and careful astrometric measurements been combined to make possible the prediction of many such events per year several months in advance. Much of this progress is due to Gordon E. Taylor of the Royal Greenwich Observatory, a contributor to this Handbook for many years. It was one of his predictions that led to the discovery of the rings of Uranus in 1977 (See Sky and Telescope, June 1977, p. 412).

Mr. Taylor has issued a list of 80 predicted possible occultations of stars by asteroids for 1983. Eleven of these may be visible from North America (including Hawaii). Two additional predictions (on June 10 and September 1) have been taken from a list by Wasserman, Bowell, and Millis of Lowell Observatory (*Astronomical Journal*, 86, 1974, December 1981). These predictions are listed on the next page. In the first table, the month (M), day (D), hour, and minute range of each event are given along with data on the occulted star. In the second table, Δm_v is the change in visual magnitude which will accompany the occultation, and Δt is the predicted maximum duration in seconds.

Improved predictions may be available closer to the time of the various events. Within a few days of each event, observers may obtain recorded telephone messages at 312-259-2376 (Chicago, III.). Observers of events which may cross parts of Canada (May 29, June 10, August 21, September 1, September 11, and November 12) should call 613-996-9345 (Dr. Ian Halliday, Herzberg Institute of Astrophysics, Ottawa, Ont.) to obtain possible last-minute updates. This Ottawa service will first be available in late 1982 for event numbers 16 and 18, page 117, 1982 OBSERVER'S HANDBOOK. Also, arrangements have been made to broadcast hourly updates on WWV for the unusual May 29 occultation by Pallas.

Serious observers of occultations pay careful attention to: the determination of their geographical latitude, longitude, and altitude (which should be known to the nearest second of arc and 20 m, respectively); identification of the star; accurate timing of the events (a shortwave radio time signal and cassette tape recorder are recommended); and the provision of two or more independent observers a kilometre or more apart for both confirmation and improved "resolution" of the eclipse shadow. Also, photoelectric recordings are very desirable when possible.

Observations of these events are coordinated in North America by the International Occultation Timing Association (IOTA). Dr. Dunham of the IOTA intends to publish an article on planetary occultations for 1983 in the December 1982 or January 1983 issue of *Sky and Telescope*. (See page 75 of this *Handbook* for more information on the IOTA.) Observations of planetary occultations, including negative observations, should be sent to H. M. Nautical Almanac Office, Royal Greenwich Observatory, Herstmonceux Castle, Hailsham, Sussex BN27 1RP, England (the world clearing house for such observations), and to Dr. Dunham at P.O. Box 7488, Silver Spring, Md 20907, U.S.A. for publication by the IOTA. (Note that observations of lunar occultations should be sent to Japan. See Page 75.)

	Time (UT)		Star					
No.	M D h min	Name	m v	a (19	50) 8			
1 2 3 4 5 6 7 8 9 10 11 12. 13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} AGK3 + 5^{0}1549\\ AGK3 + 10^{0}1124\\ SA0 & 159459\\ 1 & Vulpeculae\\ AGK3 + 4^{0}60\\ SA0 & 210241\\ SA0 & 185215\\ SA0 & 163239\\ AGK3 + 23^{0}0050\\ SA0 & 208888\\ 14 & Piscium\\ AGK3 - 0^{0}1793\\ AGK3 + 19^{0}0418\\ \end{array}$	10.0 8.8 7.2 4.7 10.9 8.3 9.1 9.1 8.3 8.7 5.6 8.6 10.0	10 ^h 38 ^m 47 ^e 8 38 59 15 42 10 19 15 30 0 31 29 18 29 16 17 15 20 20 04 02 0 30 48 17 26 59 23 33 19 12 58 30 5 03 13	$\begin{array}{r} + 5^{\circ}16'55'' \\ + 95525 \\ -105250 \\ +212127 \\ + 43617 \\ -305825 \\ -220913 \\ -174952 \\ +233700 \\ -301311 \\ - 12015 \\ - 10225 \\ +190425 \end{array}$			

	Asteroid		Occult.		D			
No.	Name	m _v	∆∎√	Δt	Possible Area of Visibility*			
1 2 3 4 5 6 7 8 9 10 11 12 13	59 Elpis 71 Niobe 521 Brixia 2 Pallas 3 Juno 83 Beatrix 7 Iris 65 Cybele 372 Palma 120 Lachesis 51 Nemausa 52 Europa 4 Vesta	11.9 11.8 13.6 9.6 10.8 11.6 9.6 11.7 12.0 13.8 10.8 12.4 6.8	3.1 6.4 4.9 0.7 3.4 1.0 2.7 3.7 5.1	12 10 6 46 8 12 17 25 17 17 17 12 7 49	Pacific (Hawaii?), Japan E. Pacific (California?) western U.S.A., N. Pacific southern(?) U.S.A. central U.S.A., Great Lakes U.S.A., Hawaii N. Pacific (Hawaii?), China N. Pacific (Hawaii?), Indonesia north-east N. America southern U.S.A. to eastern Canada east and south N. America southern Canada Hawaii?, Japan, S. and E. Asia			

*These predicted areas of visibility are uncertain. Substantial improvements in the expected occultation path are often possible a few days before an event when the star and the asteroid can be photographed on the same astrographic plate. See the preceding page for directions to obtain updates.

METEORS, COMETS, AND DUST

METEORS, FIREBALLS, AND METEORITES

BY PETER M. MILLMAN

Meteoroids are small solid particles moving in orbits about the Sun. On entering the Earth's atmosphere they become luminous and appear as meteors or fireballs, and in rare cases, if large enough to avoid complete fragmentation and vaporization, they may fall to the Earth as meteorites.

Meteors are visible on any night of the year. At certain times of the year the Earth encounters larger numbers of meteoroids all moving together along the same orbit. Such a group is known as a meteor stream and the visible phenomenon is called a meteor shower. The orbits followed by these meteor streams are very similar to those of short-period comets, and in many cases can be identified with the orbits of specific comets.

The radiant is the position among the stars from which the meteors of a given shower seem to radiate. This is an effect of perspective commonly observed for any group of parallel lines. Some showers, notably the Quadrantids, Perseids, and Geminids, are very regular in their return each year and do not vary greatly in the numbers of meteors seen at the time of maximum. Other showers, like the Leonids, are very unpredictable and may arrive in great numbers or fail to appear at all in any given year. The δ Aquarids and the Taurids are spread out over a fairly extended period of time without a sharp maximum.

For more information concerning meteor showers, see the paper by A. F. Cook in "Evolutionary and Physical Properties of Meteoroids", NASA SP-319, pp. 183–191, 1973.

The light of meteors is produced by a mixture of atoms and molecules, originating from both the meteoroid and the Earth's atmosphere. i.e. The light of a meteor is primarily from a glowing gas, and not from the solid meteoroid itself. The collision, at a very high speed, of the material from the meteoroid with the Earth's atmosphere

	Showe	r Maxin	mum			Rad	liant		0		Normal
Shower	Date U.T. Moon			Positi at Ma			aily otion Dec.	Single Observer Hourly Rate Speec		Duration to $\frac{1}{4}$ Strength of Max.	
Shower	Date	0.1.	Moon	К.	А.	Dec.	К.А.	Dec.	Rate	Speed	of Wax.
		h		h	m	0	m	0		km/s	days
Quadrantids	Jan. 3	20	LQ	15	28	+50	—	_	40	41	1.1
Lyrids	Apr. 22	22	FQ	18	16	+34	+4.4	0.0	15	48	2
n Aquarids	May 5	01	LQ	22	24	00	+3.6	+0.4	20	65	3
S. 8 Aquarids	July 29	04	LQ	22	36	-17	+3.4	+0.17	20	41	7
Perseids	Aug. 12	19	FQ	03	04	+58	+5.4	+0.12	50	60	4.6
Orionids	Oct. 21	23	FM	06	20	+15	+4.9	+0.13	25	66	2
S. Taurids	Nov. 3	00	NM	03	32	+14	+2.7	+0.13	15	28	
Leonids	Nov. 18	06	FM	10	08	+22	+2.8	-0.42	15	71	_
Geminids	Dec. 14	18	FQ	07	32	+32	+4.2	-0.07	50	35	2.6
Ursids	Dec. 23 (1984)	00	FM	14	28	+76	—		15	34	2
Quadrantids	Jan. 4	02	NM	15	28	+50			40	41	1.1

MAJOR VISUAL METEOR SHOWERS FOR 1983

excites the involved atoms and molecules to shine, each with its own characteristic wavelength (colour). In addition to the light of oxygen and nitrogen, prominent in the luminosity of meteors, we find the orange-yellow of sodium, the brilliant green of magnesium, and various other wavelengths of light produced by iron, calcium, and some dozen, less-common elements. For a general survey of the light of meteors see *Smithsonian Contributions to Astrophysics*, 7, p. 119–127, 1963.

An observer located away from city lights, and with perfect sky conditions on a moonless night, will see an overall average of seven sporadic meteors per hour apart from the shower meteors. These have been included in the hourly rates listed in the table. Slight haze or nearby lighting will greatly reduce the number of meteors seen. More meteors appear in the early morning hours than in the evening, and more during the last half of the year than during the first half.

When a meteor has a luminosity greater than the brightest stars and planets it is generally termed a fireball. The visible trails of most meteors occur high in the atmosphere from 60 to 110 kilometres altitude. Only the rare, very bright fireballs survive down to the lower levels of Earth's atmosphere, and, in general, these are not associated with meteor showers. The occurrence of such an object should be reported immediately to the nearest astronomical group or other organization concerned with the collection of such information. Where no local organization exists, reports should be sent to Meteor Centre, Herzberg Institute of Astrophysics, National Research Council of Canada, Ottawa, Ontario, K1A 0R6. If sounds are heard accompanying a bright fireball there is a possibility that a meteorite may have fallen. Astronomers must rely on observations made by the general public to track down such an object.

For 1983 the comet associated with the Perseid meteor shower, 1862 III Swift-Tuttle, may be in the inner part of the solar system and a better than average shower in August is a possibility. The two showers associated with Halley's Comet, due in 1986, are the η Aquarids and the Orionids and these showers should be given priority in meteor observations for the next few years.

Shower	Dates	Date of Max.	Speed
			km/s
δ Leonids	Feb. 5-Mar. 19	Feb. 26	23
σ Leonids	Mar. 21-May 13	Apr. 17	20
τ Herculids	May 19-June 14	June 3	15
N. δ Aquarids	July 14-Aug. 25	Aug. 12	42
α Capricornids	July 15-Aug. 10	July 30	23
S. L Aquarids	July 15-Aug. 25	Aug. 5	34
N. L Aquarids	July 15-Sept. 20	Aug. 20	31
к Cygnids	Aug. 9-Oct. 6	Aug. 18	25
S. Piscids	Aug. 31-Nov. 2	Sept. 20	26
N. Piscids	Sept. 25-Oct. 19	Oct. 12	29
N. Taurids	Sept. 19-Dec. 1	Nov. 13	29
Annual Andromedids	Sept. 25-Nov. 12	Oct. 3	18-23
Coma Berenicids	Dec. 12-Jan. 23	-	65

NORTH AMERICAN METEORITE IMPACT SITES

BY P. BLYTH ROBERTSON

The search for ancient terrestrial meteorite craters, and investigations in the related fields of shock metamorphism and cratering mechanics, have been carried out on a continuing basis since approximately 1950, although a few structures were investigated earlier. In Canada, this research is undertaken largely at the Earth Physics Branch, Dept. Energy, Mines and Resources, and in the United States at the facilities of NASA and the U.S. Geological Survey. Particular aspects of these studies are also carried out at various universities in both countries, and the information in the following table is a compilation from all these sources.

Of the thirty-seven confirmed North American impact structures, which account for about 40% of the world's recognized total, meteorite fragments are preserved at only three. In large impacts, where craters greater than approximately 1.5 km in diameter are created, extreme shock pressures and temperatures vapourize or melt the meteorite which subsequently becomes thoroughly mixed with the melted target rocks and is no longer recognizable in its original form, but chemical traces have been recognized. These larger hypervelocity impact craters are therefore identified by the presence of shock metamorphic effects, the characteristic suite of deformation in the target rocks produced by shock pressures exceeding approximately 7 GPa (1 GPa = 10 kilobars).

In addition to the sites whose impact origin is confirmed by identification of diagnostic shock features, there are approximately twenty structures in Canada and the United States for which an impact origin seems highly probable, but where distinctive evidence of shock metamorphism has not been found.

No new sites were recognized in the past year, but ages for several structures have been refined or modified by 40Ar-39Ar radiometric dating. In the table, sites accessible by road or boat are marked "A" or "B" respectively and those sites where data have been obtained through diamond-drilling or geophysical surveys are signified by "D" and "G", respectively.

35 C2 111 01 1.2 05 immed polygonal crare inglust and transmission inglust and t	Name	, Lat		Long.	Diam. (km)	$Age_{(\times 10^6 a)}$	Surface Expression	Visible Geologic Features	Feature	1 5	
Ber Buf, Texes 29 02 099 51 2.4 40=10 shallow cir. depression. shallow cir. depression. Currenter.last Rest, Que. 59 77 20 23 40=10 statumous circular rings. Currenter.last Rest, Que. 56 77 20 230=230 50=125 statumous circular rings. Currenter Last Rest, Que. 56 77 20 230=230 50=125 statumous circular rings. Currenter Last Rest, Que. 56 73 35 320=230 530=130 statumous circular rings. Deep Bay, Sask. 37 36 102 35 30=20 0001 20 300=200 statumous circular rings. Sove Last, Kinssouri 36 10 36 30 0001 20 0001 200 0001 20 0001 20 0001 20 0001 20 0001 20 0001 20 0001 20 0001 20 0001 20 0001 20 20 20<	Barringer, Meteor Crater, Ariz.		Ξ		1.2	.05	rimmed polygonal crater	fragments of meteorite			
Ehren, Out. 56 67 73 56 75 76 75 76 75 76 75 76	Bee Bluff. Texas		g		č	01+07	· · ·	highly shocked sandstone	۲	Ω	G
Curarvater Lake Kaya, Data 33 37 100 37 300-25 300-25 Securitar index moust inclust rules for the securitar in the securitar in the security. Curarvater Lake Kay, Que. 35 13 300-25 300-25 300-25 securitar in the security. Curarvater Lake Kay, Que. 35 13 300-25 300-25 securitar in the security. Desenbruit, Missouri 35 23 300-25 securitar in the security. Desenbruit, Missouri 35 300-25 300-25 securitar in the security. Devel Lake, Stat. 36 27 100 37 3 300-25 Devel Lake, Stat. 36 27 100 37 3 300-25 Devel Lake, Stat. 36 30 100 30 second depression second depression Second Lake, Stat. 36 30 100 300 second depression second depression Second Lake, Stat. 300 300 300 300 second depression second depression Sec	Brent, Ont.				7 0.t	01 104	shallow circ. depress n.; rim remnants	breccia	۷		
Charlevols, Que. 47 32 070 18 46 360-25 sensitionation strutture transferention Clawwater Lake Wast, Que. 56 0 73 50 074 07 32 300-250 simplify in circular transferentia Clawwater Lake Wast, Que. 56 0 73 36 0 33 360-250 simplify on depression Deep Bay, Sast, Panc. 36 16 085 37 3.8 300-250 simplify on depression Deep Bay, Sast, Panc. 36 16 085 37 3.8 300-250 simplify on depression Deep Bay, Sast, Panc. 36 16 085 37 3.8 300-250 simplify on depression Devidencia, Cue. 50 11 200 0001 -20 0001 -20 0001 -20 0001 -20 simplify on depression si	Carswell, Sask.		0		37.0	485+50	discontinuitie situation depression	tracturing	۷	۵	3
Clastwater Lake East, Que. 55 074 07 22 200±20 circular lake Construct Lake Nest, Que. 57 50 37 36 37 30 37 30 37 30 37 30 30±20 vial area of distribution focks, shallow Destamulie, Missour 57 54 025 37 38 300±20 vial area of distribution focks, shallow Destamulie, Missour 57 24 025 38 300±20 vial area of distribution focks, shallow Destamulie, Missour 57 10 25 500±20 vial area of distribution focks, shallow Destamol, NWT 75 00 31 300±20 vial area of distribution vial Display (or Mither Sak 57 10 25 57 100 27 Display (or Mither Sak 57 10 27 200 stand certral depression Exclarated protein 10 27 28 200 100±10 100±10 Excland protein 10 27 </td <td>Charlevoix, Que.</td> <td></td> <td>020</td> <td></td> <td>46</td> <td>360±25</td> <td>semi-circular trough, central elevation</td> <td>breccia. shatter cones.</td> <td></td> <td></td> <td>5</td>	Charlevoix, Que.		020		46	360±25	semi-circular trough, central elevation	breccia. shatter cones.			5
	Clearnstar I alsa Fact Out		ŝ		ŝ			impact melt	۷		G
	CICAL WAIGI LANG LASI, QUC.		25	-	72	290±20	circular lake	sedimentary float		۵	Ċ
Descritter (1e, Network) 36 20 30 <td>Crooked Creek Missouri</td> <td></td> <td></td> <td></td> <td>32</td> <td>230±20</td> <td>island ring in circular lake</td> <td>impact melt</td> <td></td> <td>۵</td> <td>ΰ</td>	Crooked Creek Missouri				32	230±20	island ring in circular lake	impact melt		۵	ΰ
					0.0	08 ± 07 5	oval area of disturbed rocks, shallow				
	Deceturaille Missouri				`	0001	marginal depression	breccia, shatter cones	۲		
Flynd Creek, Term. 5 6 65 7 1.8 500-200 sectimate filled shiltw depression sight correlate devision Flynd Creek, Term. 5 5 7 1.8 500-200 sectimate filled shiltw depression Havilaton, NYT 5 27 104 29 5 7.300 sight correlate devision Havilaton, NYT 75 25 009 10 0.0011 < 2.00 sight correlate devision Havilaton, NYT 75 20 001 2.0 0.0011 < 2.00 sight correlate devision Havilaton, NYT 75 20 007 3 2 < 5.00 sight correlate devision Havilaton, NYT 16 010 17 010 < 2.00 sight correlate devision Lace State of the s	Deen Bay Sach				<u>و</u> م	200 200	slight oval depression	breccia, shatter cones	۲	۵	
Type Cov 20.240 Sectiment allocation status 100×10^{-2} $300 \times 10^{-2} \times 10^{-2}$ $300 \times 10^{-2} \times 10^{-2} \times 10^{-2}$ $300 \times 10^{-2} \times 10^{-2$	Hunn Creek Tenn				17	100±20	circular bay	sedimentary float		۵	G
Gow Lake, Sask, Haughton, NWT 55 27 104 29 5 < 250 Nallwe circular dervation statismet servation betweenden, Out. 23 23 200 1 Mate mate circular dervation statismet servation and we circular dervation statismet servation betweenden, Out. 25 250 20001 23002 1 Mate mate servation statismet servatin statismet servation statismet servation statismet	rigiui Cicca, Icuii.				3.8	360±20	sediment-filled shallow depression with	breccia, shatter cones,			
Hovitand, Kanasa 77 75 75 76 76 70 71 72 73 75 76	Gow I ake Sack				ų	0201	slight central elevation	disturbed rocks	۲	۵	Ο
Hangkhon, NWT 75 22 0001 ~ 20 ~ 0001 ~ 20 ~ 0001 <	Haviland Kancas		58			007	lake and central island	preccia			G
Holiferiori	Haughton, NWT		28		20.001		ckcavatcu depression	Iragments of meteorite	۷		¢
Ie Roulean, Que.5041073534 $< < 200$ island is currat upilit of submerged island is currat upilit of submerged island is currat upilit exposed in quarties, recutst burdKenland, Ind.40450872413300island is currat upilit of submerged island is currat upilit exposed in quarties, recutst burdLac Conture, Que.5726068368430central upilit exposed in quarties, recutst burdLac Conture, Que.572608075188430central upilit exposed in quarties, recutst burdLac St. Martin, Que.57230683223225±40none, burd and croded inter, burd121Lake Wanaphie, Ont.512306842100210±4circular depression intervel takeManicouplex553033312210±4circular depression intervel takeManicouplex5644080448300Manicouplex5530312210±4circular depression intervel takeManicouplex583232300circular depression with very intervel takeManicouplex58323232300circular depression with very intervel takeManicouplex58323232300circular depression with very intervel takeNew Quebec Crater, Que.53403232300New Quebec Crater, Que.53<	Holleford, Ont.				30	550+100	sitatiow circular depression sediment-filled shallow depression	snatter cones, breccia	•	4	50
Kentland, Ind. 40 45 087 24 13 300 structure transition Lac Countre, Que. 60 8 7 26 065 8 430 instrume Lake Shi Mointerie, Que. 57 26 065 8 8 430 instrume Lake Shi Mointerie, Que. 57 26 065 8 8 430 instrume mote buried and ercoled Lake Shi Mointerie, Que. 51 10 3 240 36 210 36 37 240	Ile Rouleau, Que.		620		4	300	island is central unlift of submerved	scatter cones breccia	¢	ב	2
Kentland, Ind. 40 45 087 24 13 300 central uplit exposed in quarties, text buried Lac Courter, Que. 57 26 08 73 8 430 circular lake Lake Si Martin, Mar. 51 47 088 32 23 23 140 increating and eroted and eroted 140 140 141 140 141 1111 1111<							structure	dikes			
Lac Couture, Que. 60 08 075 18 8 430 circular lake Lac Lac Martin, Que. 57 26 066 36 8 400 lake-filled, party circular Lake Nartin, Que. 57 25 068 32 23 235±40 lake-filled, party circular Lake Nartin, Que. 53 34 08 42 100 210±4 circular depression Manicoup, Que. 53 33 23 235±40 lake-filled, party circular Manicoup, Que. 53 34 32 23 235±40 lake-filled, party circular Manicoup, Que. 55 33 04 32 210±4 circular depression Manicoup, Que. 55 33 48 23 324 1111 12,5 Nicolsian Lake, NWT 66 17 111 01 6 400 Nicolsian Lake, NWT 66 17 111 12,5 <400	_		08		13	300	central uplift exposed in quarries,	breccia, shatter cones,			
Lar Shoutert, Que. 70 66 56 8 400 146 140 1000 146 140 1000 146 140 1000 146 140 1000 146 140 1000 1100 <			910		c		rest buried	disturbed rocks	۷		
51 47 008 33 23 400 400 41 85 372 ± 40 400 400 4100 85 372 ± 40 1000 ± 400 1000 ± 4000 <						430	circular lake	breccia float			(
46 41 080 44 85 57 ± 3 100 51 ± 3 53 ± 3 <th< td=""><td>Lake St. Martin. Man.</td><td></td><td>22</td><td></td><td>° (</td><td>225+40</td><td>name huriad and and and and</td><td>breccia float</td><td>•</td><td>¢</td><td>50</td></th<>	Lake St. Martin. Man.		22		° (225+40	name huriad and and and and	breccia float	•	¢	50
51 23 068 42 100 210±4 circumfect fact, central clevation 36 37 003 44 32 210±4 circumfect fact, central clevation 36 37 003 44 32 38±4 ciliptical lake and central island 31 48 102 41 12.5 <400	Lake Wanapitei, Ont.		80		, s	37+2	lake-filled marthy circular	hraccia float	< <	L	50
42 35 093 31 32 <100	Manicouagan, Que.		890		100	210±4	circumferal lake. central elevation	imnact melt, hreccia	¢		50
36 37 003 44 6 300 001 and 002 003 44 6 300 001 and 002 003 44 003 44 003 32 $<53 \pm 44$ 001 and 002 001 003 32 $<53 \pm 44$ 003 310 0012 and 0012 310 0012 and 003 111 01 012 30 003 300 0012 111 01 003 300 0012 111 0102 300 000 000 001 111 010 000 003 300 0000 0000 000	Manson, Iowa		8		32	<100	none, central elevation buried to 30 m	none	•	Δ	0
a. 50 13 000 18 28 38±4 eliptical lake and central island 11 17 003 48 12.5 <400	Middlesboro, Ky.		88		9	300	circular depression	disturbed rocks	V		
0.02 0.02 0.01 0.01 0.03 section of time depression with very significant lake with siands 11 48 102 30 0.17 0.03 section of time depression with very significant lake with very lake lake lake lake lake lake lake lake	MISIASUN LAKE, LADT. New Disher Crater Dis		35		28	38±4	elliptical lake and central island	breccia, impact melt			
31 48 102 30 0.17 0.03 sediment filled depression with very sediment filled depression with very 39 02 03 111 01 6 440 60 17 112 01 6 440 sediment filled depression with very sediment filled depression with very 39 02 083 24 0.03 and sediment filled depression with very sediment filled depression with very 30 10 central filled depression with very annual depression, outer ring diffill annual depression, outer ring diffills annual ring depression, outer ring diffills 36 23 087 40 14 200 ± 100 200 ± 100 100 36 23 085 11 2.7 100 ± 50 100 ± 50 10 49 46 095 11 2.7 100 ± 50 circular lake 1 1	Nicholson Lake, NWT		26		12.5	2007	innineu, cuculăr lake irremilar labe with islands	raised nm			30
60 17 111 01 6 47 40 102 30 9 200 39 02 083 24 6.4 300 30 36 102 55 13 100 30 36 102 55 13 100 48 40 087 00 30 350 59 31 117 38 25 95 ± 7 66 36 081 11 38 25 59 31 117 38 25 56 311 140 1840 ± 150 outer outs uptic for submerged 56 31 117 38 25 95 ± 7 56 36 081 14 200 ± 150 outs outer outs outer 40 66 36 14 200 ± 150 outs outs outer 40 40 14 200 ± 100 basin with central hill, inner and 40 46 095 11 2.7 100 ± 50	Odessa, Tex.	-	[0]		0.17	0.03	sediment-filled depression with very	fragments of meteorite	۷	0	50
K. $\frac{00}{11}$ 111 01 6 440 contain lake 1 39 02 083 24 6.4 300 circular area of disturbed rock, slight 1 30 36 102 55 13 100 central elevation 1 1 48 40 087 00 30 350 islands are central uplift of submerged 1 48 40 087 00 30 350 islands are central uplift of submerged 1 59 31 117 38 25 95 \pm 7 structure 1 1 36 23 087 40 14 200 \pm 150 enliptical basin 1 1 36 23 087 40 14 200 \pm 100 basin with central hill, inner and 1 49 46 095 11 2.7 100 \pm 50 circular lake 1 1					,		slight rim, 4 others buried and smaller	0		I)
30 30 30 30 300 300 400 54 300 30 36 102 55 13 100 central elevation 30 36 102 55 13 100 central elevation 48 40 087 00 30 350 india deression, outer 59 31 117 38 25 95 ± 7 none, buried io 200 metres 46 36 081 11 140 1840±150 eiliptical basin 36 23 087 40 14 200±100 basin with central hills, inner and 49 46 095 11 2.7 100±50 basin with central hills, inner and	Flot Lake, NW I Reduing Creek N Dab		===		•	948	circular lake	fracturing, breccia float			
30361025513100central elevation48400870030350isinands are central polity, anular depression, outer ring of hills48400870030350isinands are central polity of submerged isinciture59311173825 95 ± 7 none, burled to 200 metres4636081111401840 ± 150elliptical basin36230874014 200 ± 100 basin with central hill, inner and4946095112.7 100 ± 50 circular lake	Serpent Mound, Ohio		083		6.4	005	none, ourted circular area of disturbed rock slight	none braccia chattar conac	< <	D	50
30 36 102 55 13 100 central hills, annular depression, outer 48 40 087 00 30 350 islands are central uplify of submerged 59 31 117 38 25 95 ± 7 none, burlied to 200 metres 46 36 081 11 140 1840 ± 150 lippical basin 36 23 087 40 14 200 ± 100 basin with cental hill, inner and 49 46 095 11 2.7 100 ± 50 circular lake	E						central elevation	DIVVUA, SHARKI VUILS	¢		2
48 40 087 00 30 350 istands are central uplift of submerged 59 31 117 38 25 95 ± 7 none, burled to 200 metres 46 36 081 11 140 1840±150 etliptical basin 36 23 087 40 14 200 ± 100 basin with central hill, inner and 49 46 095 11 2.7 100 ± 50 circular lake	Sierra Madera, 1 ex.		102		13	100	central hills, annular depression, outer	breccia, shatter cones	V	۵	G
59 31 117 38 25 95 ± 7 structure 46 36 081 11 140 1840±150 none, buried to 200 metres 36 23 087 40 14 200 ± 100 basin with cernal hill, inner and outer annular, valleys and ridges 49 46 095 11 2.7 100 ± 50 circular lake	Slate Islands, Ont.		087		30	350	islands are central uplift of submerged	shatter cones hreccia			
31 117 38 25 95 ± 7 none, buried to 200 metres 46 36 081 11 140 1840±150 elliptical basin 36 23 087 40 14 200 ± 100 basin with cernal hill, inner and 49 46 095 11 2.7 100 ± 50 circular lake	:						structure	dikes	8		Ċ
40 50 101 140 1840 ± 100 $elliptical basin 36 23 087 40 14 200\pm100 basin with cental hill, inner and 49 46 095 11 2.7 100\pm50 circular lake $	Steen River, Alta.		117		52	95±7	none, buried to 200 metres	none	I	۵	0
36 23 087 40 14 200 ± 100 basin with cernal hill, inner and 36 49 46 095 11 2.7 100 ± 50 circular lake	······································		5		140		empucal basin	breccia, impact melt,	•	4	ç
49 46 095 11 2.7 100 ± 50 circular lake 1	Wells Creek, Tenn.		087	-	14	200±100	basin with cenral hill, inner and	snatter cones breccia, shatter cones	< <	םם	טכ
$49 40 093 11 2.7 100\pm50 circular lake$	When W and the Party of the Par		2				outer annular, valleys and ridges				
	west hawk lake, man.				2.7	100±50	circular lake	none	۲	۵	σ

COMETS IN 1983

BY BRIAN G. MARSDEN

	Perih		
Comet	Date	Dist.	Period
	+	A.U.	a
Pons-Winnecke	Apr. 7	1.25	6.4
Arend	May 22 June 1	1.86	8.0 6.4
du Toit-Neujmin-Delporte Tempel 2	June 1	1.38	5.3
Oterma	June 18	5.47	19.4
Tempel 1	July 9	1.49	5.5
Kopff	Aug. 10	1.58	6.4
Harrington-Abell	Dec. 1	1.79	7.6
Johnson	Dec. 3	2.30	6.9

The following periodic comets are expected at perihelion during 1983:

The returns of P/Tempel 1 and P/Kopff are very favourable, and ephemerides are given below. P/Tempel 2 will also be moderately easy to observe; P/Pons-Winnecke and P/Johnson somewhat less so. P/Oterma used to be observable all around its orbit, but no observations have been possible since a close approach to Jupiter caused a substantial change in the orbit around 1962; the comet may be detectable at magnitude 21 in 1983. P/du Toit-Neujmin-Delporte and P/Harrington-Abell are never particularly bright objects, but these comets are also well placed for observation this year. The return of P/Arend is most unfavourable.

As P/Halley approaches its perihelion passage on 1986 Feb. 9 several astronomers are making attempts to recover it. It is possible that this famous comet will be detected during the latter part of this year, when it will be 8.2 AU from the Sun. Nevertheless, P/Halley will still then be considerably fainter than any comet ever observed before, and it would not be surprising if it is not recovered before late 1984.

> Mag. 10.6 10.0 9.7 9.5

> > 9.6

9.8 10.2

10.7

11.3

-17 -19 -21 -22 -23 -24 -24 -24 44 35 16 40 45

25 41

COMET TEMPEL 1 COMET KOP	FF
Date Date Date 0h E.T. R.A.(1950) Dec.(1950) Mag. 0h E.T. R.A.(1950)	Dec.(1950)
May 6 12 ^h 33 ^m 3 +13° 15′ 11.5 Apr. 16 15 ^h 46 ^m 5	-10° 50'
16 12 31.6 +10 50 26 15 46.3	-10 18
26 12 34.2 + 7 49 11.3 May 6 15 43.4	- 946
June 5 12 41.0 + 4 21 16 15 38.3	- 9 20
15 12 51.8 + 0 34 11.3 26 15 32.2	- 9 08
25 13 06.1 - 3 25 June 5 15 26.7	- 9 18
July 5 13 23.5 - 7 29 11.4 15 15 23.3	- 9 53
25 15 23.3	-10 53
July 5 15 27.3	-12 17
15 15 35.7	-13 57
25 15 48.3	-15 49
Aug. 4 16 04.8	-17 44
14 16 24.7	-19 35
24 16 47.4	-21 16
Sept. 3 17 12.5	-22 40
	-23 45

Oct.

23 3

18 07.3

19 04.4

INTERPLANETARY DUST

Outside of the astronomical community it is not generally realized that the inner solar system contains a vast cloud of dust. The particles in this cloud are concentrated near the plane of the ecliptic and toward the Sun, their spatial particle density in the ecliptic falling off somewhat more rapidly than the reciprocal of their distance from the Sun. Measurements from spacecraft indicate that the cloud extends well beyond the orbit of Mars, but that it is negligible in the vicinity of Jupiter's orbit and beyond. Aside from this overall structure, the cloud is quite uniform both spatially and temporally.

The particles composing the cloud have a continuum of sizes, from pebble-sized clumps down to specks with diameters comparable to the wavelength of visible light and smaller. The smaller particles are the more numerous, although the mass distribution appears to peak near 10^{-8} kg, corresponding to a particle diameter of a few tenths of a millimetre. The total mass of the cloud is small, amounting to perhaps 10^{-14} of the mass of the solar system. It is as if the moons of Mars had been pulverized and spread throughout the inner solar system.

Like the planetary system, the interplanetary dust cloud is not static. Its particles generally move in orbits about the Sun. In addition, the particles undergo continual fragmentation due to collisions, sputtering associated with bombardment by the solar wind, electrostatic bursting, and sublimation. This progression toward smaller and smaller sizes is of crucial significance for the cloud, since particles with diameters appreciably less than a tenth of a millimetre have a sufficiently large surface-tovolume ratio that the pressure of the Sun's radiation has a significant effect upon their motion. Their orbits become non-Keplerian and many particles are lost as they spiral inward toward the Sun (the Poynting-Robertson effect). For the smallest particles, radiation pressure and interactions with the solar wind dominate, with the result that these particles are blown out of the solar system. The estimated mean life of a cloud particle is about 10^5 years. Since this is much less than the age of the solar system, it is obvious that the cloud must be in a dynamic equilibrium. Part of the tail of a bright comet is due to significant quantities of dust ejected from its nucleus, and it is generally assumed that comets provide the main supply of new dust to the cloud. Since comet nuclei are believed to consist of the undifferentiated matter from which the solar system formed, the dust of the interplanetary cloud is most likely composed of this same low-density, fragile, primitive material.

To an observer on Earth the most noticeable aspect of the dust cloud is meteors – larger particles of the cloud which encounter Earth and vaporize in its upper atmosphere. In addition, sunlight scattered by the dust cloud appears as a faint glow in the vicinity of the ecliptic. This glow is brightest toward the Sun, is due primarily to particles having diameters between a few micrometres and a millimetre, and is referred to as the zodiacal light. A slight brightening in the sky opposite the Sun, called the *Gegenschein* (German for "counter-glow"), is due to a phase effect (analogous to the full moon), and also possibly to a concentration of dust at the L3 Lagrangian point of the Earth-Sun system. As astronomical objects, the zodiacal light and Gegenschein are unusual in that they can be seen only with the unaided eye. Both are invisible in binoculars or a telescope.

The Zodiacal Light

Nearly a millenium ago the Persian astronomer-poet Omar Khayyam referred to the zodiacal light in the second quatrain of his *Rubaiyat*. As translated by the poet Edward FitzGerald, we have the haunting lines: "Dreaming when Dawn's Left Hand was in the Sky", and "Before the phantom of False morning died".

When conditions are favorable, the zodiacal light is indeed a mysterious and beautiful sight. It is best seen after the end of evening twilight and before the beginning of morning twilight (see page 56). Because the zodiacal light is brightest nearest the Sun, it is best seen when the ecliptic is at a steep angle relative to the horizon. In the tropics this is always the case and the short duration of twilight is an added advantage. At mid-northern latitudes the optimum geometry occurs in the evening western sky in February and March, and in the morning eastern sky in October. The zodiacal light appears as a huge, softly radiant pyramid of white light with its base near the horizon and its axis centered on the zodiac. In its brightest parts it exceeds the luminance of the central Milky Way.

Despite its brightness, many people have not seen the zodiacal light. As mentioned above, certain times of night and times of year are more favorable than others. In addition, moonlight, haze, or light pollution rule out any chance of seeing this phenomenon. Even with a dark, transparent sky the inexperienced observer may confuse the zodiacal light with twilight and thus ignore it, or he may not notice it because he is expecting a much smaller object.

The Gegenschein

Photometric measurements indicate that the zodiacal light extends all around the zodiac with a shallow minimum in brightness some 120° to 150° from the Sun; nevertheless, this "zodiacal band" or "light bridge" is exceedingly faint and hence rarely visible. However, the slight brightening in the vicinity of the anti-solar point can be seen under the right conditions.

The Gegenschein is very faint. The slightest haze, moonlight, bright nearby stars, planets, or light pollution will hide it completely. Most observers, including experienced ones, have not seen it. It is a ghostly apparition best seen near midnight and, in mid-northern latitudes, in the fall or winter when the anti-solar point is nearest the zenith. To avoid interference from bright stars or the Milky Way, observations should be restricted to the periods late September to early November, and late January to early February when the Gegenschein is in Pisces and Cancer respectively. It appears as a faint yet distinct, somewhat elliptical glow perhaps 10° in diameter. The luminance of the Gegenschein is about 10^{-4} cd/m², some ten orders of magnitude dimmer than the brightest light the human eye can tolerate.

STARS

CONSTELLATIONS

Nominative & Pronunciation	Genitive	Abbr.	Meaning
Andromeda, ăn-drŏm'ē-da	Andromedae	And	Daughter of Cassiopeia
Antlia, ănt'lĭ-à	Antliae	Ant	The Air Pump
Apus, ā'pūs	Apodis	Aps	Bird of Paradise
Aquarius, a-kwâr'ĭ-ŭs	Aquarii	Aqr	The Water-bearer
Aquila, ăk'wĭ-là	Aquilae	Aql	The Eagle
Ara, ā'ra	Arae	Ara	The Altar
Aries, ā'rĭ-ēz	Arietis	Ari	The Ram
Auriga, ô-rī'ga	Aurigae	Aur	The Charioteer
Bootes, bō-ō'tēz	Bootis	Boo	The Herdsman
Caelum, sē'lŭm	Caeli	Cae	The Chisel
Camelopardalis	Camelopardalis	Cam	The Giraffe
ka-mėl'o-par'da-lis			
Cancer, kăn ⁷ sẽr	Cancri	Cnc	The Crab
Canes Venatici	Canum Venaticorum	CVn	The Hunting Dogs
kā'nēz vē-năt'ĭ-sī			
Canis Major, kā'nīs mā'jēr	Canis Majoris	CMa	The Big Dog
Canis Minor, kā'nīs mī'nēr	Canis Minoris	CMi	The Little Dog
Capricornus, kăp'rĭ-kôr'nŭs	Capricorni	Cap	The Horned Goat
Carina, kā-rī'nā	Carinae	Car	The Keel
Cassiopeia, kăs'ĭ-ō-pē'ya	Cassiopeiae	Cas	The Queen
Centaurus, sen-tô'rŭs	Centauri	Cen	The Centaur
Cepheus, sē'fūs	Cephei	Cep	The King
Cetus, sē'tūs	Ceti	Cet	The Whale
Chamaeleon, ka-mē'lē-ŭn	Chamaeleontis	Cha	The Chameleon
Circinus, sûr'sĭ-nŭs	Circini	Cir	The Compasses
Columba, kō-lŭm'bå	Columbae	Col	The Dove
Coma Berenices	Comae Berenices	Com	Berenice's Hair
kō'mà bĕr'ē-nī'sēz	Connac Derennees	Com	Bereinee's Han
Corona Australis	Coronae Australis	CrA	The Southern Crown
kō-rō'nà ôs-trā'lĭs	Coronae Australis		The Southern Crown
Corona Borealis	Coronae Borealis	CrB	The Northern Crown
kō-rō'nà bō'rē-ā'lĭs	Coronae Boreans		The Northern Crown
Corvus, kôr'vŭs	Corvi	Crv	The Crow
Crater, krā'tēr	Crateris	Crt	The Cup
Crux, krŭks	Crucis	Cru	The Cross
Lygnus, sĭg'nŭs	Cygni	Cyg	The Swan
Delphinus, děl-fī'nŭs	Delphini Doradus	Del	The Dolphin
Dorado, dō-ra'dō		Dor	The Goldfish
Draco, drā'kō	Draconis	Dra	The Dragon
quuleus, ē-kwoo'lē-ŭs	Equulei	Equ	The Little Horse
ridanus, ē-rĭd'a-nŭs	Eridani	Eri	A River
ornax, fôr'năks	Fornacis	For	The Furnace
emini, jĕm'ĭ-nī	Geminorum	Gem	The Twins
rus, grŭs	Gruis	Gru	The Crane (bird)
ercules, hûr'kū-lēz	Herculis	Her	The Son of Zeus
orologium, hŏr'ō-lō'jĭ-ŭm	Horologii	Hor	The Clock
ydra, hī'dra	Hydrae	Нуа	The Water Snake (♀)
ydrus, hī'drŭs	Hydri	Hyi	The Water Snake (♂)

Nominative & Pronunciation	Genitive	Abbr.	Meaning
Indus, ĭn'dŭs	Indi	Ind	The Indian
Lacerta, lå-sûr'tå	Lacertae	Lac	The Lizard
Leo, lê'õ	Leonis	Leo	The Lion
Leo Minor, lē'ō mī'nēr	Leonis Minoris	LMi	The Little Lion
Lepus, lē'pūs	Leporis	Lep	The Hare
Libra, lī'bra	Librae	Lib	The Balance
Lupus, lū'pŭs	Lupi	Lup	The Wolf
Lynx, lĭnks	Lyncis	Lyn	The Lynx
Lyra, lī'ra	Lyrae	Lyr	The Lyre
Mensa, měn'sa	Mensae	Men	Table Mountain
Microscopium	Microscopii	Mic	The Microscope
mī'krō-skō'pĭ-ŭm			
Monoceros, mo-nos'er-os	Monocerotis	Mon	The Unicorn
Musca, mŭs'ka	Muscae	Mus	The Fly
Norma, nôr'må	Normae	Nor	The Square
Octans, ŏk'tănz	Octantis	Oct	The Octant
Ophiuchus, ŏf'ĭ-ū'kŭs	Ophiuchi	Oph	The Serpent-bearer
Orion, ō-rī'ŏn	Orionis	Ori	The Hunter
Pavo, pā'vō	Pavonis	Pav	The Peacock
Pegasus, peg'a-sus	Pegasi	Peg	The Winged Horse
Perseus, pûr'sūs	Persei	Per	Rescuer of Andromeda
Phoenix, fe'nĭks	Phoenicis	Phe	The Phoenix
Pictor, pĭk'tēr	Pictoris	Pic	The Painter
Pisces, pĭs'ēz	Piscium	Psc	The Fishes
Piscis Austrinus	Piscis Austrini	PsA	The Southern Fish
pĭs'ĭs ôs-trī'nŭs		1011	
Puppis, pŭp'ĭs	Puppis	Pup	The Stern
Pyxis, pĭk'sĭs	Pyxidis	Pyx	The Compass
Réticulum, rē-tĭk'ū-lŭm	Reticuli	Ret	The Reticle
Sagitta, så-jĭť á	Sagittae	Sge	The Arrow
Sagittarius, să j'ĭ-tā'rĭ-ŭs	Sagittarii	Sgr	The Archer
Scorpius, skôr'pĭ-ŭs	Scorpii	Sco	The Scorpion
Sculptor, skŭlp'têr	Sculptoris	Scl	The Sculptor
Scutum, skū'tŭm	Scuti	Sct	The Shield
Serpens, sûr'pĕnz	Serpentis	Ser	The Serpent
Sextans, seks'tanz	Sextantis	Sex	The Sextant
Taurus, tô'rŭs	Tauri	Tau	The Bull
Telescopium těl'ē-skō'pĭ-ŭm	Telescopii	Tel	The Telescope
Triangulum, trī-ăng'gū-lŭm	Trianguli	Tri	The Triangle
Triangulum Australe	Trianguli Australis	TrA	The Southern Triangle
trī-ăng'gū-lŭm ôs-trā'lē	Thangun Australis		The Southern Thangle
Tucana, tū-kā'nā	Tucanae	Tuc	The Toucan
Ursa Major, ûr'så mā'jēr	Ursae Majoris	UMa	The Great Bear
Ursa Minor, ûr'så mī'nēr	Ursae Minoris		The Little Bear
		UMi Vel	The Sails
Vela, vē'la Vince vitr'ez	Velorum	1	
Virgo, vûr'gō Volana, vē'lāna	Virginis	Vir	The Maiden
Volans, vo'lănz	Volantis	Vol	The Flying Fish
Vulpecula, vŭl-pěk'ū-lå	Vulpeculae	Vul	The Fox

4

ā dāte; ă tăp; â câre; a ask; ē wē; ĕ mět; ẽ makēr; ī īce; ĭ bĭt; ō gō; ŏ hŏt; ô ôrb; oo moon; ū ūnite; ŭ ŭp; û ûrn.

★

FINDING LIST OF SOME NAMED STARS

F II'	DING LIS	I OF S	JME NAMED STARS		
Name	Con.	R.A.	Name	Con.	R.A.
Acamar, ā'kā-mār	θEri	02	Gienah, jē'nā	γ Crv	12
Achernar, ā'kēr-nar	α Eri	01	Hadar, hăd'ar	βCen	14
Acrux, ā'krŭks	α Cru	12	Hamal, hăm'ăl	α Ari	
Adara, à-dā'rà	€ CMa	06	II -	1	
			Kaus Australis,	€ Sgr	18
Al Na'ir, ăl-nâr'	α Gru	22	kôs ôs-trā'lĭs	1	
Albireo, ăl-bĭr'ē-ō	βCyg	19	Kochab, ko'kab	β UMi	14
Alcor, ăl-kôr'	80 UMa	13	Markab, mår'käb	α Peg	23
Alcyone, ăl-sī'ō-nē	η Tau	03	Megrez, mē'grēz	δ UMa	12
Aldebaran,	α Tau	04	Menkar, měn'kar	α Cet	03
ăl-dĕb'à-ràn			Menkent, mĕn'kĕnt	θ Cen	14
Alderamin,	α Cep	21	Merak, mē'răk	β UMa	11
ăl-dĕr'a-mĭn			Merope, mĕr'ō-pē	23 Tau	03
Algeiba, ăl-jē'ba	y Leo	10	Miaplacidus,	βCar	09
Algenib, ăl-jē'nĭb	γ Peg	00	mī'a-plăs'ī-dŭs	pear	
Algol, ăl'gŏl	β Per	03	-		05
	1.		Mintaka, mĭn-ta'ka	δOri	05
Alioth, ăl'ĭ-ŏth	€ UMa	12	Mira, mī'ra	o Cet	02
Alkaid, ăl-kād'	η UMa	13	Mirach, mī'rāk	β And	01
Almach, ăl'măk	γ And	02	Mirfak, mĭr'făk	α Per	03
Alnilam, ăl-nī'lăm	εOri	05	Mizar, mī'zar	ζ UMa	13
Alphard, ăl'fàrd	α Hya	09	Nunki, nŭn'kē	σ Sgr	18
Alphecca, ăl-fěk'à	α CrB	15	Peacock, pē'kŏk'	α Pav	20
Alpheratz, ăl-fē'răts	α And	00	Phecda, fěk'da	y UMa	11
Altair, ăl-târ'	α Aql	19	Polaris, pō-lâr'ĭs	α UMi	02
Ankaa, ăn'ka	α Phe	00	Pollux, põl'ŭks	β Gem	07
Antares, ăn-tā'rēs	a Sco	16	Procyon, prō'sĭ-ŏn	α CMi	07
Arcturus, ark-tū'rŭs	α Βοο	14	Pulcherrima,	€ Boo	14
Atria, ā'trī-à	α TrA	16	pŭl-kĕr'ĭmå	E DOO	14
,			_ <u>-</u>		
Avior, ă-vĭ-ôr'	€ Car	08	Ras-Algethi,	α Her	17
Bellatrix, bē-lā'trīks	γ Ori	05	ras'ăl-jē'thē		
Betelgeuse, bět'ěl-jūz	α Ori	05	Rasalhague,	α Oph	17
Canopus, ka-nō'pŭs	αCar	06	ras'al-ha'gwē Regulus, rēg'ū-lūs	a Leo	10
Capella, ka-pěl'a	α Aur	05	Rigel, rī'jĕl	βOri	
	β Cas	00			05
Caph, kăf			Rigil Kentaurus,	α Cen	14
Castor, kås'tēr Cor Caroli, kôr kăr'ŏ-lī	α Gem α CVn	07 12	rī'jil kēn-tô'rūs		17
or Caroli, kor kar 0-li	acvii	12	Sabik, sā'bīk	η Oph	17
Deneb, děn'ěb	α Cyg	20	Scheat, shē'ăt	β Peg	23
Denebola, dĕ-nĕb'ō-là	β Leo	11	Schedar, shĕd'ar	α Cas	00
Diphda, dĭf'da	β Cet	00	Shaula, shô'là	λ Sco	17
Jubhe, dŭb'ē	αUMa	11	Sirius, sĭr'ĭ-ŭs	α CMa	06
llnath, ĕl'năth	βTau	05	Spica, spī'kā	α Vir	13
ltanin, ĕl-tā'nĭn	γ Dra	17	Suhail, sŭ-hāl'	λ Vel	09
nif, ěn'ĭf	e Peg	21	Thuban, thoo'ban		
				α Dra	14
omalhaut, fō'măl-ôt	α PsA	22	Vega, vē'ga	αLyr	18
acrux, ga'krŭks	γ Cru α CrB	12 15	Zubenelgenubi, z oo -běn'ěl-jě-nū'bē	a Lib	14
emma, jĕm'a					

Key to pronunciation on p. 130.

THE BRIGHTEST STARS

BY DONALD A. MACRAE

The 286 stars brighter than apparent magnitude 3.55.

Star. If the star is a visual double the letter A indicates that the data are for the brighter component. The brightness and separation of the second component B are given in the last column. Sometimes the double is too close to be conveniently resolved and the data refer to the combined light, AB; in interpreting such data the magnitudes of the two components must be considered.

Visual Magnitude (V). These magnitudes are based on photoelectric observations, with a few exceptions, which have been adjusted to match the yellow colour-sensitivity of the eye. The photometric system is that of Johnson and Morgan in Ap. J., vol. 117, p. 313, 1953. It is as likely as not that the true magnitude is within 0.03 mag. of the quoted figure, on the average. Variable stars are indicated with a "v". The type of variability, range, R, in magnitudes, and period in days are given.

Colour index (B-V). The blue magnitude, B, is the brightness of a star as observed photoelectrically through a blue filter. The difference B-V is therefore a measure of the colour of a star. The table reveals a close relation between B-V and spectral type. Some of the stars are slightly reddened by interstellar dust. The probable error of a value of B-V is only 0.01 or 0.02 mag.

Type. The customary spectral (temperature) classification is given first. The Roman numerals are indicators of *luminosity class*. They are to be interpreted as follows: Ia—most luminous supergiants; Ib—less luminous supergiants; II—bright giants; III—normal giants; IV—subgiants; V—main sequence stars. Intermediate classes are sometimes used, e.g. Iab. Approximate absolute magnitudes can be assigned to the various spectral and luminosity class combinations. Other symbols used in this column are: p—a peculiarity; e—emission lines; v—the spectrum is variable; m—lines due to metallic elements are abnormally strong; f—the O-type spectrum has several broad emission lines; n or nn—unusually wide or diffuse lines. A composite spectrum, e.g. M1 Ib+B, shows up when a star is composed of two nearly equal but unresolved components. The table now includes accurate spectral and luminosity classes for all stars in the southern sky. These were provided by Dr. Robert Garrison of the David Dunlap Observatory. All other types were very kindly provided especially for this table by Dr. W. W. Morgan, Yerkes Observatory.

Parallax (π). From "General Catalogue of Trigonometric Stellar Parallaxes" by Louise F. Jenkins, Yale Univ. Obs., 1952.

Absolute visual magnitude (M_V), and distance in light-years (D). If π is greater than 0.030" the distance corresponds to this trigonometric parallax and the absolute magnitude was computed from the formula M_V = V + 5 + 5 log π . Otherwise a generally more accurate absolute magnitude was obtained from the luminosity class. In this case the formula was used to compute π and the distance corresponds to this "spectroscopic" parallax. The formula is an expression of the inverse square law for decrease in light intensity with increasing distance. The effect of absorption of light by interstellar dust was neglected, except for three stars, ζ Per, σ Sco and ζ Oph, which are significantly reddened and would therefore be about a magnitude brighter if they were in the clear.

Annual proper motion (μ), and radial velocity (R). From "General Catalogue of Stellar Radial Velocities" by R. E. Wilson, Carnegie Inst. Pub. 601, 1953. The information on radial velocities was brought up-to-date in 1975 by Dr. C. T. Bolton of the Dunlap Observatory. Italics indicate an average value of a variable radial velocity.

The star names are given for all the officially designated navigation stars and a few others. Throughout the table, a *colon* (:) indicates an uncertainty.

		Sun	Alpheratz Caph $g_{3}-2.85, 0.15^{d}$ $\gamma \text{ Peg} = Algenib$	Ankaa Schedar Diphda			Mirach Ruchbah	Achernar
			Manganese star Var. R 0°08, 0.10 ^d Caph β CMa type, R in V 2.83–2.85, 0.15 ^d γ Peg = A_{genub}	+/4.0 -07.3 B 12 ^m 28'' -03.8 Var.? +13.1	<i>B</i> 7.26 ^m 12'' Var. <i>B</i> 8.18 ^m 2''	A4.1 ^m B4.1 ^m 1''	+00.3 +06.7 Ecl.? $R0.08:m759^d$ +25.7	
Radial Velocity	R	km/s	-11.7 +11.8 +04.1 +22.8	+74.6 -07.3 -03.8 +13.1	+09.4 -06.8	-01.1	+00.3 +06.7 +25.7	+19 -16.2
Proper Motion	ц		0.209 0.555 0.010 2.255	0.442 0.161 0.058 0.234	1.221 0.026		0.209	
Distance light-years	D	l.y.	570 570 21	93 160 57	18 96:	190 102	43 1300	118 12
Absolute Magnitude	M_{F}	+4.84	+ 1.6 + 1.6 + 3.4	+0.1 -0.2 +0.8 +0.8	+4.8 -0.3:	+0.3 $+1.0$	+2.1 -4.6	-2.3+5.70
Parallax	π	:	0.024 0.072 0.153	0.024 0.024 0.009 0.057	$0.182 \\ 0.034$	0.017	- 0.03 0.029 - 003	0.023 0.275
Spectral Classification	Type	V					_	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Colour Index	B-V	+0.63 G2	-0.08 B9p +0.34 F2 -0.23 B2 +0.62 G1				+1.5/ MU +0.13 A5 +1.56 K5	
Visual Magnitude	ν	-26.73	2.26v 2.26v 2.78	2.22:39	3.47 2.5v	3.30	3.67	0.51 3.50
Declination	1980 Dec.	0	+ 28 58 + 59 02 - 77 22				+33 31 +60 08 -43 25	
Right Ascension	R.A. 198	н Ч	00 07.3 08.1 12.2 24.6	25.3 38.2 39.4 42.6	47.9 55.5	01 05.1 07.6	08.6 24.4 27.5	37.0 43.2
	Star	SUN	α And β Cas β Hyi	α Phe δ And A α Cas β Cet	η Cas A γ Cas A	β Phe AB		a Eri Cet

	Sheratan	7. $B-C0.6.''$ γ And = Almach Hamal Hamal $B_{10^m}1.''$ Polaris $B_{10^m}1.''$ Mira	Menkar Algol Mirfak Alcyone	Aldebaran
		B 5.4 ^m C 6.2 ^m A-BC 10 Cep., R0.11 ^m 4.0 ^d , B 8 LP, R 2.0-10.1, 332 ^d , 1 A 3.57 ^m B 6.23 ^m 3''	-25.9 +02.5 +28.2 Hrr. R 3.2-3.8 +06.0 Ecl. R 2.06-3.28, 2.87 ^d -02.4 +02.8 +10.1 in Pleiades +16.0 +20.6 B 9.36 ^m 13'' -01 B7.99 ^m 9'' +61.7	+ 35.6 B 12 ^m 49'' + 38.6 + 39.5 + 25.6 Silicon star + 54.1 Irr.? R0.78-0.93, B13 ^m 31'' + 17.5
R	km/s -12.6 -08.1 -04.0 +07	-11.7 - 11.7 -	$\begin{array}{c} -25.9 \\ -26.05.5 \\ -26.05.5 \\ -26.05.5 \\ -26.05 \\ $	+35.6 +38.6 +38.6 +25.6 +25.6 +24.3 +17.5
д	" 0.230 0.038 0.147 0.265	0.068 0.241 0.156 0.046 0.232 0.203	$\begin{array}{c} 0.075\\ 0.004\\ 0.172\\ 0.035\\ 0.035\\ 0.046\\ 0.050\\ 0.125\\ 0.036\\ 0.126\\ 0.126\end{array}$	$\begin{array}{c} 0.064\\ 0.118\\ 0.108\\ 0.051\\ 0.202\\ 0.468\\ 0.021 \end{array}$
D	1.y. 65 520 52 31	260 76 140 680 680 68 68	130 113 260 570 570 570 570 570 570 570 560 680 680	390 160 140 260 330 330
Μr	$^{+2.0}_{+2.9}$	$\begin{array}{c} -2.4 \\ -2.4 \\ -2.4 \\ -4.6 \\ +1.7 \\ +1.7 \end{array}$	0.000 + 1.000 + 1.0000 + 1.0000000000000	-2.1 +0.1 +0.2 -1.2 +3.65 -2.4
۲	,, 0.050 0.007 0.063	0.005 0.012 0.013 0.013 0.013 0.013 0.028	$\begin{array}{c} 0.003\\ 0.011\\ 0.001\\ 0.003\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.007\\ 0.003\\ 0.$	0.008 0.018 0.011 0.011 0.048 0.125 0.015
Type	VI VI V	Se-M9e	S III C IIII C III C IIII C III C II	
	FO B3 F	A32.K2 K3	MG BB BB BB BB BB BB BB BB BB C BB C BB	K3 K3 K3 K3 K3 K3 K3 K3 K3 K3 K3 K3 K3 K
B^-V	+0.50 -0.15 +0.14 +0.14 +0.28	+1.16: +1.15 +0.13 +0.60v +0.11	$\begin{array}{c} +1.63\\ +0.72;\\ -0.07\\ -0.14\\ -0.14\\ +11.61\\ +10.13\\ -0.17\\ +1.58\end{array}$	$\begin{array}{c} +0.91 \\ +1.02 \\ +0.17 \\ -0.08 \\ +1.52 \\ +1.49 \\ +1.49 \end{array}$
И	3.42 3.37 2.65 2.84	2.14: 3.00 3.00 3.48 3.48 2.92	2.54 2.91: 2.96v 2.988 2.988 2.988 2.988 2.988	3.33 3.54 3.54 3.42 3.28 0.86v 3.17 2.68:
1980 Dec.	。 +29 29 +63 34 +20 43 -61 40	$\begin{array}{c} + 42 \\ + 42 \\ + 23 \\ + 34 \\ + 34 \\ + 89 \\ 11 \\ - 03 \\ 04 \\ + 03 \\ 10 \\ - 40 \\ 23 \end{array}$	$\begin{array}{c} + 04 \\ + 53 \\ + 53 \\ + 38 \\ + 38 \\ + 40 \\ 52 \\ + 44 \\ + 44 \\ + 44 \\ + 44 \\ + 44 \\ + 44 \\ + 41 \\ + 41 \\ + 31 \\ 53 \\ + 31 \\ 57 \\ - 13 \\ 34 \end{array}$	$\begin{array}{c} -62 & 32 \\ +19 & 08 \\ +15 & 49 \\ -55 & 05 \\ +16 & 28 \\ +33 & 08 \end{array}$
R.A. 198	h m 01 52.0 52.9 53.6 58.1	02 02.7 06.1 08.4 12.5 18.3 42.2 57.5	03 01.2 03.13 03.13 06.6 71.5 55.5 56.5 57.5 56.5 57.5 57.5 57.5 57	04 14.1 27.5 27.5 33.5 34.8 48.3 55.7
Star	α Tri ε Cas β Ari α Hyi	γ And A α Ari β Tri α UMi A ο Cet A θ Eri AB	ع × Pet Pet Pet Pet Pat Pat Pat Pat Pat Pat Pat Pat Pat Pa	α Ret A ε Tau θ ² Tau α Dor α Tau A τ ³ Ori

₩

		Rigel Capella 44.98m1 '' Bellatrix Elnath 3''	Alnilam Phact Alnitak	Betelgeu se Menkalinan 3'', var., 1.4 ^a	Canopus Alhena
	Ecl. R0.81 ^m 9886 ^d	Manganese star Irr.? R 0.08–0.20, B 6.65 ^m 9'' Rigel Ecl. R 3.32–3.50, 8.0 ^d , A 3.59 ^m B4.98 ^m 1'' B9.4 ^m 3'' Ethath Ecl. R 2.20–2.35 5.7 ^d , B 6.74 ^m 53'' A 3.56 ^m B 5.54 ^m 4'' C 10.92 ^m 29''	A 2.10 ⁻ B /.51 ⁻ 11 Shell star B 12 ⁻ A 1.91 ⁻ B4.05 ⁻ 3 ⁻	Irr.? R 0.06:-0.75: ^m Betelgeus Menkalina Silicon star A 2.67 ^m B 7.14 ^m 3'', var., 1.4	$\begin{array}{c} + 19.0 \\ + 32.2 \\ + 54.8 \\ + 54.8 \\ + 33.7 \\ + 20.5 \\ + 20.5 \\ - 12.5 \end{array}$
R	km/s -01.4 +01.0 +07.4	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	$+20.0 \ A + 26.1 \ + 26.1 \ + 35 \ B + 18.1 \ A + 20.6 \ B$	$\begin{array}{c} +89.4 \\ +21.0 \\ -18.2 \\ +29.3 \\ Si \end{array}$	$ \begin{array}{c} + 19.0 \\ + 32.2 \\ + 54.8 \\ + 33.7 \\ + 33.7 \\ + 20.5 \\ - 12.5 \end{array} $
크	0.008 0.077 0.077			0.402 0.028 0.051 0.097	0.066 0.004 0.129 0.004 0.025 0.066
Q	1.y. 3400 170 370	78 900 1500 1500 1500 1500 1500 1500 1500	2100 1600 1600 2100 2100	140 520 88 108	200 390 750 98 105
Μr	-7.1 -0.4 -2.1	+ + + + + + + + + + + + + + + + + + +		+0.0 -5.6 +0.3 +0.1	-0.6 -2.4 -0.6 -4.8 -3.1 -0.6
Ħ	0.004 0.006 0.013	$\begin{array}{c} 0.042\\ 0.018\\ 0.073\\ 0.004\\ 0.018\\ 0.018\\ 0.004\\ 0.0026\\ 0.0026\\ 0.0026\\ 0.0026\\ 0.0026\\ 0.0026\\ 0.002\\ 0.0$	0.021 007 005 0.009 0.009	0.023 0.005 0.037 0.018	$\begin{array}{c} 0.013\\003\\ 0.021\\ 0.014\\ 0.018\\ 0.031\end{array}$
Type	lap III V			2	5 V III-III Ib-II IV
	F0 B3 B3			K1.5 M2 A2 B9.5pv	M3 M3 B1 B1 A0
B-V	+0.50: +1.46 -0.18	+0.13 +0.09 +0.09 +0.00 +0.013 +0.023 +0.03	-0.24 -0.13 -0.13 -0.22 -0.22	+1.16 +1.87: +0.06 -0.07	+1.58 -0.18 +1.63 -0.24 +0.16 0.00
V	3.0v 3.21 3.17	22200	21-29 21-29 21-29 21-29 202	3.12 0.41v 1.86 2.65v	3.33v 3.04 2.92v 1.96v 1.93
980 Dec.	+43 48 -22 24 +41 13	$\begin{array}{c} -0.00\\ -0$	-0.5 50 -01 13 +21 08 -34 05 -01 57 -09 41	$\begin{array}{c} -35 \ 47 \\ +07 \ 24 \\ +44 \ 57 \\ +37 \ 13 \end{array}$	$\begin{array}{c} +22 & 31 \\ -30 & 03 \\ +22 & 32 \\ -17 & 56 \\ -52 & 41 \\ +16 & 25 \end{array}$
R.A. 198		23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5			06 13.7 19.6 21.7 21.8 23.5 36.6
Star	ε Aur ε Lep η Aur β Πτ	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	- ຫາວ ເວັກ	β Col α Ori β Aur θ Aur <i>AB</i>	η Gem A ζ CMa μ Gem β CMa α Car γ Gem

	A. 46° Sirius Adhara	8v ^m 73'' Castor Procyon Pollux	<i>Avior</i> ۳ 69′′ ۳3′′ D12 ^m 20′′
	<i>B</i> 8.66 ^m 1980.0: 10.0″, P.A. 46° <i>B</i> 7.5 ^m 8′′	LP, R3.4-6.2, 141 ^d B9.4 ^m 22'' $\int 2'', B-V+0.02, C9.08v^m 73'' CastorB 10.7m 4'' Procyon$	-24 +46.6 Var. R.2.72-2.87, 0.14 ^d +11.5 H11.5 H12.8 B 15 ^m 7', +02.2 A 2.0 ^m B 5.1 ^m 3'' CD 10 ^m 69'' +36.4 A3.7 ^m B5.2 ^m 0.2''15',C6.8 ^m 3''D12 ^m 20'' +12.2 BC 10.8 ^m 4''
	B 8.66		Var. R 2.72- B 4.31 ^m 41'' B 15 ^m 7'' A 2.0 ^m B 5.1' A 3.7 ^m B5.2 ^m (
R	km/s + 28.2 + 29.9 + 25.3 - 07.6 + 27.4 + 27.4	$\begin{array}{c} +++48.\\ ++33.0\\ ++15.8\\ ++22\\01.2\\ -01.2\\ -01.2\\ -03.2\\ -03.2\\ -19.2\\ -19.2\\ -19.2\\ -19.2\\ -19.2\\ -19.2\\ -19.2\\ -10.2\\$	-24 + 46.6 + 11.5 + 11.5 + 11.5 + 19.8 + 236.4 + 12.2 + 12.2
ц	0.010 0.016 0.224 1.324 0.272 0.079 0.004	$\begin{array}{c} 0.000\\ 0.005\\ 0.342\\ 0.008\\ 0.008\\ 0.008\\ 0.199\\ 0.199\\ 0.199\\ 0.199\\ 0.199\\ 0.005\\ 0.$	$\begin{array}{c} 0.033\\ 0.098\\ 0.011\\ 0.017\\ 0.171\\ 0.086\\ 0.198\\ 0.101\\ 0.505\end{array}$
D	1.y. 620 620 64 8.7 57 53 680	3400 2100 650 650 210 180 180 180 180 180 180 180 180 1240	2400 520 340 150 140 49 49
Μ _ν	-3.2 -3.2 -4.6 +1.9 -5.1 -5.1	$\begin{array}{c} - & - & - & - & - & - & - & - & - & - $	+
Ħ	" 0.009 0.375	018 0.016 0.023 0.023 0.013 0.072 0.072 0.072 0.072 0.072 0.093 003	0.031 0.004 0.043 0.043 0.029 0.029
Type		Ia Ib Ib Ib II III IV IV IV	05 laf F6 IIp WC8 K3:III+B2:V A2 II A2 V G0:IVcomp. K0 II-III A7 V
	B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B	F8 F8 F8 F5 F5 F5 F3 F5 F5 F5 F5 F5 F5 F5 F5 F5 F5 F5 F5 F5	05 65 65 70 80 80 80 80 80 80 80 80 80 80 80 80 80
B^{-V}	-0.10 +1.39 +0.01 +1.21 +1.21 -0.18:	$\begin{array}{c} -0.09\\ +0.65\\ -0.08\\ -0.08\\ +10.09\\ +11.02\\ +11.02\\ +11.02\\ -0.18\end{array}$	-0.26 +0.42 +0.42 +1.30: +0.83 +10.05 +10.05 +10.05
7	3.19 3.00 3.38 3.38 3.38 3.27 2.92 1.48:	3.02 1.85 1.85 1.85 1.97 1.97 1.97 1.16 1.97 1.97 3.248	2.23 2.80v 1.83 1.90: 3.37 3.37 3.11 3.12
980 Dec.	<pre>~ ************************************</pre>	$\begin{array}{c} -23 \\ -23 \\ -26 \\ 222 \\ -26 \\ 223 \\ -24 \\ 315 \\ -24 \\ 50 \\ -24 $	$\begin{array}{c} -39.57\\ -24.15\\ -24.15\\ -59.26\\ +60.47\\ +60.43\\ +96.02\\ +48.07\\ \end{array}$
R.A. 198	h 6 37.1 6 37.1 42.7 44.2 44.2 48.2 57.8 57.8	07 02:2 112:9 112:	08 02.9 06.7 08.9 08.9 22.1 54.7 54.7 57.9 57.9
Star	ν Pup ε Gem α CMa α Pic τ Pup ε CMa Α	o ² CMa δ CMa δ CMa Γ ₂ Pup η CMa η CMa α Gem A α Gem A β Gem A χ Car χ Car	ζ Pup ρ Pup γ Vel A ε Car ο UMa A δ Vel AB δ Vel AB ε Hya ζ Hya ζ Hya

₩

	Suhail Miaplacidus	Alphard 52 ^d	Regulus	Merak Dubhe Denebola
	×	$\begin{array}{c} +27.9 \\ -04.3 \\ -04.3 \\ -13.9 \\ +15.4 \\ +15.4 \\ +15.4 \\ +05.0 \\ +04.0 \\ \text{Cep.max. } 3.4^{\text{m}} \text{min. } 4.8^{\text{m}}, 35.52^{\text{d}} \\ +13.6 \\ \text{A} 3.02^{\text{m}} B 6.03^{\text{m}} 5'' \end{array}$	+04 +04 -15.0 +18.3 +08.6 Var. R 3.38-3.44 +08.6 A 2.29 ^m B 3.54 ^m 4'' -20.5 +26.0 Var. R 3.22-3.39 +24 +06.9 A 2.7 ^m B 7.2 ^m 1''	A 1.88 ^m B 4.82 ^m 1′′
Я	km/s +18.4 +23.3 -05 +13.3	+21.9 +21.9 -04.3 -13.9 +15.4 +05.0 +13.6	$\begin{array}{c} + 03.5 \\ - 164 \\ - 164 \\ - 153.6 \\ - 156.6 \\ - 20.5 \\ - 20.5 \\ - 20.5 \\ - 20.5 \\ - 01.0 \\ - 01.0 \end{array}$	$\begin{array}{c} -12.0 \\ -08.9 \\ -03.8 \\ -20.6 \\ +07.8 \\ -01 \\ -01 \end{array}$
=	,, 0.026 0.183 0.019	0.012 0.034 0.036 0.036 0.048 0.016 0.012	$\begin{array}{c} 0.248\\ 0.029\\ 0.023\\ 0.170\\ 0.023\\ 0.350\\ 0.356\\ 0.086\\ 0.018\\ 0.018\\ 0.018\\ 0.221 \end{array}$	0.087 0.138 0.072 0.072 0.0104 0.039 0.511
D	1.y. 750 86 86 180	470 94 170 340 340 340	84 300 300 130 130 130 130 130 130 130 130	78 105 82 370 43
M_{ν}		-1.1 + -1.3	-0.2	+0.5 +0.7 +0.0 +1.1 +1.1 +1.5
π	,, 0.015 0.038 0.031	0.007 0.017 0.015 0.015 0.015 0.019 0.020	0.039 0.009 0.018 0.019 0.031 0.031	0.042 0.031 0.040 0.019 0.076
Type	Ib-IIa IV-V III IIb III		5 ¹⁰⁻¹¹ ¹⁰⁻¹¹ ¹⁰⁻¹¹ ¹¹¹	>⊟∃>>∃>
		A G G G F K K 4 B 2 B 2 B 2 B 2 B 2 B 2 B 2 B 2 B 2 B	K35.5 K35.5 K35.5	ABAAKI ABAAKI
B-V	+1.64: -0.17 +0.01 +0.17	+0.20 +1.44 +1.56 +0.46 +0.81 +0.81	$\begin{array}{c} -0.11\\ -0.03\\ +0.03\\ +11.55\\ +11.55\\ +0.11\\ -0.11\\ +1.25\\ $	-0.03 +1.06 +0.13 +0.09 +0.09
7	2.24 3.43 2.25 3.17	2.95 2.99 2.99 2.99 2.95	$\begin{array}{c} 1.36\\ 3.45\\ 3.46\\ 3.45\\ 3.30\\ 2.74\\ 3.12\\ 3.12\\ \end{array}$	$\begin{array}{c} 2.37\\ 1.81\\ 3.00\\ 2.57\\ 3.15\\ 2.14\\ 2.14\end{array}$
980 Dec.	43 21 - 58 52 - 69 38 + 34 29	-6226	$\begin{array}{c} + + 12 \\ - 69 \\ 56 \\ 56 \\ 56 \\ 57 \\ - 61 \\ 14 \\ 36 \\ - 49 \\ 13 \\ - 16 \\ 05 \\ - 16 \\ 05 \\ - 16 \\ 05 \\ - 16 \\ 05 \\ - 16 \\ 05 \\ - 16 \\ 05 \\ - 16 \\ 05 \\ - 16 \\ 05 \\ - 16 \\ 05 \\ - 16 \\ 05 \\ - 16 \\ 05 \\ - 16 \\ 05 \\ - 16 \\ 05 \\ - 16 \\ 05 \\ - 16 \\ 05 \\ - 16 \\ 05 \\ - 16 \\ 05 \\ - 16 \\ 05 \\ - 16 \\ 05 \\ - 16 \\ - 16 \\ 05 \\ - 16 \\ - 16 \\ - 16 \\ - 16 \\ - 16 \\ - 16 \\ - 16 \\ - 16 \\ - 10 $	$\begin{array}{c} +56 \\ +61 \\ 52 \\ +44 \\ +120 \\ 38 \\ +15 \\ 33 \\ +14 \\ 41 \end{array}$
R.A. 19	h m 09 07.3 10.5 13.0 16.6 19.9	21.5 26.6 30.6 31.5 44.7 44.7 46.6	10 07.3 15.72 15.72 15.73 15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9	11 00.6 02.5 08.6 13.0 34.9 48.0
Star	λ Vel a Car β Car α Lyn	κ Vel α Hya N Vel. θ UMa A ε Leo υ Car AB	222 2 Leo A 2 Leo A 2 Leo A 2 Leo A 4 Car 4 Car 9 Car 9 Car 120 A 121 A 12	β UMa α UMa AB ψ UMa δ Leo θ Leo λ Cen β Leo

	Phecda		Megrez Gienah	Acrux	Gacrux			; i	Beta Crucis Alioth	≖ 20′′ Cor Caroli			Mizar r Snica	moder	Allenid	ninviu		
									: ium star	i star. $B5.61^{m}$.		:	(Alcor, 708'') Mizar 1.01.4.0 ^d B.C.Ma varSnira		Ð			
		Var. R 2.56–2.62	Var R 2.78–2.84	}5'', C 4.90 ^m 89''	<u>Å</u> 8.26 ^m 24′′	Var R 7 66-7 73	A 2.9m B 2.9m 2''	A 3.7 ^m B 4.0 ^m 1''	β CMa var., 0.25 ^d : Chromium-europium star	Silicon-europium star, $B5.61^{m} 20''$			B 3.94 ^m 14'' Fcl. R 0.91–1		βCMa var., 0.17 ^d		Var. R 3.08–3.17	
R	km/s 12.9	+09+04.9	+26.4 -12.9 -04.2	-11.2 -00.6	$^{+09}_{+21.3}$		Ś		+20.0	-03.3	-14.0 -05.4	+00.1	-02.6	-13.2	+05.6	+ 00.0		+00.5
Π	,, 0.094	0.042	0.041 0.106 0.163	0.042 0.042	0.255 0.274	0.059	0.197	0.041	0.049	0.238	$0.274 \\ 0.086$	0.351	0.127	0.287	0.033	0.037	0.032	0.076
D	1.y. 90	370 140	570 63 450	370 370	124 220	108	1 <u>60</u>	470 470	66 86	118	90 113	11	220 88	93	570 210	750	470 5 5	520
M_{F}	+0.2	-2.7 -0.2	-3.4 +1.9 -3.1	- 3.9 - 3.4	+0.1 -2.5	+0.1	-0.5	+3.0	-4.6 +0.2	+0.1	+0.6 +0.3	+1.1	- 3.3 - 3.3	+1.1		-3.4	-2.7	-3.4 -3.4
Ħ	" 0.020		0.052		0.018	0.027	0.006			0.023			0.03/	0.035	0.004		0 103	701.0
J		U				HS	×. 5	>>			Ш	,		u.	_		ne ′	~
Typ			2>∃		~8					λ	ΗĦ	>'					•	
Type	A0 V	B2 K3	B2 B8 B8	B0.5 B1		GS B	a Pa		B0.5 III A0nv	B9.	G9 II-III G8 III	8	BI	A3	B3 B3	B 2	82 82	B2.5
B-V Typ		-0.11: B2 +1.33 K3	-0.23 B2 +0.07 A3 -0.10 B8	B0.5 B1	-0.04 + 1.55	+0.89 G5	+0.00 A0	+0.34 -0.17:	-0.25	-0.10 B9.5	+0.93 G9 II- +0.92 G8 III	+0.05 A2	+0.02 AZ -0.24 B1	+0.10 A3	-0.23 B1 -0.20 B3	-0.22 B2	-0.13: B2	-0.23: B2.5
	A0	-0.11: B2 +1.33 K3	+0.07 A3 -0.10 B8	B0.5 B1	-0.04 + 1.55	+0.89 G5	a Pa	+0.34 -0.17:		-0.10 B9.5	+0.93 G9 +0.92 G8	+0.05 A2	BI	+0.10 A3	B3 B3	-0.22 B2	82 82	-0.23: B2.5
Dec. V B-V	0.00 A0	36 2.59v -0.11: B2 30 3.00 +1.33 K3	-0.23 B2 +0.07 A3 -0.10 B8	59 1.39 -0.25 B0.5 59 1.86 -0.25 B1	24 2.97 -0.04 00 1.69 +1.55	17 2.66 +0.89 G5	51 2.17 +0.00 A0	20 2.76 +0.34 00 3.06 -0.17:	35 1.28v -0.25 04 1.79v -0.03	26 2.90v -0.10 B9.5	05 2.83 +0.93 G9 04 2.98 +0.92 G8	36 2.76 +0.05 A2	03 0.91v -0.24 B1	30 3.37 +0.10 A3	25 2.33v -0.23 BI 25 1.87 -0.20 B3	35 3.42 -0.22 B2	3.12v -0.13: B2 7.60 ±0.50 G0	12 2.56 -0.23: B2.5
V B-V	, 49 2.44 0.00 A0	3 - 50 36 2.59v -0.11: B2 1 - 22 30 3.00 +1.33 K3	38 2.81v -0.23 B2 09 3.30 +0.07 A3 25 2.59 -0.10 B8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 -4851 2.17 +0.00 A0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 - 59 35 1.28v - 0.25 2 + 56 04 1.79v - 0.03	55.1 + 38 26 2.90v -0.10 B9.5	05 2.83 +0.93 G9 04 2.98 +0.92 G8	5 - 36 36 2.76 + 0.05 A2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 -00 30 3.37 +0.10 A3	$\begin{vmatrix} 0 \\ 8 \\ +49 \\ 25 \\ 1.87 \\ -0.20 \\ B3 \\ B3 \\ -0.20 \\ B3 \\ B3 \\ -0.20 \\ B3 \\ -0.20 \\ B3 \\ -0.20 \\ B3 \\ -0.20$	3 -41 35 3.42 -0.22 B2	4 -42 23 3.12v -0.13; B2 8 +18 30 5 60 +0 50 G0	3 -47 12 2.56 -0.23: B2.5
1980 Dec. V B-V	$ \begin{array}{c c} m & \circ & \cdot \\ 52.7 & +53 & 49 & 2.44 & 0.00 & A0 \end{array} $	07.3 -50 36 2.59v -0.11: B2 09.1 -22 30 3.00 +1.33 K3	1 -58 38 2.81v -0.23 B2 4 +57 09 3.30 +0.07 A3 8 -17 25 2.559 -0.10 B8	A 25.4 -62 59 1.39 -0.25 B0.5 B 25.4 -62 59 1.86 -0.25 B1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33.3 -23 17 2.66 +0.89 G5 36.0 -60.01 2 700 -0 20 B2	40.5 -48 51 2.17 +0.00 A0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	46.6 - 59 35 1.28v - 0.25 53.2 + 56 04 1.79v - 0.03	4 55.1 + 38 26 2.90v - 0.10 B9.5	13 01.2 +11 05 2.83 +0.93 G9 17.8 -23 04 2.98 +0.92 G8	19.5 - 36 36 2.76 + 0.05 A2	24.1 + 75 02 2.20 + 0.02 A2 24.1 - 11 03 0.91v - 0.24 B1	33.7 -00 30 3.37 +0.10 A3	$\begin{vmatrix} 0 \\ 8 \\ +49 \\ 25 \\ 1.87 \\ -0.20 \\ B3 \\ B3 \\ -0.20 \\ B3 \\ B3 \\ -0.20 \\ B3 \\ -0.20 \\ B3 \\ -0.20 \\ B3 \\ -0.20$	48.3 -41 35 3.42 -0.22 B2	53.8 + 18 30 2 60 + 0.13: B2	54.3 -47 12 2.56 -0.23; B2.5

Dschubba	A 3.4/" B /./0" IS	+ - 24	0.042	200	-4.0				-0.13	2.34 2.34	-22 34	59.2	§ Sco
		-03	0.034	570	- - 	0.005			-0.19		-26 04	57.6	Sco
		-00.3	0.448	-4	+1.0	0.078			+0.28		-63 22	53.4	
Alphecca	Ecl. R 0.11 ^m , 17.4 ^d	+01.7	0.154	12	+0.4	0.043			-0.02 +1		+ 26 47	33.8	
	A 3.5 ^m B 3.7 ^m 1''	+ 06	0.037	570	-2.7				-0.22		-41 06	33.8	
		-03.9	0.026	270 102	+0.8	005 0.032			+0.06 +1.18	3.28 3.28	+71 54 +59 02	20.8	γ UMi ι Dra
	β CMa var., 0.165 ^d	86 + 1	0.032	680		000.0			-0.23		-40 34	20.1	
	Europium star	- 35.2	0.101	140	+0.0 +0.0	0.012			10.0+	2.61	- 09 18 - 68 36	12.9	β Lib Υ TrA
	B 7.84 ^m 105''	- 12.2	0.148	<u>5</u>	+0.3	0.028			+0.95		+ 33 24	14.7	
		- 19.9 - 04.3	0.059 0.089	64 88 88	+ 0.3	0.022	ΞΞE	8 <u>7</u> 8	+0.95	3.48	+40 28	15 01.2 02.9 10 8	β Boo σ Lib ۲ Lin 4
		-00.3 + 09.1	0.066	540 470	-3.4		<u>></u> >	B2 B2	-0.23 -0.21		-43 03 -42 01	57.3 57.8	dru k Cen 139
Zubenelgenubi Kachah	B 5.15 ^m 231''	+ 16.9	0.130	99 105	+1.2 -0.5	0.049	III	A3m K4	+0.15 +1.47		-15 54 +74 14	49.8 50.8	α Lib A β UMi
9m B 8.61m 16''	Strontium star. A 3.19 ^m B 8.61 ^m 16''	+07.4	0.308		+1.6		A8p K1: III:+A	A8r K1	+0.25+0.96		-64 53 +27 09	46.9 1.45	α Cir AB ε Boo AB
Rigil Kentaurus	22" BCM2 0.766	-20.7	3.676	430	+ 5.8	اد۲. ح	·>>	B1 B1	+0.73: -0.22	1.40: 2.32v	-60 46 -47 19	38.4 40.7	α Cen B α Lup
	Var, R 2.33–2.45	-00.2	0.049		-3.0 ±4.30	C	5 V:ne V		+0.21		- 42 04 - 60 46	34.2	
Arcturus		-05.2	2.284 0.186	36 118	-0.3 +0.2	0.090			+1.23 +0.19	1	+13 24	31.3	
N		+2/.7	0.738	\$ S	+0.0+	0.059			+1.03		-36 17	05.5	θ Cen « Boo
CMa var. Hadar	A 0.7 ^m B 3.9 ^m 1'', β CMa var.	km/s - 12	0.035	1.y.	-5.2	0.016	III	<u> </u>	-0.23:	0.63v 3.25	-60 16 -26 35	14 02.4 05.3	$\begin{array}{c} \beta \ {\rm Cen} \ AB \\ \pi \ {\rm Hya} \end{array}$
		R	ㅋ	٩	M_{ν}	Ħ	Type		B-V	~	980 Dec.	<u>.</u>	Star

	n 14'' B 8.49m 20''	44710		Sabik Ras-Algethi	Shaula Rasalhague
	km/s -01.0 -19.9 -19.9 -10.3 +02.5 BCMa R 2.82-2.90, 0.25 ^d , B 8.49 ^m 20'' -14.3 B 8.7 ^m 6'' -0.3 4 0 86 ^m 1 05 ^m R 5 07 ^m 3'' 4 m/2000	A 2.91ª B 5,46ª 1''	Ecl. R 2.99–3.09, 1.4ª	A 3.0 ^m B 3.4 ^m 1'' A 3.2 ^m ± 0.3 B 5.4 ^m 5'' β CMa var., 0.14 ^d B 10 ^m 18''	B 11.49 ^m 4΄΄ β CMa var., 0.21 ^d
R	km/s - 01:0 - 19:9 - 19:3 - 14:3 - 14:3 - 03 - 03 - 03 - 03 - 03 - 03 - 03 - 0		-02.5 -25.6 -06.0		+02 -02 +12.7 +01.4
=	× 0.027 0.156 0.089 0.089 0.062 0.062	0.105 0.030 0.030 0.008 0.097 0.097	0.664 0.033 0.293 0.042	0.026 0.097 0.293 0.032 0.032 0.025 0.025 0.017	0.019 0.083 0.031 0.260 0.012
Q	1.y. 650 570 570 570 570	750 520 820 820 820 820 820 820 820 820 820 8	520 150 90	620 69 69 710 680 680 680 680 680	310 310 310 58 650
M	- $ -$	+ + + + + + + + + + + + + + + + + + +	+0.7 +0.1 +0.1 +0.9	+ + +	-2.1 -2.1 -3.3 -4.6
Ħ	,, 0.004 0.029 0.036 0.043	0.017 0.017 0.110 0.053 0.053	0.049 0.026 0.036	$\begin{array}{c} 0.017\\ 0.047\\ 0.063\\007\\ 0.034\\ 0.026\\ 0.026\\ \end{array}$	0.009 0.056 0.020
Type	B0.5 V M1 III G9 III G8 III M1 S1ab	0.92 G8 HB2.5V 0.25 B0 V 0.000 09.5 V0 0.64 G0 HV 0.10 1.43 K2 HP1 0.0	K2 IIb BI.5 IV+B K2 III K4 III	REALS HEARING AND	
B-V	-0.09 +1.59 +0.97 +10.92 +1.82	+0.92 +0.02 +0.00 +1.43	+1.16 -0.20 +1.15 +1.61		+0.96 -0.18: -0.24 +0.16 +0.39
V	2.65 2.72 3.22 2.86v 2.71		2.28 2.99v 3.18 3.12	2.20 2.33 2.30 2.30 2.30 2.31 2.30 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31	2.95 2.95 1.60v 1.86
980 Dec.	° (19 45 - 19 45 - 03 37 - 04 39 - 04 39 + 61 33 - 26 23	+21 -28 10 -28 10 -10 31 -10 31 -10 31 -10 31 -68 60 60	-34 16 -38 01 +09 25 -55 57		+52 20 -49 52 -37 05 -42 35
R.A. 198	h m 16 04.3 13.3 17.2 20.0 23.7 28.2	29.3 34.6 40.6 46.5	48.8 50.5 56.9 56.9	17 08.7 10.7 10.7 14.2 14.3 23.6 23.6 29.4	29.9 30.3 32.3 34.0 35.9
Star	β Sco AB δ Oph ε Oph σ Sco A η Dra A α Sco A	-	cos cos δ 2 Ara 140	C Dra η Oph AB η Sco α Her AB δ Her π Her π Her π Her α AB δ Ara δ Ara δ Oph β Ara V Sco V Sco V Sco	

	Eltanin	Kaus Australis	Vega 7.8 ^m 46'' Nunki		Albireo Altair
	β CMa var., 0.20 ^d BC 9.78 ^m 33''	B 10m 4″	Ecl. R 3.38–4.36, 12.9 ^d , B 7.8 ^m 46''	A 3.3 ^m B 3.5 ^m < 1'' B 12 ^m 5'' A 3.7 ^m B 3.8 ^m C 6.0 ^m < 1''	B 5.11 ^m 35'' A 2.91 ^m B 6.44 ^m 2''
×	km/s - 12.0 - 15.6 - 15.6 + 24.7 + 12.4	+22.1 +00.5 +00.5 +08.9 -11	-43.3 -13.9 +21.5 -17.8 -11 -19.9 -21.5	+22 +26.3 +45.4 +24.8	-29.9 -24.0 -21 -02.1 -26.3
п	× 0.031 0.160 0.811 0.004 0.026 0.118	0.200 0.218 0.050 0.894 0.135	0.194 0.345 0.052 0.007 0.035 0.035	0.020 0.101 0.092 0.261 0.040 0.130	0.267 0.009 0.060 0.012 0.012
D	1.y. 124 124 102 103 103 103 103 103		71 26.5 300 370 370	140 160 86 124 124	41
$M_{\boldsymbol{\nu}}$	-3.4 +3.6 +3.6 +0.1 +0.7 +0.7 +0.2	+ 0.1 + + 0.1 + + 0.1 + - 1.0 + - 1.	+1.1 + 0.5 + 4.6 + 2.7 - 2.7	+0.1 +0.8 +0.1 +0.1 +0.2 +0.2	+ 1 - 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +
н	" 0.023 0.108 0.013 0.017 0.017	0.018 0.038 0.039 0.054 0.015	0.046 0.123 011 0.006 0.011	0.020 0.036 0.038 0.016 0.016	0.062 0.004 0.021 0.006 0.198
Type	BELS BELS CS CS CS CS CS CS CS CS CS CS CS CS CS	K0 III M3 III K2.5 IIIa B9.5 III		A3 IV A0 V:m B9 V:n K1.5 II F2 II-III G9 III	0 IV 3 II:+B: 9.5 III 3 IV-V
B-V	-0.21 B +0.75 G +1.16 K +1.16 K +1.18 K +1.18 K +1.00 G		+1.05 +1.05 +1.05 +1.18 +1.18 +1.18 +1.18 +1.18 +1.18 +1.05	++0.08 ++0.01 ++1.18 Ff Ff Ff Ff Ff Ff Ff Ff Ff Ff Ff Ff Ff	
7	2.39v 3.21 3.21 3.32		2.80 3.22 3.38v 3.51 3.51 3.51	2.89 3.30 3.06	
1980 Dec.	- 39 01 + 27 45 + 27 45 - 40 06 - 37 02 - 09 47	-30 26 -36 47 -29 50 -02 54 -34 24	+33 + 525	29 54 +13 50 04 55 -27 42 +67 38	
R.A. 19	h II 41.1 17 41.1 42.5 45.7 46.2 58.0 58.0	18 04.5 16.3 19.7 20.2 22.9	26.7 26.7 26.7 26.7 26.7 26.7 26.7 26.7	19 01.3 04.5 05.2 05.7 08.6 12.5	24.5 29.9 45.3 49.8
Star	k Sco β Oph ι' Her A G Sco γ Dra v Oph	×rs SS SS SS SS SS SS SS SS SS SS SS SS SS	××× φ α Γ α β Γ α	ζ Sgr AB ζ Aql A λ Aql τ Sgr π Sgr δ Dra	

	■ 205′′ Peacock Deneb	Alderamin Enif	Al Na'ir)¤ 41'' Fomalhaur	Scheat Markab
	Type gK0: + late B; <i>B</i> 5.97 ^m 205'' <i>Pea</i>	β CMa R 3.14–3.16, 0.19⁴ B 11ª 82″ Var. R 2.88–2.95	+07.5 +11.8 -18.4 +22.2 -16.8 Cep. R3.51-4.42, 5.4 ^d , B6.19 ^m 41'' +07 +01.6 Var. R2.11-2.23 +18.0 +06.5 +06.5	+08.7 -03.5 -42.4
R	km/s - 27.3 - 127.3 - 07.5 + 02.0 + 02.0 + 09.8 + 09.8 - 10.3	$\begin{array}{c} +17.4 \\ -10 \\ -03.1 \\ +06.5 \\ +04.7 \\ -00.2 \\ -02.1 \end{array}$	+07.5 +11.8 +11.8 +28.4 +07.8 +01.6 +18.0 +06.5	+08.7 -03.5 -42.4
ц	<pre>// 0.034 0.034 0.039 0.087 0.087 0.082 0.046 0.825 0.481</pre>	$\begin{array}{c} 0.056\\ 0.156\\ 0.014\\ 0.017\\ 0.025\\ 0.392\\ 0.102\end{array}$	0.016 0.194 0.015 0.015 0.077 0.077 0.077 0.027 0.047 0.367	0.234 0.071 0.168
D	1.y. 330 130 750 310 84 1600 160 160	390 52 980 1030 780 50 540	1080 1240 1362 1362 280 360 84 22.6	210 109 51
$M_{\mathbf{F}}$	-1.7 +0.1 +2.9 +2.9 +2.9 +2.7 +0.1	+ + + + 2 	++++++++++++++++++++++++++++++++++++++	-1.5 -0.1 +2.2
Ħ	0.008 0.005 0.039 0.039 0.071 0.044	$\begin{array}{c} 0.021\\ 0.063\\ 0.005\\ 0.005\\ 0.008\\ 0.008\end{array}$	0.003 0.019 0.019 0.019 0.005 0.003 0.003 0.039	0.015 0.030 0.064
Type	B9.5 III K2III+A5:V F8 Ib B2.5 V K0III CN-1 A2 Ia A2 Ia K0 II K0 III	G8 II A7 IV-V B2 III G0 Ib K2 Ib A6m III B8 III	G2 Ib B7 IV K1 Ib K4 II F5-G2 Ib B8 V M3 II: + F? A3 V	M2 II-III B9.5 III K1 IV
B^{-V}	$\begin{array}{c} -0.07\\ -0.07\\ +0.66\\ -0.20\\ +10.09\\ +10.09\\ +11.03\\ \end{array}$	$^{++1.00}_{-0.22}$	+0.96 -0.14 +1.59 +0.66v -0.08i +0.08i +0.08i	$^{+1.67}_{-0.03}$
Δ	3.24 3.24 3.11 3.11 3.45 3.45 2.46	3.19 3.15v 2.86v 3.00 3.00	2.93 1.76 3.96v 3.96v 2.17v 2.17v 2.95 1.15	2.5 v 3.20
1980 Dec.	 -00 52 -14 51 -56 48 -47 21 +61 45 +61 45 +33 33 	$\begin{array}{c} + 30 & 08 \\ + 62 & 31 \\ + 70 & 28 \\ - 05 & 40 \\ - 16 & 13 \\ - 16 & 13 \\ - 37 & 27 \\ \end{array}$	00 	+27 58 +15 05 +77 30
R.A. 19	h 20 10.3 21.5 21.5 24.1 44.9 45.4	21 12.1 18.2 28.4 30.5 45.9 52.7 52.7	22 04.7 10.1 17.1 28.5 40.5 53.6 53.6 56.5	23 02.8 03.8 38.5
Star	θ Aqi β Cap A α Fav α Cyg α Cyg β Pav η Cep α Cyg β Pav	C Cyg β Cep β Agr δ Cep β Agr γ Gru γ Gru	a Agr c Agr c Cep c Cep c Cep f Cep d Gru s Agr s Agr s PsA	β Peg α Peg γ Cep

≵

THE NEAREST STARS

BY ALAN H. BATTEN

The accompanying table lists all the stars known to be within a distance of just over 5 parsecs (or 17 light-years) from the Sun. The table is based on the list published by Prof. P. van de Kamp in the 1971 edition of Annual Reviews of Astronomy and Astrophysics, but has been further revised at his suggestion. There are five systems in this Table not listed by van de Kamp: two (L725-32 and B.D. 44°2051) have been included for several years now, the other three (G51-15, G208-44 and 45, and G9-38A and B) are all objects for which parallaxes have recently been determined with the 155 cm astrometric reflector of the U.S. Naval Observatory in Flagstaff, Arizona. One disadvantage of updating the list in this way is that it loses some of the homogeneity of van de Kamp's original. As more refined values of the parallaxes become available, the order of some of the stars in the list is likely to be changed, and some now included may be excluded. In particular, the last system in the list, G9-38, is just beyond the limit of 17 light-years. It has been included because it is an interesting system and an example of some of the surprises that may still be in store for us as faint nearby stars are examined with the powerful astrometric reflector. Moreover, its right to inclusion is no more in doubt than those of some other systems, notably Stein 2051 and B.D. 44°2051, above it in the list. Readers who have earlier issues of the HANDBOOK will notice that some stars are now designated by their numbers in familiar catalogues such as the B.D. instead of by older and little used designations. There should be no difficulty in identifying the stars under their new names.

Successive columns of the table give the name of each star, its position for 1980, its annual parallax π , its distance in light years, its spectral type, its proper motion in seconds of arc per year (that is its apparent motion across the sky-nearby stars usually have large proper motions), its total space velocity W in km/s when known, its apparent magnitude V, and its absolute visual magnitude M_{ν} . Spectral types have not yet been determined for the newest stars in the list: all of those stars are very red and they will probably be found to be of type M. Luminosity classes have not been given because all the stars are dwarfs or fainter. An e after the spectral type indicates that emission lines are visible in the spectrum; the prefix wd indicates a white dwarf or analogous object. Apparent magnitudes given to two decimals are photoelectric V magnitudes. Those given to one decimal are the best available visual magnitudes. The magnitudes of stars known to be variable are bracketed. A major change from earlier versions of the table is the substitution of the stars' absolute visual magnitudes for their luminosities relative to the Sun. To convert the new quantities to the old, one would have to take into account the bolometric corrections—poorly determined for very red stars—and convert the magnitudes to intensity ratios. The brightest star in the list, Sirius A, is about 23 times the Sun's luminosity, and the faintest, Wolf 359, is about 50,000 times less luminous than the Sun. Data like proper motion and space velocity are not given separately for the components of multiple systems, unless each component has a somewhat different motion. The space velocities and many of the magnitudes have been taken from Gliese's Catalogue of Nearby Stars, and differ somewhat from the figures published in earlier years.

Measuring the distances of stars is one of the most difficult and important jobs of an observational astronomer. As the Earth travels around the Sun each year, the positions of the nearer stars, against the background of the more distant ones, changes very slightly. This change is called *annual parallax*, and even for the nearest star to the Sun it is less than the apparent size of a penny at about 4 km distance. Ultimately all our knowledge of distances in the universe depends on our being able to measure these tiny apparent displacements accurately, for a relatively small sample of nearby stars. A graphic way of conveying the immense distances of stars is to express them in *light-years*. One light-year, about ten million million km, is the distance light travels in one year. The more useful technical unit is a *parsec*—the distance at which a star would have an annual parallax of one second of arc. One parsec is equal to about 3.26 light years. The distance of a star in parsecs is simply the reciprocal of its annual parallax expressed (as in the table) in seconds of arc.

⁷The list contains 68 stars. Of these, 34 are single (including the Sun, whose planets are not counted); 28 are found in 14 double systems (including the pair G208-44 and 45), and 6 are found in 2 triple systems. In addition, there is some evidence for unseen companions, that might be intermediate in mass between stars and planets, associated with seven of these stars. Not all astronomers are agreed, however, on the strength of this evidence. Note how nearly all the stars in the list are very faint cool stars of low mass. Highly luminous stars are very rare, and no giants or very hot massive stars are to be found in the solar neighbourhood.

	· · · · · ·		1			r		T	T
	1	980			· ·				Ì
Name	α	δ	π	D	Sp.	μ	W	v	M_{ν}
<u> </u>	h m	• /	"	1.y.		"	km/s		
Sun		<i>(</i>) <i>(</i>)	0.740		G2	2.60	22	-26.72	+4.85
α Cen A B	14 38	-60 46	0.760	4.3	G2 K4	3.68	32	-0.01	5.73
Č	14 28	-62 36			M5e	3.85	29	11.05	15.45
Barnard's*	17 56	+04 36	.552	5.9	M5	10.61	140	9.54	13.25
Wolf 359	10 56 11 03	+07 10 +36 07	.431	7.6	M8e M2e	4.71 4.78	54 102	13.53 7.50	16.70
BD+36°2147* Sirius A	11 03	-16 42	.402	8.6	A1	1.33	102	-1.46	1.42
B		10 12			wdA			8.7	11.6
Luy 726-8A	1 37	-18 04	.365	8.9	M5e	3.36	52 54	12.5 (13.0)	15.3 (15.8)
B Ross 154	18 49	-23 50	.345	9.4	M5e M5e	0.72	11	10.6	13.3
Ross 248	23 40	+44 04	.317	10.3	M6e	1.58	84	12.29	14.80
e Eri	3 32	-09 32	.305	10.7	K2e	0.98	23	3.73	6.15
Luy 789–6	22 38	-15 28 +00 58	.302	10.8	M7e M5	3.26	79 25	12.18 11.10	14.58
Ross 128 61 Cyg A	21 06	+38 38	.292	11.2	K5e	5.22	105	5.22	7.55
B*					K7e			6.03	8.36
e Ind	22 03	-56 52	.291	11.2	K8e	4.69	86	4.68 0.37	7.00
Procyon A B	7 39	+05 17	.287	11.4	F5 wdF	1.25	21	10.7	12.99
Σ 2398 A	18 42	+59 36	.284	11.5	M4	2.28	39	8.90	11.17
В					M5			9.69	11.96
BD+43°44A	0 18	+43 54	.282	11.6	M1e M6e	2.89	50 53	8.07 11.04	10.32
B CD-36°15693	23 05	-35 59	.279	11.7	M2e	6.90	118	7.36	9.59
τ Ceti	1 43	-16 03	.273	11.9	G8p	1.92	36	3.50	5.68
G51-15	8 29	+26 51	.273	12.0	146	0.42	71	14.81 9.82	16.99 11.94
BD+5°1668*	7 27	+05 27 -17 06	.266	12.2 12.5	M5 M5e	3.73	52	9.82	13.7
Luy 725-32 CD-39°14192	21 16	-38 58	.260	12.6	MOe	3.46	67	6.67	8.75
Kapteyn's	5 11	-44 59	.256	12.7	MO	8.89	293	8.81	10.85
Krüger 60A B	22 27	+57 36	.254	12.8	M3 M4.5e	0.86	30	9.85 (11.3)	11.87 (13.3)
Ross 614A	6 28	-02 48	.249	13.1	M7e	0.99	30	11.07	13.05
В								14.8	16.8
BD-12°4523	16 30	-12 36	.249	13.1	M5	1.18 2.95	26 59	10.12 12.37	12.10
van Maanen's Wolf 424A	0 48	+05 19	.234	13.9	<i>wd</i> G M6e	1.75	37	12.57	14.22
B	12 55			1	M6e			13.4	15.2
G158-27	0 06	-07 38	.226	14.4		2.06	1.00	13.73	15.50 10.39
CD-37°15492 BD+50°1725	0 04	$\begin{vmatrix} -37 & 27 \\ +49 & 33 \end{vmatrix}$.225	14.5	M4 K7e	6.08 1.45	130 40	8.63 6.59	8.27
$CD = 46^{\circ}11540$	17 28	-46 53	.216	15.1	M4	1.13	10	9.36	11.03
CD-46°11540 CD-49°13515	21 32	-49 11	.214	15.2	M 1	0.81	20	8.67	10.32
CD-44°11909* G208-44	17 37 19 53	-44 17 +44 21	.213	15.3	M5	1.16 0.75		11.2 13.41	12.8 15.05
Luy 1159–16	19 55	+13 00	.213	15.4	M8e	2.08		12.27	13.90
BD+15°2620	13 44	+15 01	.208	15.7	M4e	2.30	56	8.50	10.09
G208–45	19 53	+44 21	.207	15.8	M5	0.63	36	13.99 9.15	15.57
BD+68°946 Luy 145–141	17 37	$+68 22 \\ -64 42$.207 .206	15.8 15.9	M4 wd	1.33 2.68	30	9.13	13.01
$BD - 15^{\circ}6290$	22 52	-14 22	.200	15.9	M5	1.16	28	10.17	11.74
o ² Eri A	4 14	-07 41	.205	15.9	K1e	4.08	104	4.43	5.99
B C					wdA M4e			9.53 11.17	11.09 12.73
BD+20°2465*	10 19	+19 58	.202	16.1	M4e	0.49	16	9.43	10.96
BD+44°2051A	11 05	+43 36	.199	16.4	M2e	4.40	132	8.77	10.26
В	10 40	+08 49	.196	166	M8e A7	0.66	31	(14.5) 0.76	(16.0) 2.22
Altair* 70 Oph A	19 49 18 05	+08 49 +02 31	.196	16.6 16.7	K0e	1.13	28	4.22	5.67
ъв	10 05				K5e			6.0	7.5
AC+79°3888	11 46	+78 47	.194	16.8	M4	0.89	121	10.9	12.3 11.6
BD+43°4305* Stein 2051A	22 46	+44 14 +58 57	.193	16.9	M5e M4	0.83	20	10.2 11.09	11.6
B	- 50	1 50 57	.152	1	wd	,		12.44	13.86
G9-38A	8 57	+19 51	.190	17.2		0.89		14.06	15.45
В						0.79		14.92	16.31
	-								

*Suspected unseen companion.

₩

DOUBLE AND MULTIPLE STARS By Charles E. Worley

Many stars can be separated into two or more components by use of a telescope. The larger the aperture of the telescope, the closer the stars which can be separated under good seeing conditions. With telescopes of moderate size and good optical quality, and for stars which are not unduly faint or of large magnitude difference, the minimum angular separation in seconds of arc is given by 120/D, where D is the diameter of the telescope's objective in millimetres.

The following lists contain some interesting examples of double stars. The first list presents pairs whose orbital motions are very slow. Consequently, their angular separations remain relatively fixed and these pairs are suitable for testing the performance of small telescopes. In the second list are pairs of more general interest, including a number of binaries of short period for which the position angles and separations are changing rapidly.

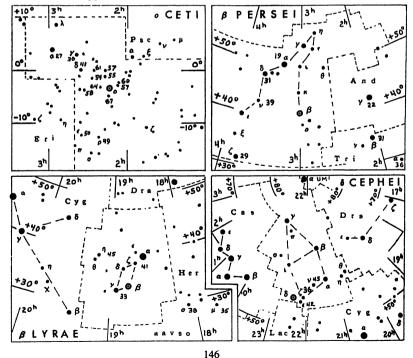
In both lists the columns give, successively: the star designation in two forms; its right ascension and declination for 1980; the combined visual magnitude of the pair and the individual magnitudes; the apparent separation and position angle for 1983.0; and the period, if known. (The position angle is the angular direction of the fainter star from the brighter, measured counterclockwise from north.)

Many of the components are themselves very close visual or spectroscopic binaries. (Other double stars appear in the tables of Nearest Stars and Brightest Stars. For more information about observing these stars, see the articles by: J. Ashbrook in *Sky and Telescope*, **60**, 379 (1980); J. Meeus in *Sky and Telescope*, **41**, 21 and 89 (1971); and by C. E. Worley in *Sky and Telescope*, **22**, 73, 140 and 261 (1961). The latter two articles have been reprinted by Sky Publishing Corp., 49 Bay State Road, Cambridge, Mass. 02238 under the titles *Some Bright Visual Binary Stars* and *Visual Observing of Double Stars*, each \$1.95 U.S.—Ed.)

			R.A. Dec. 1980.0			Ma	gnitudes		P.A.	Sep. 83.0	P (app.)	
	Star	A.D.S.	h	m	•	'	comb.	A	В	0	"	years
λ	Cas	434	00	30.7	+54	26	4.9	5.5	5.8	184	0.6	640
α	Psc	1615	02	01.0 30.2	+02 +03	40	4.0	4.3	5.3 7.3	279	1.7 1.8	720
33 ΟΣ	Ori	4123 5447	05	30.2 46.3	+03 $+18$	16 13	5.7 6.1	6.0 6.8	7.0	239	0.5	1100
	156 1338	7307	00	40.5	+18 + 38	17	5.8	6.5	6.7	259	1.1	400
25	Com	8695	12	52.3	+38+21	21	5.1*	5.2	7.4	166	1.1	500
Σ 35 Σ ε ¹ ε ²	2054	10052	16	23.6	+61	44	5.6	6.0	7.2	355	1.1	500
21	Lyr†	11635	18	43.7	+39	38	5.1	5.4	6.5	355	2.7	1200
2 ²	Lyr†	11635	18	43.7	+39	38	4.4	5.1	5.3	83	2.3	600
π	Aql	12962	19	47.7	+11	45	5.6	6.0	6.8	110	1.4	_
6 1	Cyg	14636	21	05.5	+38	34	4.8	5.2	6.0	146	29.4	722
ÖΣ	500	16877	23	36.5	+44	20	5.9	6.4	7.1	355	0.5	-
η	Cas	671	00	47.7	+57	44	3.5*	3.5	7.2	309	12.1	480
Ϋ́Σ	186	1538	01	54.8	+01	45	6.0	6.8	6.8	55	1.4	170
γ	And AB	1630	02	02.4	+42	16	2.1*	2.1	5.1	64	9.8	-
γ ΟΣ	And BC	1630	02	02.4	+42	16	5.1	5.5	6.3	108	0.6	61
	65	2799	03	49.2	+25	32	5.2	5.8	6.2	208	0.6	62
α	CMa	5423	06	44.3	-16	40	-1.4	-1.4	8.5	41	9.2	50
α	Gem	6175	07	33.3	+31	55	1.6	2.0	2.8	87	2.4	420
ç	Cnc AB	6650 6650	08	$11.1 \\ 11.1$	+17 +17	43 43	5.0 5.2	5.6 5.4	5.9 7.3	257 80	0.7 5.9	60 1150
ζ ζ σ²	Cnc AC	7203	08	08.6	+67	43 13	3.2 4.8*	5.4 4.8	8.2		3.3	1100
	UMa Leo	7203	10	18.9	+19	57	1.8	4.8	8.2 3.4	123	3.3 4.3	620
γ ξ	UMa	8119		17.1	+31	39	3.8	4.3	4.8	97	2.6	60
S	Vir	8630	12	40.7	-01	21	2.8	3.5	3.5	294	3.7	170
ፖርሔሪ	Boo	9343	14	40.1	+13	49	3.8	4.5	4.5	304	1.1	125
ž	Boo	9413	14	50.4	+19	12	4.5	4.7	6.8	331	7.2	150
ł	Her	10157	16	40.6	+31	38	2.8	2.9	5.5	122	1.4	35
τ	Oph	11005	18	01.9	-08	11	4.7	5.2	5.9	278	1.8	280
70	Oph	11046	18	04.5	+02	32	4.0	4.2	6.0	302	2.3	88
δ	Cyg	12880	19	44.4	+45	04	2.9*	2.9	6.3	232	2.4	830
4	Aqr	14360	20	50.4	-05	53	6.0	6.4	7.2	11	0.9	150
τ	Cýg	14787	21	13.9	+37	57	3.7	3.8	6.4	123	0.7	50
μ	Cyg	15270	21	43.2	+28	39	4.5	4.8	6.1	300	1.7	500
ቷ ረጉ	Aqr	15971	22	27.8	-00	08	3.6	4.3	4.5	220	1.8	850
Σ	3050	17149	23	58.5	+33	37	5.8	6.5	6.7	313	1.6	350

*There is a marked colour difference between the components.

[†]The separation of the two pairs of ϵ Lyr is 208".


VARIABLE STARS

By JANET MATTEI

Variable stars provide information about many stellar properties. Depending upon their type, variables can tell the mass, radius, temperature, luminosity, internal and external structure, composition, and the evolution of stars. The systematic observation of variable stars is an area in which an amateur astronomer can make a significant contribution to astronomy. For a beginning observer, maps of an interesting variable, Z Ursae Majoris, and the steps involved in observing variable stars are summarized on pages 149–151. Additional maps of four other bright variables of different types are given below.

On the next page are two tables. The first is a list of long-period variables and has been prepared by the American Association of Variable Star Observers. It includes variables with maxima brighter than magnitude 8.0, and north of declination -20° . The second table contains stars which are representative of other types of variables.

In the tables the first column, the Harvard designation of the star, gives the 1900 position: the first four figures give the hours and minutes of R.A., the last two figures give the Dec. in degrees, italicised for southern declinations. The column headed *Max.* gives the mean maximum magnitude. The *Period* is in days. The *Epoch* gives the predicted date of the *earliest* maximum occurring this year; by adding the period to this epoch other dates of maximum may be found. The long-period variables may reach maximum two or three weeks before or after the listed epoch and may remain at maximum for several weeks. The data in the second table are taken from the third edition and the *Second Supplement* of the third edition of "*The General Catalogue of Variable Stars*" by Kukarkin and Parenago and for the eclipsing binaries and RR Lyrae variables from *Rocznik Astronomiczny Obserwatorium Krakowskiego 1982*, *International Supplement*.

Epoch 1983 Aug. 7 Mar. 12 Jan. 1
1983 Aug. 7 Mar. 12 Jan. 1
Mar. 12 Jan. 1
Mar. 12 Jan. 1
Jan. 1
A
Aug. 12
July 4
Feb. 18
Feb. 28
Feb. 16
July 3
Jan. 21
July 3
Mar. 15
May 15
May 20
Mar. 14
Apr. 25
Dec. 3
June 17
Apr. 21
Jan. 15
Apr. 14
May 29
Feb. 6
Jan. 21
Mar. 12
Apr. 11
June 29
Oct. 22
Apr. 15
—
Nov. 28

LONG-PERIOD VARIABLE STARS

OTHER TYPES OF VARIABLE STARS

Va	riable	Max. m _v	Min. m _v	Туре	Sp. Cl.	Period d	Epoch 1983 U.T.
005381	U Cep	6.7	9.8	Ecl.	B8+gG2	2.49307	Jan. 2.39*
025838	ρ Per	3.3	4.0	Semi R	M4	33-55, 1100	
030140	β Per	2.1	3.3	Ecl.	B8+G	2.86731	
035512	λTau	3.5	4.0	Ecl.	B3	3.952952	Jan. 4.69*
060822	η Gem	3.1	3.9	Semi R	M3	233.4	
061907	T Mon	5.6	6.6	δ Cep	F7-K1	27.0205	Jan. 16.58
065820	ζ Gem	3.6	4.2	δCep	F7-G3	10.15082	Jan. 4.41
154428	R Cr B	5.8	14.8	R Cr B	cFpep		
171014	α Her	3.0	4.0	Semi R	M5	50-130, 6 yrs.	
184205	R Sct	5.0	7.0	RVTau	G0e-K0p	144	
184633	βLyr	3.4	4.3	Ecl.	B8 -	12.93538	Jan. 7.89*
192242	RR Lyr	6.9	8.0	RR Lyr	A2–F1	0.566867	Jan. 1.50
194700	η Aql	3.5	4.3	δ Cep	F6-G4	7.176641	Jan. 8.02
222557	δ Сер	3.5	4.4	δ Cep	F5-G2	5.366341	Jan. 3.25

*Minimum.

BRIEF DESCRIPTION OF VARIABLE TYPES

Variable stars are divided into four main classes: Pulsating and eruptive variables where variability is intrinsic due to physical changes in the star or stellar system; eclipsing binary and rotating stars where variability is extrinsic due to an eclipse of one star by another or the effect of stellar rotation. A brief and general description about the major types in each class is given below.

I. Pulsating Variables

Cepheids: Variables that pulsate with periods from 1 to 70 days. They have high luminosity and the amplitude of light variation ranges from 0.1 to 2 magnitudes. The prototypes of the group are located in open clusters and obey the well known period-luminosity relation. They are of F spectral class at maximum and G to K at minimum. The later the spectral class of a Cepheid the longer is its period. Typical representative: δ Cephei.

 $R\bar{R}$ Lyrae Type: Pulsating, giant variables with periods ranging from 0.05 to 1.2 days with amplitude of light variation between 1 and 2 magnitudes. They are usually of A spectral class. Typical representative: RR Lyrae.

 $\bar{R}V$ Tauri Type: Supergiant variables with characteristic light curve of alternating deep and shallow minima. The periods, defined as the interval between two deep minima, range from 30 to 150 days. The amplitude of light variation may be as much as 3 magnitudes. Many show long term cyclic variation of 500 to 9000 days. Generally the spectral classes range from G to K. Typical representative: R Scuti.

Long period—Mira Ceti variables: Giant variables that vary with amplitudes from 2.5 to 5 magnitudes or more. They have well defined periodicity, ranging from 80 to 1000 days. They show characteristic emission spectra of late spectral classes of M, C, and S. Typical representative: o Ceti (Mira).

Semiregular Variables: Giants and supergiants showing appreciable periodicity accompanied by intervals of irregularities of light variation. The periods range from 30 to 1000 days with amplitudes not more than 1 to 2 magnitudes in general. Typical representative: R Ursae Minoris.

Irregular Variables: Stars that at times show only a trace of periodicity or none at all. Typical representative: RX Leporis.

II. Eruptive Variables

Novae: Close binary systems consisting of a normal star and a white dwarf that increase 7 to 16 magnitudes in brightness in a matter of 1 to several hundreds of days. After the outburst, the star fades slowly until the initial brightness is reached in several years or decades. Near maximum brightness, the spectrum is generally similar to A or F giants. Typical representative: CP Puppis (Nova 1942).

Supernovae: Brightness increases 20 or more magnitudes due to a gigantic stellar explosion. The general appearance of the light curve is similar to novae. Typical representative: CM Tauri (Supernova of A.D. 1054 and the central star of the Crab Nebula).

R Coronae Borealis Type: Highly luminous variables that have non-periodic drops in brightness from 1 to 9 magnitudes, due to the formation of "carbon soot" in the stars' atmosphere. The duration of minima varies from a few months to years. Members of this group have F to K and R spectral class. Typical representative: R Coronae Borealis.

U Geminorum Type: Dwarf novae that have long intervals of quiescence at minimum with sudden rises to maximum. Depending upon the star, the amplitude of eruptions range from 2 to 6 magnitudes, and the duration between outbursts ten to thousands of days. Most of these stars are spectroscopic binaries with periods of few hours. Typical representative: SS Cygni.

Z Camelopardalis Type: Variables similar to U Gem stars in their physical and spectroscopic properties. They show cyclic variations interrupted by intervals of

constant brightness (stillstands) lasting for several cycles, approximately one third of the way from maximum to minimum. Typical representative: Z Camelopardalis.

III. Eclipsing Binaries

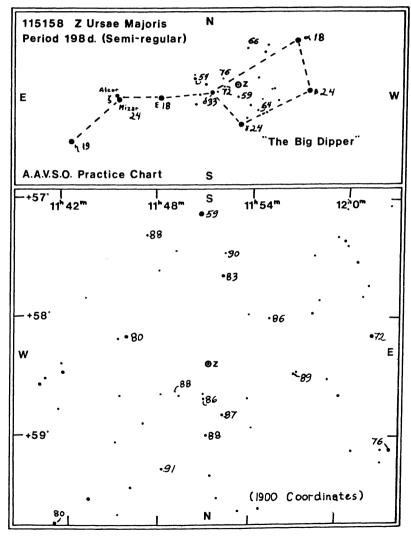
Binary system of stars with the orbital plane lying near the line of sight of the observer. The components periodically eclipse each other, causing decrease in light in the apparent brightness of the system, as is seen and recorded by the observer. The period of the eclipses coincides with the period of the orbital motion of the components. Typical representative: β Persei (Algol).

IV. Rotating Variables

Rapidly rotating stars, usually close binary systems, which undergo small amplitude changes in light that may be due to dark or bright spots on their stellar surface. Eclipses may also be present in such systems. Typical representative: R Canum Venaticorum.

OBSERVING VARIABLE STARS

This year, instead of introducing a "star of the year" to our readers, we will summarize the steps involved in observing variable stars.


The first step is to acquaint oneself with the sky and the constellations. For this a good atlas is necessary (see page 169). Next obtain an instrument – a telescope or even a good pair of binoculars – for observing. The most popular telescope used by variable star observers is a short focus (f/5 to f/8) Newtonian reflector with an aperture of 150 mm or more. The next step is to obtain suitable star finding charts. The AAVSO supplies charts for all the variables in its observing program. The last and very important step is perseverance and determination to succeed, as locating and observing variable stars is a learned skill.

Before attempting to locate a variable star, the observer should know the angular diameter of each of the eyepieces in order to tell how much of the star charts will be covered. To determine this, point the telescope at a star near the celestial equator, not far from the meridian, then note the number of seconds or minutes required for the star to cross the field diameter. Finally multiply either number by 15 to obtain the width of the field in seconds or minutes of arc, respectively. This procedure should also be carried out for the telescope's finder.

The interesting, northern circumpolar, semiregular variable Z Ursae Majoris is particularly well suited for the beginning observer with a small telescope or binoculars. Its proximity to several bright "key" stars makes it very easy to identify and to observe. (This variable was introduced to our readers in the 1978 Observer's Handbook.) Below are two finder charts of different scales for Z UMa. The top chart covering the whole Big Dipper region should be used in locating the approximate position of Z UMA with the naked eye. The bottom chart covering the close vicinity of the variable should be used for telescopic observing. Notice the orientation of the two charts. South is up in the lower chart, since when observing through a Newtonian telescope star fields are seen upside down. The stars are represented with different size dots, indicating their relative brightness. The numbers next to some stars (comparison stars) are magnitudes. The decimal point is omitted in order not to confuse it with a star image. The number – 115158 – on the upper left-hand corner of the chart is the Harvard designation of Z UMa.

Find the Big Dipper in the northern sky and identify the stars in it with the naked eye. Find the 3.3 magnitude star Delta Ursae Majoris and aim your telescope to it. Center it in your finder and finally in the eyepiece of your telescope. Now move the telescope from one distinctive group of stars to another (star hopping); find formations like squares, triangles, etc., and point your way to the variable which is shown on the chart as \odot . Next allow the stars to drift from east to west across the field of the eyepiece, thereby establishing the cardinal directions. This is important in order to orient your chart.

Once in the field of Z UMa bring the variable and the various comparison stars successively to the center of your field and get a mental image of their brightness. Select two comparison stars, one brighter and one fainter than Z UMa. Let us assume that the brightness of Z UMa is somewhere between 8.0 and 8.3 magnitudes. You will then be using the 8.0 and 8.3 comparison stars. First bring the 8.0 comparison star to the center of the field and glance at it quickly. Repeat with Z UMa and then with the 8.3 comparison star. If the brightness of the variable is closer to that of 8.0, but not as bright, report it as 8.1. If it is closer to 8.3, but not as faint, report it as 8.2. Record the night of your observation in double date, for example April 13–14, 1981 Monday. Record observing conditions, especially the transparency, the cloud cover,

¥

the presence of moonlight, as well as any changes in these conditions. For each Observation enter the Harvard designation and the name of the variable, the time to the minute and the kind of time (Eastern Standard, Universal, etc.,), the magnitude estimate, and the comparison stars used.

An AAVSO observing report form with an observation of Z UMa made on April 13-14, 1981 at 9:30 PM Eastern Standard Time is shown below. The date of the observation has been converted to Julian Date. This is particularly convenient in graphing light curves. For variables such as Z UMa which do not vary rapidly, reporting the time to a tenth of a day is sufficient.

The AAVSO welcomes carefully made observations of variable stars from observers worldwide. Further information, charts, Julian Date calendars, decimal of the day tables, and observing report forms may be obtained from the AAVSO at 187 Concord Avenue, Cambridge, Massachusetts, 02138, U.S.A.

For THE AME Report No For Month Observer Street . ^S City . ^{Moc} Time Used	of Apri J. Doe tarlane D nlight S		BLE STAR OB	BSERVERS				
DESIGNATION	VARIABLE	JUL.DAY&DEC.	MAGN.	DESIGNATION	VARIABLE	JUL.DAY&DEC.	MAGN.	
115158	Z UMa	2444708.6	8.1					
) 			
	l							
					L			
TOTAL NUMB	ER OF STARS	OBSERVED		TOTAL NUMBE	R OBSERVATI	ONS		

=

Observations should be sent to Headquarters, 187 Concord Avenue, Cambridge, Mass. 02138, as soon as possible, after the first of each month.

STAR CLUSTERS

BY ANTHONY MOFFAT

The study of star clusters is crucial for the understanding of stellar structure and evolution. It is generally believed that the stars seen in a given cluster formed nearly simultaneously from the same parent cloud of gas and dust; thus, the basic factor which distinguishes one star from another is the quantity of matter each contains. Comparing one cluster with another, it is essentially only the age and the chemical composition of their stars that differ. But what makes one cluster *appear* different from another in the sky is mainly the degree of concentration and regularity, the spread in magnitude and colour of the member stars, all of which vary mainly with age, and the total number of stars. Extremely young clusters are often irregular in shape with clumps of newly formed stars, pervaded by lanes of obscuring dust and bright nebulosity, while the oldest clusters, if they were fortunate enough not to have already dissipated or been torn apart by external forces, tend to be symmetric in shape, with only the slower-burning, low-mass stars left for us to appreciate; the massive stars will have spent their nuclear fuel and passed to the degenerate graveyard of white dwarfs, neutron stars, or black holes depending on their original mass.

The star clusters in the lists below were selected as the most conspicuous. Two types can be recognized: open and globular. Open clusters often appear as irregular aggregates of tens to thousands of stars, sometimes barely distinguishable from random fluctuations of the general field; they are concentrated toward the Galactic disk and generally contain stars of chemical abundance like the Sun. They range in age from very young to very old.

Globular clusters on the other hand are highly symmetric, extremely old agglomerations of up to several million stars, distributed throughout the Galactic halo but concentrated toward the centre of the Galaxy. Compared to the Sun, they tend to be much less abundant in elements heavier than hydrogen and helium.

The first table includes all well-defined Galactic open clusters with diameters greater than 40' and/or integrated magnitudes brighter than 5.0, as well as the richest clusters and some of special interest. The apparent integrated photographic magnitude is from Collinder, the angular diameter is generally from Trumpler, and the photographic magnitude of the fifth-brightest star, m_5 , is from Shapley, except where in italics, which are new data. The distance is mainly from Becker and Fenkart (*Astr. Astrophys. Suppl.* 4, 241 (1971)). The earliest spectral type of cluster stars, Sp, is a measure of the age as follows: expressed in millions of years, 05 = 2, B0 = 8, B5 = 70, A0 = 400, A5 = 1000, F0 = 3000 and F5 = 10000.

The second table includes all globular clusters with a total apparent photographic magnitude brighter than about 7.5. The data are taken from a compilation by Arp (*Galactic Structure*, ed. Blaauw and Schmidt, U. Chicago 1965), supplemented by H. S. Hogg's Bibliography (*Publ. David Dunlap Obs.* 2, No. 12, 1963). The apparent diameter given contains 90% of the stars, except values in italics which are from miscellaneous sources. The concentration class is such that I is the most compact, XII is least. The integrated spectral type varies mainly with the abundances, and m(25) refers to the mean blue magnitude of the 25 brightest stars excluding the 5 brightest, which are liable to fluctuate more. The number of variables known in the cluster is also given.

OPEN CLUSTERS

NGC or other†	R.A. 1980 h m	Dec. 1980	Int. m _{pg}	Diam.	m5	Dist. 1000 1.y.	Sp	Remarks
188 752 869 884 Perseus	00 42.0 01 56.6 02 17.6 02 21.0 03 21	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	9.3 6.6 4.3 4.4 2.3	14 45 30 30 240	14.6 9.6 9.5 9.5 5	5.0 1.2 7.0 8.1 0.6	F2 A5 B1 B0 B1	Oldest known h Per χ Per, M supergiants Moving cl.; α Per
Pleiades Hyades 1912 1976/80 2099 2168 2232 2244 2287 2362 2422 2437 2451 2516 2546 2632 IC2391 IC2395 2682 3114 IC2602 Tr 16 3532	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} +24 & 04 \\ +15 & 35 \\ +35 & 49 \\ -05 & 24 \\ +32 & 32 \\ +24 & 21 \\ -04 & 44 \\ +04 & 53 \\ +09 & 54 \\ -20 & 43 \\ -24 & 54 \\ -20 & 43 \\ -24 & 54 \\ -20 & 43 \\ -24 & 54 \\ -37 & 55 \\ -60 & 51 \\ -37 & 35 \\ +20 & 04 \\ -52 & 59 \\ -48 & 07 \\ +11 & 54 \\ -60 & 01 \\ -64 & 17 \\ -59 & 36 \\ 33 \end{array}$	$\begin{array}{c} 1.6\\ 0.8\\ 7.0\\ 2.5\\ 6.2\\ 5.6\\ 4.1\\ 5.2\\ 4.1\\ 5.0\\ 3.8\\ 4.3\\ 6.6\\ 3.7\\ 3.3\\ 5.0\\ 3.9\\ 2.6\\ 4.6\\ 7.4\\ 4.5\\ 1.6\\ 6.7\\ 3.4 \end{array}$	120 400 18 50 24 29 20 27 30 32 7 30 27 37 30 27 37 50 45 90 45 20 18 37 65 10 55	4.2 1.5 9.7 5.5 9.7 9.0 7 8.0 8.8 9.4 10.8 6 10.1 7 7.5 3.5 10.1 10.8 7 6 10 8.1	$\begin{array}{c} 0.41\\ 0.13\\ 4.6\\ 1.3\\ 4.2\\ 2.8\\ 1.6\\ 5.3\\ 2.4\\ 2.2\\ 5.4\\ 1.6\\ 5.4\\ 1.0\\ 1.2\\ 2.7\\ 0.59\\ 0.5\\ 2.9\\ 0.5\\ 2.9\\ 0.5\\ 2.9\\ 0.5\\ 1.4\\ \end{array}$	B6 A2 B5 B5 B5 B1 O8 B5 B5 B1 O8 B5 B6 B1 B1 O3 B1 O3 B8 B1 B1 O3 B1 O3 B1 B1 O3 B1 B1 O3 B1 B1 O3 B1 B1 B1 D5 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1	M45, best known Moving cl. **, in Taurus M38 Trapezium, very young M37 M35 Rosette, very young S Mon M41 τ CMa M46 Praesepe, M44 M67, very old θ Car η Car and Nebula
5332 3766 Coma 4755 6067 6231 Tr 24 6405 IC4665 6475 6475 6474 6475 6474 6523 IC4725 IC4725 IC4725 IC4725 IC4726 6705 Mel 227 IC1396 7790	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.4 2.9 5.2 6.5 8.5 4.6 5.3 5.5 6.6 5.2 6.62 5.4 6.8 5.2 5.1 7.1	12 300 12 16 16 60 26 50 50 27 45 8 35 50 12.5 60 60 4.5	8.1 5.5 7 10.9 7.5 7.3 8.3 7 7.4 10.2 7 10.6 9.3 8.5 12 9 8.5 11.7	5.8 0.3 6.8 4.7 5.8 5.2 1.5 1.1 0.8 1.4 5.5 2.0 1.4 5.6 0.8 2.3 10.3	B1 A1 B3 B3 O9 O5 B4 B8 B5 B8 B5 B8 O5 O7 B3 A3 B8 B9 O6 B1	Very sparse κ Cru, "jewel box" G, K supergiants O supergiants, WR stars M6 M7 M23 M8, Lagoon Neb. M16, nebula M25, Cepheid U Sgr M11, very rich Tr 37 Cepheids CEa, CEb and CF Cas

†IC = Index Catalogue; Tr = Trumpler; Mel = Melotte. **basic for distance determination.

.

NGC	M or other	R.A. 1980 h m	Dec. 1980	Int. m _{pg}	Diam.	Conc.	Int. Sp. T.	m(25)	No. Var.	Dist. 1000 1.y.
104 1851* 2808 5139 5272 5904 6121 6205 6218 6254	47 Tuc ω Cen 3 5 4 13 12 10	00 23.1 05 13.3 09 11.5 13 25.6 13 41.3 15 17.5 16 22.4 16 41.0 16 46.1 16 56.0	$\begin{array}{cccc} -72 & 11 \\ -40 & 02 \\ -64 & 42 \\ -47 & 12 \\ +28 & 29 \\ +02 & 10 \\ -26 & 28 \\ +36 & 30 \\ -01 & 55 \\ -04 & 05 \end{array}$	4.35 7.72 7.4 4.5 6.86 6.69 7.05 6.43 7.58 7.26	44 11.5 18.8 65.4 9.3 10.7 22.6 12.9 21.5 16.2	III I VIII VI V IX V IX V IX VII	G3 F7 F8 F7 F7 F6 <i>G0</i> F6 F8 G1	13.54 15.09 13.01 14.35 14.07 13.21 13.85 14.07 14.17	11 3 4 165 189 97 43 10 1 3	16 46 30 17 35 26 14 21 24 20
6341* 6397 6541 6656 6723 6752 6809	92 22 55	17 16.5 17 39.2 18 06.5 18 35.1 18 58.3 19 09.1 19 38.8	$\begin{array}{r} +43 & 10 \\ -53 & 40 \\ -43 & 45 \\ -23 & 56 \\ -36 & 39 \\ -60 & 01 \\ -30 & 59 \end{array}$	6.94 6.9 7.5 6.15 7.37 6.8 6.72	12.3 19 23.2 26.2 11.7 41.9 21.1	IV IX III VII VI XI	F1 F5 F6 F7 G4 F6 F5	13.96 12.71 13.45 13.73 14.32 13.36 13.68	16 3 1 24 19 1 6	26 9 13 10 24 17 20
7078* 7089	15 2	21 29.1 21 32.4	+12 05 -00 55	6.96 6.94	9.4 6.8	IV II	F2 F4	14.44 14.77	103 22	34 40

GLOBULAR CLUSTERS

*Compact X-ray sources were discovered in these clusters in 1975.

:::

NEBULAE

GALACTIC NEBULAE

By René Racine

The following objects were selected from the brightest and largest of the various classes to illustrate the different types of interactions between stars and interstellar matter in our galaxy. *Emission regions* (HII) are excited by the strong ultraviolet flux of young, hot stars and are characterized by the lines of hydrogen in their spectra. *Reflection nebulae* (Ref) result from the diffusion of starlight by clouds of interstellar dust. At certain stages of their evolution stars become unstable and explode, shedding their outer layers into what becomes a *planetary nebula* (P1) or a *supernova remnant* (SN). Protostellar nebulae (PrS) are objects still poorly understood; they are somewhat similar to the reflection nebulae, but their associated stars, often variable, are very luminous infrared stars which may be in the earliest stages of stellar evolution. Also included in the selection are four *extended complexes* (Compl) of special interest for their rich population of dark and bright nebulosities of various types. In the table S is the optical surface brightness in magnitude per square second of arc of representative regions of the nebula, and m* is the magnitude of the associated star.

	Γ	Ι	α 1980 δ			Size	S mag.	m	Dist. 10 ³	
NGC	м	Con	h m	• •	Туре	512e	sq"	*	l.y.	Remarks
650/1 IC348 1435 1535	76	Per Per Tau Eri	01 40.9 03 43.2 03 46.3 04 13.3	+51 28 +32 07 +24 01 -12 48	Pl Ref Ref Pl	1.5 3 15 0.5	20 21 20 17	17 8 4 12	15 0.5 0.4	Nebulous cluster Merope nebula
1952	1	Tau	05 33.3	+22 05	SN	5	19	16v	4	"Crab" + pulsar
1976 1999	42	Ori	05 34.3	$-05\ 25$ $-06\ 45$	HII PrS	30 1	18	4 10v	1.5 1.5	Orion nebula
ζOri 2068 IC443	78	Ori Ori Gem	05 39.8 05 45.8 06 16.4	-01 57 +00 02 +22 36	Comp Ref SN	2° 5 40	20		1.5 1.5 2	Incl. "Horsehead"
2244		Mon	06 31.3	+04 53	HII	50	21 20	7	3	Rosette neb.
2247 2261 2392 3587	97	Mon Mon Gem UMa	06 32.1 06 38.0 07 28.0 11 13.6	+10 20 +08 44 +20 57 +55 08	PrS PrS Pl Pl	2 2 0.3 3	20 18 21	9 12v 10 13	3 4 10 12	Hubble's var. neb. Clown face neb. Owl nebula
ρOph θOph 6514 6523 6543	20 8	Oph Oph Sgr Sgr Dra	16 24.4 17 20.7 18 01.2 18 02.4 17 58.6	-23 24 -24 59 -23 02 -24 23 +66 37	Comp Comp HII HII Pl	4° 5° 15 40 0.4	19 18 15	11	0.5 3.5 4.5 3.5	Bright + dark neb. Incl. "S" neb. Trifid nebula Lagoon nebula
6611 6618 6720 6826 6853	16 17 57 27	Ser Sgr Lyr Cyg Vul	18 17.8 18 19.7 18 52.9 19 44.4 19 58.6	-13 48 -16 12 +33 01 +50 28 +22 40	HII HII Pl Pl Pl	15 20 1.2 0.7 7	19 19 18 16 20	10 15 10 13	6 3 5 3.5 3.5	Horseshoe neb. Ring nebula Dumb-bell neb.
6888 γCyg 5960/95 7000 7009		Cyg Cyg Cyg Cyg Aqr	20 11.6 20 21.5 20 44.8 20 58.2 21 03.0	+38 21 +40 12 +30 38 +44 14 -11 28	HII Comp SN HII Pl	15 6° 150 100 0.5	22 16	12	2.5 3.5 3	HII + dark neb. Cygnus loop N. America neb. Saturn nebula
7023		Cep	21 01.4	+68 05	Ref	5	21	7	1.3	
7027 7129		Cyg Cep	21 06.4 21 42.5	+42 09 +65 00	Pl Ref	0.2	15 21	13 10	2.5	Small cluster
7293 7662		Aqr And	22 28.5 23 25.0	-20 54 +42 25	Pl Pl	13 0.3	22 16	13 12	4	Helix nebula

THE MESSIER CATALOGUE

BY ALAN DYER

The Messier Catalogue, with its modern additions, represents a listing of many of the brightest and best deep-sky wonders. The following table lists the Messier objects by season for the *evening observer*, grouping the objects within their respective constellations, with the constellations themselves listed roughly in order of increasing right ascension, i.e., constellations further to the east and which rise later in the night are further down the list.

The columns contain: Messier's number (M); the constellation; the object's New General Catalogue (NGC) number; the type of object (OC = open cluster, GC = globular cluster, PN = planetary nebula, EN = emission nebula, RN = reflection nebula, SNR = supernova remnant, G = galaxy (with the type of galaxy also listed); the 1980 co-ordinates; the visual magnitude (unless marked with a "p" which indicates a photographic magnitude). The "Remarks" column contains comments on the object's appearance and observability. The final column, marked "Seen", is for the observer to use in checking off those objects which he or she has located. An asterisk in the "Type" column indicates that additional information about the object may be found elsewhere in the HANDBOOK, in the appropriate table. Most data are from the Skalnate Pleso Atlas of the Heavens catalogue; occasionally from other sources.

All these objects can be seen in a small telescope (60 mm refractor, for instance), with M74 and M83 generally considered to be the most difficult. The most southerly M-objects are M6 and M7 in Scorpius, with M54, M55, M69, and M70 in Sagittarius almost as far south. Notice how different classes of objects dominate the skies of the various seasons: open clusters dominate the winter sky; galaxies by the hundreds abound in the spring sky; the summer sky contains many globular clusters and nebulae; while the autumn sky is a mixture of clusters and galaxies. This effect is due to the presence (or absence) of the Milky Way in any particular season, and whether or not we are looking toward the centre of the Galaxy (as in summer) or away from the centre (as in winter).

М	Con	NGC	Туре	R.A. (1980) Dec.	m,	Remarks	Seen
The V	Vinter Sk	y		hm°'			
1 45	Tau Tau	1952 —	SNR* OC*	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	8.4 1.4	Crab Neb.; supernova remnant Pleiades; RFT object	
36 37 38	Aur Aur Aur	1960 2099 1912	OC OC* OC	5 35.0 +34 05 5 51.5 +32 33 5 27.3 +35 48	6.3 6.2 7.4	best at low magnification finest of 3 Aur. clusters large, scattered group	
42 43 78	Ori Ori Ori	1976 1982 2068	EN* EN RN	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		Orion Nebula detached part of Orion Neb. featureless reflection neb.	
79	Lep	1904	GC	5 23.3 -24 32	8.4	20 cm scope needed to resolve	
35	Gem	2168	OC*	6 07.6 +24 21	5.3	superb open cluster	
41	СМа	2287	OC*	6 46.2 -20 43	5.0	4°S. of Sirius; use low mag.	
50	Mon	2323	oc	7 02.0 -08 19	6.9	between Sirius and Procyon	
46 47 93	Pup Pup Pup	2437 2422 2447	OC* OC OC	7 40.9 - 14 46 7 35.6 - 14 27 7 43.6 - 23 49	6.0 4.5 6.0	rich cl.; contains PN NGC 2438 coarse cl.; 1.5°W. of M46 smaller, brighter than M46	
48	Hya	2548	oc	8 12.5 -05 43	5.3	former "lost" Messier object	
	pring Sk					,,,,,,,,,,,	
44 67	Cnc Cnc	2632 2682	0C* 0C*	8 38.8 +20 04 8 50.0 +11 54	3.7 6.1	Beehive Cl.; RFT object "ancient" star cluster	
40	UMa	—	_	12 34.4 +58 20	9.0	two stars; sep. 50"	
81	UMa	3031	G-Sb*	9 54.2 +69 09	7.9	very bright spiral	
82 97	UMa UMa	3034 3587	G-Pec* PN*	9 54.4 +69 47 11 13.7 +55 08	8.8 12.0	the "exploding" galaxy Owl Nebula	

156

:::

M	Con	NGC	Туре	R.A. (1980) Dec.	m _v	Remarks	Seen
101 108 109	UMa UMa UMa	5457 3556 3992	G-Sc* G-Sc G-Sb	14 02.5 +54 27 11 10.5 +55 47 11 56.6 +53 29	9.6 10.7 10.8	large, faint, face-on spiral nearly edge-on; near M97 barred spiral; near γ UMa	
65 66 95 96 105	Leo Leo Leo Leo Leo	3623 3627 3351 3368 3379	G-Sb G-Sb G-SBb G-Sbp G-E1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	9.3 8.4 10.4 9.1 9.2	bright elongated spiral M65 in same field bright barred spiral M95 in same field very near M95 and M96	
53 64 85 88 91 98 99	Com Com Com Com Com Com	5024 4826 4382 4501 4548 4192 4254	GC G-Sb* G-SO G-Sb G-SBb G-Sb G-Sc	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.6 8.8 9.3 10.2 10.8 10.7 10.1	15 cm scope needed to resolve Black Eye Galaxy bright elliptical shape bright multiple-arm spiral not the same as M58 nearly edge-on spiral nearly face-on spiral	
100 49 58 59 60 61 84 86 87 89 90	Com Vir Vir Vir Vir Vir Vir Vir Vir Vir Vir	4321 4472 4579 4621 4649 4303 4374 4406 4486 4552 4569	G-Sc G-E4* G-SB G-E3 G-E1 G-Sc G-E1 G-E3 G-E1 G-E0 G-Sb	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.6 8.6 9.2 9.6 8.9 10.1 9.3 9.7 9.2 9.5 10.0	face-on spiral; star-like nuc. very bright elliptical bright barred spiral bright elliptical near M58 bright elliptical near M59 face-on barred spiral bright elliptical M84 in same field nearly spherical galaxy resembles M87; smaller bright spiral; near M89	
104 3 51 63 94 106	Vir CVn CVn CVn CVn CVn CVn	4594 5272 5194 5055 4736 4258	G-Sb* GC* G-Sc* G-Sb* G-Sbp* G-Sbp*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.7 6.4 8.1 9.5 7.9 8.6	Sombrero Galaxy contains many variables Whirlpool Galaxy Sunflower Galaxy very bright and comet-like large, bright spiral	
68 83 102 5	Hya Hya Dra Ser	4590 5236 5866 5904	GC G-Sc* G-E6p GC*	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	8.2 10.1 10.8 6.2	15 cm scope needed to resolve very faint and diffuse small, edge-on galaxy one of the finest globulars	
The S	ummer S	ky					
13 92	Her Her	6205 6341	GC* GC*	16 41.0 +36 30 17 16.5 +43 10	5.7 6.1	spectacular globular cl. 9°NE. of M13; bright	
9 10 12 14 19 62 107	Oph Oph Oph Oph Oph Oph Oph	6333 6254 6218 6402 6273 6266 6171	GC GC* GC GC GC GC GC GC	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.3 6.7 6.6 7.7 6.6 6.6 9.2	smallest of Oph. globulars rich cl.; M12 3.4° away loose globular 20 cm scope needed to resolve oblate globular unsymmetrical; in rich field small, faint globular	
4 6 7 80	Sco Sco Sco Sco	6121 6405 6475 6093	GC* OC* OC* GC	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.4 5.3 3.2 7.7	bright globular near Antares best at low magnification excellent in binoculars very compressed globular Star-Queen Neb. w/ open cl.	
16 8 17 18 20	Ser Sgr Sgr Sgr Sgr	6611 6523 6618 6613 6514 6531	EN* EN* OC EN* OC	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Star-Queen Neb. W open ct. Lagoon Neb. w/cl. NGC 6530 Swan or Omega Nebula sparse cluster; 1°S. of M17 Trifid Nebula 0.7°NE. of M20	
21 22 23 24 25	Sgr Sgr Sgr Sgr Sgr	6531 6656 6494 I4725	OC GC* OC*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.9 6.9 4.6 6.5	low altitude dims beauty bright, loose cluster Milky Way patch; binoc. obj. bright but sparse cluster	
28 54	Sgr Sgr	6626 6715	GC GC	18 23.2 -24 52 18 53.8 -30 30	7.3 8.7p	compact globular near M22 not easily resolved	

М	Con	NGC	Туре	R.A. (1980) Dec.	m,	Remarks	Seen
55 69 70 75	Sgr Sgr Sgr Sgr Sgr	6809 6637 6681 6864	GC* GC GC GC	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	7.1p 8.9 9.6 8.0	bright, loose globular small, poor globular small globular; 2°E. of M69 small, remote globular	
11 26	Sct Sct	6705 6694	OC* OC	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	6.3 9.3	superb open cluster bright, coarse cluster	
56 57	Lyr Lyr	6779 6720	GC PN*	19 15.8 +30 08 18 52.9 +33 01	8.2 9.3	within rich field Ring Nebula	
71	Sge	6838	GC	19 52.8 +18 44	9.0	loose globular cl.	
27	Vul	6853	PN*	19 58.8 +22 40	7.6	Dumbbell Nebula	
29 39	Cyg Cyg	6913 7092	OC OC	20 23.3 +38 27 21 31.5 +48 21	7.1 5.2	small, poor open cl. very sparse cluster	
The A	utumn S	ky					
2 72 73	Aqr Aqr Aqr	7089 6981 6994	GC* GC OC	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	6.3 9.8 11.0	20 cm scope needed to resolve near NGC 7009 (Saturn Neb.) group of 4 stars only	
15	Peg	7078	GC*	21 29.1 +12 05	6.0	rich, compact globular	
30	Cap	7099	GC	21 39.2 -23 15	8.4	noticeable elliptical shape	
52 103	Cas Cas	7654 581	OC OC	23 23.3 +61 29 01 31.9 +60 35	7.3 7.4	young, rich cluster 3 NGC clusters nearby	
31 32 110	And And And	224 221 205	G-Sb* G-E2* G-E6*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.8 8.7 9.4	Andromeda Gal.; large companion gal. to M31 companion gal. to M31	
33	Tri	598	G-Sc*	01 32.8 +30 33	6.7	large, diffuse spiral	
74	Psc	628	G-Sc	01 35.6 +15 41	10.2	faint, elusive spiral	
77	Cet	1068	G-Sbp	02 41.6 +00 04	8.9	Seyfert gal.; star-like nuc.	
34 76	Per Per	1039 650	OC PN*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.5 12.2	best at very low mag. Little Dumbbell Neb.	

NUMERICAL LISTING OF MESSIER OBJECTS

М	Sky	Con	м	Sky	Con									
1	Wi	Tau	23	Su	Sgr	45	Wi	Tau	67	Sp	Cnc	89	Sp	Vir
2	Au	Aqr	24	Su	Sgr	46	Wi	Pup	68	Sp	Hya	90	Sp	Vir
3	Sp	CŶn	25	Su	Sgr	47	Wi	Pup	69	Sū	Sgr	91	Sp	Com
4	Su	Sco	26	Su	Sct	48	Wi	Hya	70	Su	Sgr	92	Su	Her
5	Sp	Ser	27	Su	Vul	49	Sp	Vir	71	Su	Sge	93	Wi	Pup
6	Sū	Sco	28	Su	Sgr	50	Ŵi	Mon	72	Au	Aqr	94	Sp	CVn
7	Su	Sco	29	Su	Cyg	51	Sp	CVn	73	Au	Aqr	95	Sp	Leo
8	Su	Sgr	30	Au	Cap	52	Au	Cas	74	Au	Psc	96	Sp	Leo
9	Su	Oph	31	Au	And	53	Sp	Com	75	Su	Sgr	97	Sp	UMa
10	Su	Oph	32	Au	And	54	Sū	Sgr	76	Au	Per	98	Sp	Com
11	Su	Sct	33	Au	Tri	55	Su	Sgr	77	Au	Cet	99	Sp	Com
12	Su	Oph	34	Au	Per	56	Su	Lyr	78	Wi	Ori	100	Sp	Com
13	Su	Her	35	Wi	Gem	57	Su	Lyr	79	Wi	Lep	101	Sp	UMa
14	Su	Oph	36	Wi	Aur	58	Sp	Vir	80	Su	Sco	102	Sp	Dra
15	Au	Peg	37	Wi	Aur	59	Sp	Vir	81	Sp	UMa	103	Au	Cas
16	Su	Ser	38	Wi	Aur	60	Sp	Vir	82	Sp	UMa	104	Sp	Vir
17	Su	Sgr	39	Su	Cyg	61	Sp	Vir	83	Sp	Hya	105	Sp	Leo
18	Su	Sgr	40	Sp	UMa	62	Su	Oph	84	Sp	Vir	106	Sp	CVn
19	Su	Oph	41	Ŵi	СМа	63	Sp	CVn	85	Sp	Com	107	Su	Oph
20	Su	Sgr	42	Wi	Ori	64	Sp	Com	86	Sp	Vir	108	Sp	UMa
21	Su	Sgr	43	Wi	Ori	65	Sp	Leo	87	Sp	Vir	109	Sp	UMa
22	Su	Sgr	44	Sp	Cnc	66	Sp	Leo	88	Sp	Com	110	Au	And

The abbreviations are: Wi, winter; Sp, spring; Su, summer; Au, autumn.

Footnote to Messier Catalogue: The identifications of M91 and M102 are controversial; some believe that these two objects are duplicate observations of M58 and M101 respectively. Also, objects M104 to M110 are not always included in the standard version of the Messier Catalogue. Like many other objects in the catalogue, they were discovered by Mechain and reported to Messier for verification and inclusion in the catalogue.

:::

THE FINEST N.G.C. OBJECTS + 20

By Alan Dyer

The New General Catalogue of deep-sky objects was originally published by J. L. E. Dreyer in 1888. Supplementary Index Catalogues were published in 1895 and 1908. Together, they contain descriptions and positions of 13,226 galaxies, clusters and nebulae. Many of these are well within reach of amateur telescopes. Indeed, the brightness and size of many NGC objects rival those of the better known deep-sky targets of the Messier Catalogue (almost all of which are also in the NGC catalogue). However, most NGC objects are more challenging to locate and observe than the Messiers.

The first four sections of the following list contain 110 of the finest NGC objects that are visible from mid-northern latitudes. The arrangement is similar to that used in the preceding Messier Catalogue. A telescope of at least 15 cm aperture will likely be required to locate all these objects. The last section is for those wishing to begin to extend their deep-sky observing program beyond the basic catalogue of Charles Messier or the brightest objects of the New General Catalogue. It is a selected list of 20 "challenging" objects, and is arranged in order of right ascension.

The Wil Tirion Sky Atlas 2000.0, the sets of index card finder charts called AstroCards, or the AAVSO Variable Star Atlas will be indispensible in locating the objects on this list. For more information about them, and many other deep-sky objects, see Burnham's Celestial Handbook (Vol. 1, 2, 3), and the Webb Society Deep-Sky Observer's Handbooks.

Abbreviations used: OC = open cluster, GC = globular cluster, PN = planetarynebula, EN = emission nebula, RN = reflection nebula, E/RN = combinationemission and reflection nebula, DN = dark nebula, SNR = supernova remnant, G =galaxy (the Hubble classification is also listed with each galaxy). Magnitudes are visual; exceptions are marked with a "p" indicating a photographic magnitude. Sizes of each object are in minutes of arc, with the exception of planetary nebulae which are given in seconds of arc. The number of stars (*) and, where space permits, the Shapley classification is also given for star clusters in the Remarks column.

No.	NGC	Con	Туре	R.A. (19	950) Dec.	m _v	Size	Remarks
The A	Autumn Sky			h m	0 /			
1 2	7009 7293	Aqr Aqr	PN PN	h m 21 01.4 22 27.0	-11 34 -21 06	9.1 6.5	44" × 26" 900" × 720"	Saturn Nebula; bright oval planetary Helix Nebula; very large and diffuse
3	7331	Peg	G-Sb	22 34.8	+34 10	9.7	10.0 × 2.3	large, very bright spiral galaxy
4 5 6 7 8	7789 185 281 457 663	Cas Cas Cas Cas Cas	OC G-EO EN OC OC	23 54.5 00 36.1 00 50.4 01 15.9 01 42.6	+56 26 +48 04 +56 19 +58 04 +61 01	9.6 11.7 7.5 7.1	$ \begin{array}{r} 30 \\ 2.2 \times 2.2 \\ 22 \times 27 \\ 10 \\ 11 \end{array} $	200*; faint but very rich cluster companion to M31; quite bright large, faint nebulosity near γ Cas. 100*; Type e—intermediate rich 80*; NGC 654 and 659 nearby
9 10	7662 891	And And	PN G-Sb	23 23.5 02 19.3	+42 14 +42 07	9.2 10.9p	32" × 28" 11.8 × 1.1	star-like at low mag.; annular, bluish faint, classic edge-on with dust lane
11	253	Scl	G-Scp	00 45.1	-25 34	8.9	24.6 × 4.5	very large and bright but at low alt.
12	772	Ari	G-Sb	01 56.6	+18 46	10.9	5.0 × 3.0	diffuse spiral galaxy
13	936	Cet	G-SBa	02 25.1	-01 22	10.7	3.3 × 2.5	near M77; NGC 941 in same field
14a 14b 15 16	869 884 1023 1491	Per Per Per Per	OC OC G-E7p EN	02 15.5 02 18.9 02 37.2 03 59.5	+56 55 +56 53 +38 52 +51 10	4.4 4.7 10.5p	$36 \\ 36 \\ 4.0 \times 1.2 \\ 3 \times 3$	Double Cluster; superb! Double Cluster; superb! bright, lens-shaped galaxy; near M34 small, fairly bright emission nebula
17	1501	Cam	PN	04 02.6	+60 47	12.0	56" × 58"	faint, distinctive oval; darker centre
18 19 20	1232 1300 1535	Eri Eri Eri	G-Sc G-SBb PN	03 07.5 03 17.5 04 12.1	$ \begin{array}{rrrr} -20 & 46 \\ -19 & 35 \\ -12 & 52 \end{array} $	10.7 11.3 10.4	7.0 × 5.5 5.7 × 3.5 20" × 17"	fairly bright, large face-on spiral large barred spiral near NGC 1232 blue-grey disk

No.	NGC	Con	Туре	R.A. (19	950) Dec.	mv	Size	Remarks
The W	vinter Sky	1			。 ,			
21 22	1907 1931	Aur Aur	OC EN	h m 05 24.7 05 28.1	+35 17 +34 13	9.9 —	3×3	40*; nice contrast with nearby M38 haze surrounding 4 stars
23 24 25 26	1788 1973 + 2022 2194	Ori Ori Ori Ori	E/RN E/RN PN OC	05 04.5 05 32.9 05 39.3 06 11.0	$\begin{array}{rrrr} -03 & 24 \\ -04 & 48 \\ +09 & 03 \\ +12 & 50 \end{array}$	 12.4 9.2	8×5 40×25 $28'' \times 27''$ 8	fairly bright but diffuse E/R neb. near M42 and M43; often neglected small, faint but distinct; annular 100*; Type e; faint but rich
27 28	2158 2392	Gem Gem	OC PN	06 04.3 07 26.2	+24 06 +21 01	12.5 8.3	4 47" × 43"	40*; same field as M35; nice contrast Clown-Face Nebula; very bright
29 30	2244 2261	Mon Mon	OC E/RN	06 29.7 06 36.4	+04 54 +08 46	6.2 var.	40 5 × 3	16*; in centre of Rosette Nebula Hubble's Variable Nebula
31	2359	CMa	EN	07 15.4	-13 07	_	8 × 6	fairly bright; NGC's 2360 & 2362 nearby
32 33 34	2438 2440 2539	Pup Pup Pup	PN PN OC	07 39.6 07 39.9 08 08.4	-14 36 -18 05 -12 41	11.8 10.3 8.2	68" 54" × 20" 21	within M46 open cluster almost starlike; irregular at high mag. 150*; Type f—fairly rich
35 36	2403 2655	Cam Cam	G-Sc G-S	07 32.0 08 49.4	+65 43 +78 25	8.9 10.7	$\begin{array}{c} 17 \times 10 \\ 5.0 \times 2.4 \end{array}$	bright, very large; visible in binocs. bright ellipse w/ star-like nucleus
The S	pring Sky							
37	2683	Lyn	G-Sb	08 49.6	+33 38	9.6	8.0 × 1.3	nearly edge-on spiral; very bright
38 39 40 41 42 43 44 45 46 47 48 49 50	2841 2985 3077 3079 3184 3675 3877 3941 4026 4088 4111 4157 4605	UMa UMa UMa UMa UMa UMa UMa UMa UMa UMa	G-Sb G-Sb G-Sc G-Sc G-Sb G-Sb G-Sa G-Sa G-Sa G-Sc G-S0 G-Sc G-Scp	09 18.6 09 46.0 09 59.4 09 58.6 10 15.2 11 23.5 11 43.5 11 50.3 11 56.9 12 03.0 12 04.5 12 08.6 12 37.8	$\begin{array}{c} +51 & 12 \\ +72 & 31 \\ +68 & 58 \\ +55 & 57 \\ +41 & 52 \\ +47 & 46 \\ +37 & 16 \\ +51 & 12 \\ +50 & 43 \\ +43 & 21 \\ +50 & 46 \\ +61 & 53 \end{array}$	9.3 10.6 10.9 11.2 9.6 10.6 10.9 9.8 10.7 10.9 9.7 11.9 9.6	$\begin{array}{c} 6.4 \times 2.4 \\ 5.5 \times 5.0 \\ 2.3 \times 1.9 \\ 8.0 \times 1.0 \\ 5.6 \times 5.6 \\ 4.0 \times 1.7 \\ 4.4 \times 0.8 \\ 1.8 \times 1.2 \\ 3.6 \times 0.7 \\ 4.5 \times 1.4 \\ 3.3 \times 0.6 \\ 6.5 \times 0.8 \\ 5.0 \times 1.2 \end{array}$	classic elongated spiral; very bright near M81 and M82 small elliptical; companion to M81/82 edge-on spiral, NGC 2950 nearby large, diffuse face-on spiral elongated spiral; same field as 56 UMa edge-on; same field as Chi UMa small, bright, elliptical shape lens-shaped edge-on; near γ UMa nearly edge-on; 4085 in same field bright, lens-shaped, edge-on spiral edge-on, a thin sliver, 4026+4088 nearby bright, distinct, edge-on spiral
51	3115	Sex	G-E6	10 02.8	-07 28	9.3	4.0 × 1.2	"Spindle Galaxy"; bright, elongated
52	3242	Hya	PN	10 22.4	-18 23	9.1	40" × 35"	"Ghost of Jupiter" planetary
53 54	3344 3432	LMi LMi	G-Sc G-Sc	10 40.7 10 49.7	+25 11 +36 54	10.4 11.4	$\begin{array}{c} 7.6 \times 6.2 \\ 5.8 \times 0.8 \end{array}$	diffuse, face-on spiral nearly edge-on; faint flat streak
55 56 57 58 59	2903 3384 3521 3607 3628	Leo Leo Leo Leo Leo	G-Sb G-E7 G-Sc G-E1 G-Sb	09 29.3 10 45.7 11 03.2 11 14.3 11 17.7	+21 44 +12 54 +00 14 +18 20 +13 53	9.1 10.2 9.5 9.6 10.9	$11.0 \times 4.6 \\ 4.4 \times 1.4 \\ 7.0 \times 4.0 \\ 1.7 \times 1.5 \\ 12.0 \times 1.5$	very bright, large elongated spiral same field as M105 and NGC 3389 very bright, large spiral NGC 3605 and 3608 in same field large, edge-on; same field as M65/M66
60 61 62 63 64 65 66 67	4214 4244 4449 4631 4656 5005 5033	CVn CVn CVn CVn CVn CVn CVn CVn	G-irr G-S G-irr G-Sc G-Sc G-Sc G-Sb G-Sb	12 13.1 12 15.0 12 25.8 12 28.3 12 39.8 12 41.6 13 08.5 13 11.2	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	10.3 11.9 9.2 9.7 9.3 11.2 9.8 10.3	$\begin{array}{c} 6.6 \times 5.8 \\ 14.5 \times 1.0 \\ 4.1 \times 3.4 \\ 5.6 \times 2.1 \\ 12.6 \times 1.4 \\ 19.5 \times 2.0 \\ 4.4 \times 1.7 \\ 9.9 \times 4.8 \end{array}$	large irregular galaxy large, distinct, edge-on spiral bright rectangular shape bright spiral; 4485 in same field very large, bright, edge-on; no dust lane same field as 4631; fainter, smaller bright elongated spiral; near a CVn large, bright spiral near NGC 5005
68 69 70 71 72 73	4274 4494 4414 4559 4565 4725	Com Com Com Com Com	G-Sb G-E1 G-Sc G-Sc G-Sb G-Sb	12 17.4 12 28.9 12 24.0 12 33.5 12 33.9 12 48.1	+29 53 +26 03 +31 30 +28 14 +26 16 +25 46	10.8 9.6 9.7 10.6 10.2 8.9	$\begin{array}{c} 6.7 \times 1.3 \\ 1.3 \times 1.2 \\ 3.2 \times 1.5 \\ 11.0 \times 4.5 \\ 14.4 \times 1.2 \\ 10.0 \times 5.5 \end{array}$	NGC 4278 in same field small, bright elliptical bright spiral; star-like nucleus large spiral; coarse structure superb edge-on spiral with dust lane very bright, large spiral
74	4361	Crv	PN	12 21.9	-18 29	11.4	18″	12 ^m 8 central star

::

No.	NGC	Con	Туре	R .A. (19	950) Dec.	m _v	Size	Remarks
75 76 77 78 79 80 81 82 83 84 85	4216 4388 4438 4473 4517 4526 4535 4697 4699 4762 5746	Vir Vir Vir Vir Vir Vir Vir Vir Vir Vir	G-Sb G-Sb G-E4 G-Sc G-E7 G-Sc G-E4 G-Sa G-Sa G-Sa G-Sb	$\begin{array}{c} 12 13.4 \\ 12 23.3 \\ 12 25.3 \\ 12 27.3 \\ 12 29.0 \\ 12 31.6 \\ 12 31.8 \\ 12 46.0 \\ 12 46.5 \\ 12 50.4 \\ 14 42.3 \end{array}$	$\begin{array}{c} +13 & 25 \\ +12 & 56 \\ +13 & 17 \\ +13 & 42 \\ +00 & 21 \\ +07 & 58 \\ +08 & 28 \\ -05 & 32 \\ -08 & 24 \\ +11 & 31 \\ +02 & 10 \end{array}$	10.4 11.7p 10.8 10.1 12.0 10.9 10.4p 9.6 9.3 11.0 10.1	$\begin{array}{c} 7.4 \times 0.9 \\ 5.0 \times 0.9 \\ 8.0 \times 3.0 \\ 1.6 \times 0.9 \\ 8.9 \times 0.8 \\ 3.3 \times 1.0 \\ 6.0 \times 4.0 \\ 2.2 \times 1.4 \\ 3.0 \times 2.0 \\ 3.7 \times 0.4 \\ 6.3 \times 0.8 \end{array}$	nearly edge-on; two others in field edge-on; near M84 and M86 paired with NGC 4435 NGC 4477 in same field faint edge-on spiral between two 7 ^m 0 stars near M49 small, bright elliptical small, bright elliptical shape flattest galaxy; 4754 in same field fine, edge-on spiral near 109 Virginis
86 87 88	5907 6503 6543	Dra Dra Dra	G-Sb G-Sb PN	15 14.6 16 49.9 17 58.8	+56 31 +70 10 +66 38	11.3 9.6 8.7	11.1 × 0.7 4.5 × 1.0 22″	fine, edge-on spiral with dust lane bright spiral luminous blue-green disk
The S	Summer Sky	/						
89 90	6207 6210	Her Her	G-Sc PN	16 41.3 16 42.5	+36 56 +23 53	11.3 9.2	2.0 × 1.1 20" × 13"	same field as M13 cluster very star-like blue planetary
91 92 93	6369 6572 6633	Oph Oph Oph	PN PN OC	17 26.3 18 09.7 18 25.1	$ \begin{array}{rrrrr} -23 & 44 \\ +06 & 50 \\ +06 & 32 \end{array} $	9.9 8.9 4.9	28" 16" × 13" 20	greenish, annular, and circular tiny oval; bright blue wide-field cluster; IC4756 nearby
94	6712	Sct	GC	18 50.3	-08 47	8.9	2.1	small globular near M26
95 96 97 98 99 100	6819 6826 6960 6992–5 7000 7027	Cyg Cyg Cyg Cyg Cyg Cyg Cyg	OC PN SNR SNR EN EN	19 39.6 19 43.4 20 43.6 20 54.3 20 57.0 21 05.1	$\begin{array}{rrrrr} +40 & 06 \\ +50 & 24 \\ +30 & 32 \\ +31 & 30 \\ +44 & 08 \\ +42 & 02 \end{array}$	10.1 9.4 — — 10.4	$\begin{array}{c} 6 \\ 27'' \times 24'' \\ 70 \times 6 \\ 78 \times 8 \\ 120 \times 100 \\ 18'' \times 11'' \end{array}$	150*; faint but rich cluster Blinking Planetary Nebula Veil Nebula (west component) Veil Nebula (east component) North America Neb.; binoc. obj. very star-like H II region
101 102	6445 6818	Sgr Sgr	PN PN	17 47.8 19 41.1	$ \begin{array}{rrr} -20 & 00 \\ -14 & 17 \end{array} $	11.8 9.9	38" × 29" 22" × 15"	small, bright and annular; near M23 "Little Gem"; annular; 6822 nearby
103 104	6802 6940	Vul Vul	OC OC	19 28.4 20 32.5	+20 10 +28 08	11.0 8.2	3.5 20	60*; small, faint but rich 100*; Type e; rich cluster
105 106 107 108	6939 6946 7129 40	Cep Cep Cep Cep	OC G-Sc RN PN	20 30.4 20 33.9 21 42.0 00 10.2	+60 28 +59 58 +65 52 +72 15	10.0 9.7p 10.5	5 9.0 × 7.5 7 × 7 60" × 38"	80*; very rich; 6946 in same field faint, diffuse, face-on spiral small faint RN; several stars inv. small circular glow; 11 ^m 5 central star
109 110	7209 7243	Lac Lac	OC OC	22 03.2 22 13.2	+46 15 +49 38	7.6 7.4	20 20	50*; Type d; within Milky Way 40*; Type d; within Milky Way
Challe	enge Object	ts						
1 2 3 4 5 6	246 1275 1432/35 1499 IC434/35/ B33/2023 IC431/32/	Per Tau Per Ori	PN G RN EN E/R/DN E/RN	00 44.6 03 16.4 03 43.3 04 00.1 05 38.6 05 39.4	$\begin{array}{cccc} -12 & 09 \\ +41 & 20 \\ +23 & 42 \\ +36 & 17 \\ -02 & 26 \\ -01 & 52 \end{array}$	8.5 12.7 	240" × 210" 0.7 × 0.6 30 × 30 145 × 40 60/3/10 4/6/30	large and diffuse; deceptively difficult small and faint; exploding gal.; Perseus A Pleiades nebl'y; brightest around Merope California Neb.; very large and faint complex of nebl'y S. of zeta Ori., B33 is famous dark Horsehead Neb.; difficult complex of nebl'y N. of zeta Ori.,
7 8 9 10	NGC 2024 IC 443 J 900 2237/46 2419	Gem Mon	SNR PN EN GC	06 13.9 06 23.0 06 29.6 07 34.8	+22 48 +17 49 +04 40 +39 00	12.2 11.5	27 × 5 12" × 10" 60 1.7	NGC2024 is easy but masked by glow from zeta. v. faint supernova remnant NE. of η Gem. bright but starlike; oval at high mag. Rosette Neb.; very large; incl. NGC2244 most distant known Milky Way GC $(2 \times 10^5 1. v.)$
11 12 13 14 15 16 17 18 19 20	5897 B 72 6781 6791 M1-92 6822 6888 IC 5146 7317-20 7635	Oph Aql Lyr Cyg Sgr Cyg Peg	GC DN PN OC RN G-irr SNR? RN G's EN	15 14.5 17 21.0 19 16.0 19 19.0 19 34.3 19 42.1 20 10.7 21 51.3 22 33.7 23 18.5	$\begin{array}{cccc} -20 & 50 \\ -23 & 35 \\ +06 & 26 \\ +37 & 40 \\ +29 & 27 \\ -14 & 53 \\ +38 & 16 \\ +47 & 02 \\ +33 & 42 \\ +60 & 54 \end{array}$	10.9 	7.3 30 106" 13 0.2 × 0.1 16.2 × 11.2 18 × 12 12 × 12 4 × 3	large, but faint and loose globular cl. Barmard's dark S-Nebula; RFT needed pale version of M97; large, fairly bright large, faint but very rich cl.; 100+* Footprint Neb.; bright but starlike; double Barnard's Gal.; member Local Grp.; faint Crescent Neb.; small faint arc near γ Cyg. Cocoon Neb.; faint; at end of long dark neb. Stephan's Quintet; ¹ / ₂ SSW. of NGC 7331 Bubble Neb.; v. faint; ¹ / ₂ SW. of M52

GALAXIES

BY BARRY F. MADORE

External galaxies are generally of such low surface brightness that they often prove disappointing objects for the amateur observer. However it must be remembered that many of these galaxies were discovered with very small telescopes and that the enjoyment of their discovery can be recaptured. In addition the central concentration of light varies from galaxy to galaxy making a visual classification of the types possible at the telescope. Indeed the type of galaxy as listed in the first table is in part based on the fraction of light coming from the central bulge of the galaxy as compared to the contribution from a disk component. Disk galaxies with dominant bulges are classified as Sa; as the nuclear contribution declines, types of Sb, Sc, and Sd are assigned until the nucleus is absent at type Sm. Often the disks of these galaxies show spiral symmetry, the coherence and strength of which is denoted by Roman numerals I through V, smaller numbers indicating well-formed global spiral patterns. Those spirals with central bars are designated SB while those with only a hint of a disk embedded in the bulge are called SØ. A separate class of galaxies which possess no disk component are called ellipticals and can only be further classified numerically by their apparent flattening: EØ being apparently round, E7 being the most flattened.

The following table presents the 40 brightest galaxies taken from the Revised Shapley-Ames Catalog. As well as their designations, positions, and types, the table lists the total blue magnitudes, major and minor axis lengths (to the nearest minute of arc), one modern estimate of their distances in thousands of parsecs, and finally their radial velocities corrected for the motion of our Sun about the galactic centre.

THE 40 OPTICALLY BRIGHTEST SHAPLEY-AMES GALAXI
--

NGC/IC (Other)	α/δ (1983)	Туре	B _T ma × mi	Distance Corrected Radial Vel.
55	00 ^h 14 ^m O4 ^s -39°17.1′	Sc	8.22 mag 25 × 3 arc min	3 100 kpc +115 km/s
205	00 39 27 +41 35.7	SØ/E5pec	8.83 8 × 3	730 +49
221 M32	00 41 49 +40 46.3	E2	9.01 3 × 3	730 +86
224 M31	00 41 49 +41 10.5	Sb I—II	4.38 160 × 40	730 -10
247	00 46 19 -20 51.2	Sc III–IV	9.51 18 × 5	3 100 +604
253	00 46 46 -25 23.0	Sc	8.13 22 × 6	4 200 + 504
SMC	00 52 10 -72 55.3	Im IV–V	2.79 216 × 216	78 +359
300	00 54.05 -37 46.7	Sc III	8.70 20 × 10	2 400 +625
598 M33	01 32 55 +30 34.0	Sc II–III	6.26 60 × 40	900 +506
628 M74	01 35 49 +15 41.6	Sc I	9.77 8 × 8	17 000 +507
1068 M77	02 41 49 -00 05.2	Sb II	9.55 3 × 2	25 000 +510
1291	03 16 42 -41 11.3	SBa	9.42 5 × 2	15 000 +512
1313	03 18 04 -66 33.6	SBc III–IV	9.37 5 × 3	5 200 +261
1316 Fornax A	03 22 03 -37 16.1	Sa (pec)	9.60 4 × 3	30 000 +1713
LMC	05 23 45 -69 46.3	SBm III	0.63 432 × 432	57 +34
2403	07 35 13 +65 38.2	Sc III	8.89 16 × 10	3 600 + 299
2903	09 31 02 +21 34.4	Sc I–III	9.50 11 × 5	9 400 +472
3031 M81	09 54 11 +69 08.9	Sb I–II	7.86 16 × 10	3 600 +124
3034 M82	09 54 24 +69 45.5	Amor- phous	9.28 7 × 2	3 600 +409
3521	11 04 57 +00 03.5	ѕь п–ш	9.64 7 × 2	13 000 +627

NGC/IC (Other)	α/δ (1983)	Туре	B _T ma × mi	Distance Corrected Radial Vel.
3627	11 19 22	ЅҌ Ш	.9.74	12 000
M66	+13 05.0		8 × 3	+593
4258	12 18 07	Sb II	8.95	10 000
M106	+47 24.1		20 × 6	+520
4449	12 27 24 +44 11.4	Sm IV	9.85 5 × 3	5 000 +250
4472	12 28 55	E1/SØ	9.32	22 000
M49	+08 05.8		5 × 4	+822
4486	12 29 58	ЕØ	9.62	22 000
M87	+12 29.2		3 × 3	+1136
4594	12 39 07	Sa/b	9.28	17 000
M104	-11 31.8		7 × 2	+873
4631	12 41 18 +32 38.0	Sc	9.84 12 × 1	12 000 +606
4649	12 42 49	SØ	9.83	22 000
M60	+11 38.7		4 × 3	+1142
4736	12 50 06	Sab	8.92	6 900
M94	+41 12.9		5 × 4	+ 345
4826	12 55 55	Sab II	9.37	7 000
M64	+21 46.5		8 × 4	+350
4945	13 04 28 -49 22.5	Sc	9.60 12 × 2	7 000 +275
5055	13 15 04	Sbc II-III	9.33	11 000
M63	+42 07.4		8 × 3	+550
5128	13 24 29	SØ (pec)	7.89	6 900
Cen A	-42 35.7		10 × 3	+251
5194	13 29 10	Sbc I-II	8.57	11 000
M51	+47 17.2		12 × 6	+541
5236	13 36 02	SBc II	8.51	6 900
M83	-29 46.8		10 × 8	+275
5457	14 02 39	Sc I	8.18	7 600
M101	+54 26.4		22 × 22	+372
6744	19 08 09 -63 53.0	Sbc II	9.24 9 × 9	13 000 +663
6822	19 43 59 -14 50.8	Im IV–V	9.35 20 × 10	680 +15
6946	20 34 30 +60 05.9	Sc II	9.68 13 × 9	6 700 + 336
7793	23 56 57 -32 41.1	Sd IV	9.65 6 × 4	4 200 +241

The following table contains the positions and catalogue designations of all those galaxies known to have proper names which usually honour the discoverer (Object McLeish), identify the constellation in which the galaxy is found (Fornax A) or describe the galaxy in some easily remembered way (Whirlpool galaxy).

164

::

GALAXIES WITH PROPER NAMES

Name/Other	α/δ (1950)	Name/Other	α/δ (1950)
Andromeda Galaxy	00 ^h 40 ^m 0	Holmberg III	09 ^h 09 ^m 6
= M31 = NGC 224	+41°00′		+74°26′
Andromeda I	00 43.0	Holmberg IV	13 52.8
	+37 44	= DDO 185	+54 09
Andromeda II	01 13.5	Holmberg V	13 38.8 +54 35
Andromeda III	$ \begin{array}{c} 00 & 32.6 \\ +36 & 14 \end{array} $	Holmberg VI = NGC 1325 A	03 22.6 -21 31
Andromeda IV	00 39.8	Holmberg VII	12 33.2
	+40 18	= DDO 137	+06 35
Antennae	11 59.3	Holmberg VIII	13 11.0
= NGC 4038/39	-18 35	= DDO 166	+36 29
Barnard's Galaxy	19 42.1	Holmberg IX	09 53.5
= NGC 6822	-14 53	= DDO 66	+69 17
BL Lac	22 01.9 +42 11	Hydra A	09 15.7 -11 53
Capricorn Dwarf	21 44.0	Keenan's System	13 31.1
= Pal 13	-21 29	= NGC 5216/18 = Arp 104	+62 52
Caraffe Galaxy	04 26.6 -48 01	Large Magellanic Cloud	05 24.0 -69 48
Carina Dwarf	06 45.1	Leo I = Harrington-Wilson #1	10 05.8
	-51 00	= Regulus Dwarf = DDO 74	+12 33
Cartwheel Galaxy	$ \begin{array}{c c} 00 & 35.0 \\ -34 & 01 \end{array} $	Leo II = Harrington-Wilson #2 = Leo B = DDO 93	11 10.8 +22 26
Centaurus A	13 22.5 -42 46	Leo A	09 56.5
= NGC 5128 = Arp 153		= Leo III = DDO 69	+30 59
Circinus Galaxy	14 09.3 -65 06	Lindsay-Shapley Ring	06 44.4 -74 11
Copeland Septet = NGC 3745/54 = Arp 370	11 35.1 + 22 18	McLeish's Object	20 05.0 -66 22
Cygnus A	19 57.7 +40 36	Maffei I	02 32.6 +59 26
Draco Dwarf	17 19.2	Maffei II	02 38.1
= DDO 208	+57 58		+59 23
Fath 703	15 11.0	Mayall's Object	11 01.1
	-15 17	= Arp 148 = VV32	+41 07
Fornax A	$ \begin{array}{c c} 03 & 20.8 \\ -37 & 23 \end{array} $	Mice	12 44.7
= NGC 1316		= NGC 4676 = Arp 242	+30 54
Fornax Dwarf	$ \begin{array}{r} 02 & 37.8 \\ -34 & 44 \end{array} $	Pegasus Dwarf = DDO 216	23 26.0 +14 28
Fourçade-Figueroa Object	$13 32.4 \\ -33 38$	Perseus A = NGC 1275	03 16.5 +41 20
GR8 (Gibson Reaves)	12 56.2	Pinwheel Galaxy	14 01.5
= DDO 155	+14 29	= M101 = NGC 5457	+54 36
Hardcastle Nebula	13 10.2	Regulus Dwarf	10 05.8
	-32 26	= Leo I = DDO 74	+12 33
Hercules A	16 48.7 +05 06	Reticulum Dwarf	04 35.4 -58 56
Holmberg I	09 36.0	Reinmuth 80	00 57.6
= DDO 63	+71 25	= NGC 4517 A	-33 58
Holmberg II	08 13.7	Seashell Galaxy	13 44.5
= DDO 50 = Arp 268	+70 52		-30 10

Name/Other	α/δ (1950)	Name/Other	α/δ (1950)
Serpens Dwarf	15 ^h 13 ^m 5	Triangulum Galaxy	01 ^h 31 ^m 0
	+00°03′	= M33 = NGC 598	+30°24′
Seyfert's Sextet	15 57.0	Ursa Minor Dwarf	15 08.2
= NGC 6027 A-D	+20 54	= DDO 199	+67 23
Sextans A	10 08.6	Virgo A	12 28.3
= DDO 75	-04 28	= M87 = NGC 4486 = Arp 152	+12 40
Sextans B	09 57.4	Whirlpool Galaxy	13 27.8
= DDO 70	+05 34	= M51 = NGC 5194	+47 27
Sextans C	10 03.0	Wild's Triplet	11 44.2
	+00 19	= Arp 248	-03 33
Small Magellanic Cloud	00 51.0	Wolf-Lundmark-Melotte	23 59.4
	-73 06	= DDO 221	-15 44
Sombrero Galaxy	12 37.6	Zwicky No. 2	11 55.9
= M104 = NGC 4594	-11 21	= DDO 105	+38 21
Spindle Galaxy	10 02.8	Zwicky's Triplet	16 48.0
= NGC 3115	-07 28	= Arp 103	+45 33
Stephans Quintet = NGC 7317-20 = Arp 319	22 33.7 +33 42	-	

The nearest galaxies listed below form what is known as our Local Group of galaxies. Many of the distances are still quite uncertain.

Name	α (198	3.0) δ	B _T	Туре	Distance (kpc)
M31 = NGC 224	00 ^h 41 ^m 8	+41°11′	4.38	Sb I–II	670
Galaxy				Sb/c	
M33 = NGC 598	01 32.9	+30 34	6.26	Sc II–III	550
LMC	05 23.8	-69 46	0.63	SBm III	50
SMC	00 52.2	-72 55	2.79	Im IV–V	60
NGC 6822	19 44.0	-14 51	9.35	Im IV–V	520
IC 1613	01 03.9	$+02\ 02$	10.00	Im V	740
NGC 205	00 39.5	+41 36	8.83	SØ/E5 pec	670
M32 = NGC 221	00 41.8	+40 46	9.01	E2	670
NGC 185	00 38.0	+48 15	10.13	dE3 pec	670
NGC 147	00 32.3	+48 25	10.36	dE5	670
Fornax	02 39.2	-34 36	9.1	dE	130
Sculptor	00 59.0	-33 47	10.5	dE	85
Leo I	10 07.6	+12 24	11.27	dE	230
Leo II	11 12.6	+22 15	12.85	dE	230
Draco	17 19.8	+57 56		dE	80
Ursa Minor	15 08.6	+67 16		dE	75
Carina	06 47.2	-50 59	_	dE	170
And I	00 44.6	+37 57	13.5	dE	670
And II	01 15.5	+33 21	13.5	dE	670
And III	00 34.5	+36 25	13.5	dE	670
LGS 3	01 02.9	+21 48	-	?	670

THE NEAR-BY GALAXIES: OUR LOCAL GROUP

:::

RADIO SOURCES

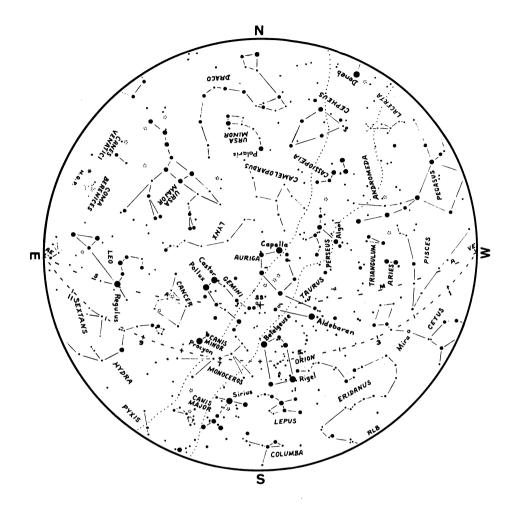
BY JOHN GALT

Although several thousand radio sources have been catalogued, most of them are observable only with the largest radio telescopes. This list contains the few strong sources which could be detected with amateur radio telescopes as well as representative examples of astronomical objects which emit radio waves.

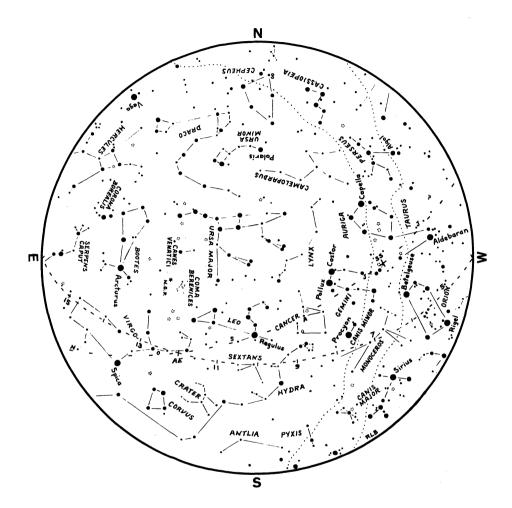
		α (19	980)	δ	
Name	h	m	°	,	Remarks
Tycho's s'nova	00	24.6	+64	01	Remnant of supernova of 1572
Andromeda gal.	00 02	41.5 23.9	+41+62	09 01	Closest normal spiral galaxy
IC 1795, W3 Algol	02	23.9 06.6	+40	52	Multiple HII region, OH emission Star emits high freq. radio waves
NGC 1275, 3C 84		18.5	+41	26	Seyfert galaxy, radio variable
CP 0328	03	31.3	+54	29	Pulsar, period = 0.7145 s, H abs'n.
Crab neb, M1*	05	33.2	+22	00	Remnant of supernova of 1054
NP 0532	05	33.2	+22	00	Radio, optical & X-ray pulsar
V 371 Orionis Orion neb, M42	05	32.7 34.3	$+01 \\ -05$	54 24	Red dwarf, radio & optical flare star
Onon neo, M42	05	34.5	-05	24	HII region, OH emission, IR source
IC 443	06	16.1	+22	36	Supernova remnant (date unknown)
Rosette neb	06	30.9	+04	53	HII region
YV CMa	07	22.2	-20	42	Optical var. IR source, OH, H ₂ O emission
3C 273	12	28.0	+02	10	Nearest, strongest quasar
Virgo A, M87*	12	29.8	+12	30	EO galaxy with jet
Centaurus A	13	24.2	-42	55	NGC 5128 peculiar galaxy
3C 295	14	10.7	+52	18	21st mag, galaxy, 4.5×10^9 light years
OQ 172	14	44.3	+10	04	Quasar, very large redshift $z = 3.53$
Scorpio X-1	16	18.8	-15	35	X-ray, radio, and optical variable
Kepler's s'nova	17	27.6	-21	16	Remnant of supernova of 1604
Galactic nucleus	17	44.3	-28	56	Complex region OH, NH ₃ em., H ₂ CO abs'n.
Omega neb, M17	18	19.3	-16	10	HII region, double structure
SS433	19	10.9	+04	56	Star with high velocity jets
CP 1919	19	20.8	+21	50	First pulsar discovered, $P = 1.337$ s
Cygnus A*	19	58.7	+40	41	Strong radio galaxy, double source
Cygnus X	20	21.9	+40	19	Complex region
NML Cygnus	20	45.8	+40	02	Infrared source, OH emission
Cygnus loop	20	51.4	+29	36	S'nova remnant (Network nebula)
N. America	20	54.4	+43	59	Radio shape resembles photographs
BL Lac	22	01.9	+42	11	Radio and optical variable
3C 446	22	24.7	-05	04	Quasar, optical mag. & spectrum var.
Cassiopeia A*	$\overline{23}$	22.5	+58	42	Strongest source, s'nova remnant
Sun*					Continuous emission & bursts
Moon					Thermal source only
Jupiter*					Radio bursts controlled by Io

Source marked * could be detected with amateur radio telescopes. Radio maps of the broad structure of the sky can be found in Sky and Telescope, 1982, March, p. 230. (For more information about amateur radio astronomy, see Astronomy, 5, no. 12, 50 (1977), a series of articles in J. Roy. Ast. Soc. Canada, 72, L5, L22, L38... (1978) and a series of articles in Sky and Telescope, 55, 385 and 475 and 56, 28 and 114 (1978)—Ed.)

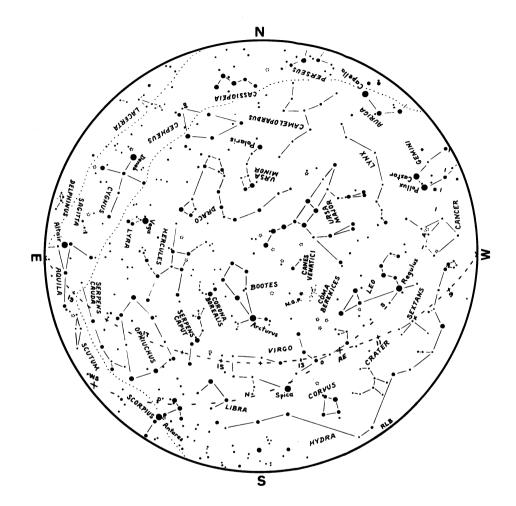
OBSERVING NOTES

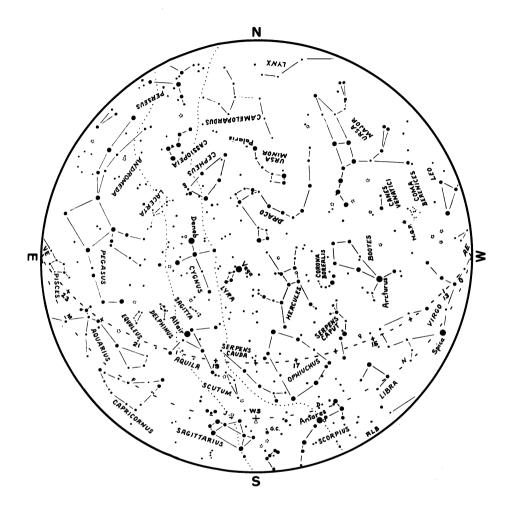

MAPS OF THE NIGHT SKY

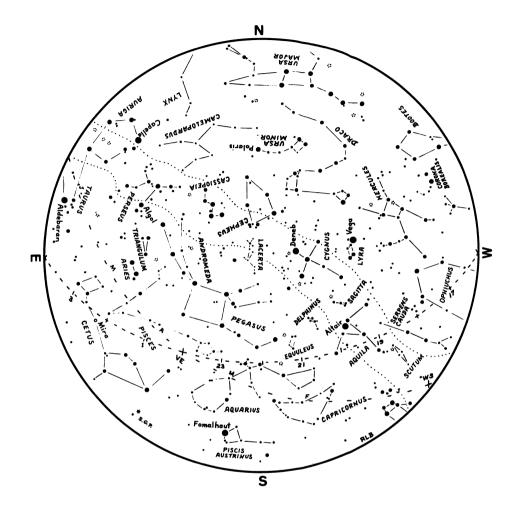
The maps on the next six pages depict the night sky as it appears at various times of the year. The maps are drawn for latitude 45° N, but are useful for latitudes several degrees north or south of this. Because the aspect of the night sky changes continuously with both longitude and time, while time zones change discontinuously with both longitude and time of year, it is not possible to state simply when, in general, a particular observer will find that his or her sky fits exactly one of the six maps. The month indicated on each map is the time of year when the map will match the "late evening" sky. On any particular night, successive maps will represent the sky as it appears every four hours later. For example, at 2 or 3 am on a March night, the May map should be used. Just after dinner on a January night, the November map will be appropriate.

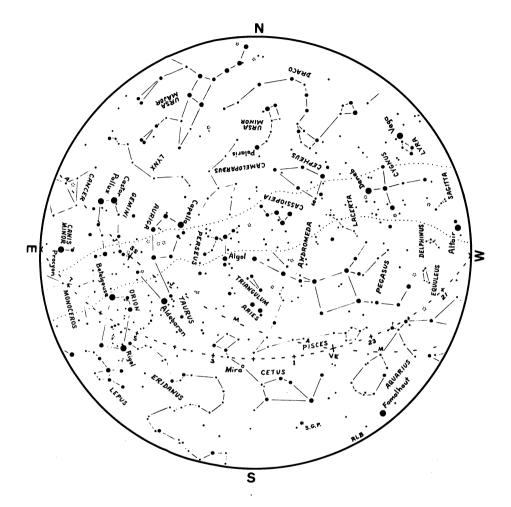

The maps show stars down to a magnitude of 4.5 or 5, i.e. those which are readily apparent to the unaided eye on a reasonably dark night. The center of each map is the zenith, the point directly overhead; the circumference is the horizon. To identify the stars, hold the map in front of you so that the part of the horizon which you are facing (west, for instance) is downward. (The four letters around the periphery of each map indicate compass directions.) Stars forming the usual constellation patterns are linked by straight lines, constellation names being given in upper case letters. The names in lower case are those of first magnitude stars, except Algol and Mira which are famous variable stars, and Polaris which is near the north celestial pole. Small clusters of dots indicate the positions of bright star clusters, nebulae, or galaxies. Although a few of these are just visible to the naked eye, and most can be located in binoculars, a telescope is needed for good views of these objects.

The pair of wavy, dotted lines indicates roughly the borders of the Milky Way, while small asterisks locate the directions of the galactic center (G.C.), north galactic pole (N.G.P.) and south galactic pole (S.G.P.). Two dashed lines appear on each map. The one with more dashes is the celestial equator. Tick marks along this indicate hours of right ascension, the odd hours being labeled. The line with fewer dashes is the ecliptic, the apparent annual path of the Sun across the heavens. Letters along this line indicate the approximate position of the Sun at the beginning of each month. Also located along the ecliptic are the vernal equinox (VE), summer solstice (SS), autumnal equinox (AE), and winter solstice (WS). The Moon and the other eight planets are found near the ecliptic, but since their motions are not related in a simple way to our year, it is not feasible to show them on a general set of star maps.


Star maps providing more detail than possible in the six, all-sky maps presented here are available. For example: Norton's Star Atlas (8700 stars to magnitude 6.3); *Tirion's Sky Atlas 2000.0* (43 000 stars to magnitude 8.0); AAVSO Variable Star Atlas (260 000 stars to magnitude 9.5) (Sky Publishing Corporation, 49 Bay State Road, Cambridge, MA 02238). Norton's is a classic and should be in the library of anyone who has a keen interest in the night sky. Both Tirion's atlas and the AAVSO atlas will be invaluable to the advanced observer. For information on the mythology of the night sky, Star Names, Their Lore and Meaning by R. H. Allen is a standard reference (Dover Publications, Inc., 180 Varick St., New York, NY 10014).


JANUARY


MARCH


MAY

JULY

SEPTEMBER

NOVEMBER

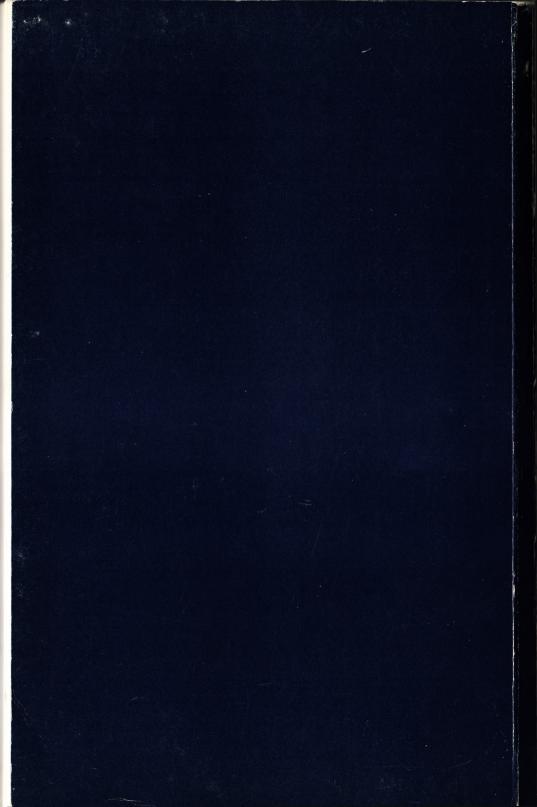
KEY TO LEFT-HAND MARGIN SYMBOLS

- **D** BASIC DATA
- t TIME
- \mathbf{M} the sky month by month
- \odot sun
- (MOON
- **P** PLANETS, SATELLITES, AND ASTEROIDS
- METEORS, COMETS, AND DUST
- 🗮 STARS
- :: NEBULAE

INDEX

Anniversaries and Festivals, 19 Asteroids, 116 Aurora, 49 Clusters, 152 Comets, 126 Constellations, 129 Coordinates and Terminology, 8 Cover Photograph, 4 Craters: Impact, 124 Eclipses, 74 Galaxies, 162 Gegenschein, 127 Interplanetary Dust, 127 Julian Day Calendar, 19 Jupiter: General, 95; Phenomena of Satellites, 104 Mars, General, 93 Mercury, 90 Messier's Catalogue, 156 Meteors, Fireballs, Meteorites, 122 Miscellaneous Astronomical and Physical Data, 12 Moon: Observation, 20; see also "Occultations"; Map, 57; Full Moon Dates, 60 Moonrise and Moonset, 60 Nebulae, 155 Neptune, 100 NGC Objects, 159 Occultations: Lunar Grazing, 83; Lunar Total, 75; Planetary, 120

Planets: General, 88; Elements, 9; Pronunciation of Names, 103 Pluto, 101 Precession, 14 Radio Sources, 167 Reporting of Discoveries, 4 Satellites, 10; Pronunciation of Names, 103 Saturn: General, 97; Satellites, 115 Sky and Astronomical Phenomena Month by Month, 20 Solar System: Elements, 9; List of Satellites, 10 Star Maps, 169 Stars: Brightest, 132; Clusters, 152; Double and Multiple, 145; Finding List and Names, 131; Nearest, 143; Variable, 146 Sun: Ephemeris, 46; Solar Activity, 49 Sunrise and Sunset, 52 Symbols: 8 Telescope Parameters, 11 Time: General, 15; Conversion to Standard, 52; Correction to Sundial, 48; Sidereal Time Diagram, 18; Time Signals, 16; Time Zones, 15, 16, 17 Twilight: Diagram, 18; Table, 56 Uranus, 99 Venus, 91 Visiting Hours at Observatories and Planetaria, 6 Zodiacal Light, 127


CALENDAR

January	February	March	April
SMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS
1	1 2 3 4 5	1 2 3 4 5	1 2
2 3 4 5 6 7 8	6 7 8 9 10 11 12	6 7 8 9 10 11 12	3 4 5 6 7 8 9
9 10 11 12 13 14 15	13 14 15 16 17 18 19	13 14 15 16 17 18 19	10 11 12 13 14 15 16
16 17 18 19 20 21 22	20 21 22 23 24 25 26	20 21 22 23 24 25 26	17 18 19 20 21 22 23
23 24 25 26 27 28 29	27 28	27 28 29 30 31	24 25 26 27 28 29 30
30 31			
May	June	July	August
ѕмтwтғѕ	SMTWTFS	S М Т W T F S	S M T W T F S
1 2 3 4 5 6 7	1 2 3 4	1 2	1 2 3 4 5 6
8 9 10 11 12 13 14	5 6 7 8 9 10 11	3 4 5 6 7 8 9	7 8 9 10 11 12 13
15 16 17 18 19 20 21	12 13 14 15 16 17 18	10 11 12 13 14 15 16	14 15 16 17 18 19 20
22 23 24 25 26 27 28	19 20 21 22 23 24 25	17 18 19 20 21 22 23	21 22 23 24 25 26 27
29 30 31	26 27 28 29 30	24 25 26 27 28 29 30	28 29 30 31
		31	
September	October	November	December
SMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS
1 2 3	1	1 2 3 4 5	1 2 3
4 5 6 7 8 9 10	2 3 4 5 6 7 8	6 7 8 9 10 11 12	4 5 6 7 8 9 10
11 12 13 14 15 16 17	9 10 11 12 13 14 15	13 14 15 16 17 18 19	11 12 13 14 15 16 17
18 19 20 21 22 23 24	16 17 18 19 20 21 22	20 21 22 23 24 25 26	18 19 20 21 22 23 24
25 26 27 28 29 30	23 24 25 26 27 28 29	27 28 29 30	25 26 27 28 29 30 31
	30 31	-	
	50 51		

CALENDAR

1984

January	February	March	April
SMTWTFS	SMTWTFS	SMTWTFS	ѕмтwтғs
1 2 3 4 5 6 7	1 2 3 4	1 2 3	1 2 3 4 5 6 7
8 9 10 11 12 13 14	5 6 7 8 9 10 11	4 5 6 7 8 9 10	8 9 10 11 12 13 14
15 16 17 18 19 20 21	12 13 14 15 16 17 18	11 12 13 14 15 16 17	15 16 17 18 19 20 21
22 23 24 25 26 27 28	19 20 21 22 23 24 25	18 19 20 21 22 23 24	22 23 24 25 26 27 28
29 30 31	26 27 28 29	25 26 27 28 29 30 31	29 30
May	June	July	August
SMTWTFS	SMTWTFS	ѕмтwтғѕ	S М Т W T F S
1 2 3 4 5	1 2	1 2 3 4 5 6 7	1 2 3 4
6 7 8 9 10 11 12	3 4 5 6 7 8 9	8 9 10 11 12 13 14	5 6 7 8 9 10 11
13 14 15 16 17 18 19	10 11 12 13 14 15 16	15 16 17 18 19 20 21	12 13 14 15 16 17 18
20 21 22 23 24 25 26	17 18 19 20 21 22 23	22 23 24 25 26 27 28	19 20 21 22 23 24 25
27 28 29 30 31	24 25 26 27 28 29 30	29 30 31	26 27 28 29 30 31
September	October	November	December
SMTWTFS	SMTWTFS	SMTWTFS	SMTWTFS
1	1 2 3 4 5 6	1 2 3	1
2 3 4 5 6 7 8	7 8 9 10 11 12 13	4 5 6 7 8 9 10	2 3 4 5 6 7 8
9 10 11 12 13 14 15	14 15 16 17 18 19 20	11 12 13 14 15 16 17	9 10 11 12 13 14 15
16 17 18 19 20 21 22	21 22 23 24 25 26 27	18 19 20 21 22 23 24	16 17 18 19 20 21 22
23 24 25 26 27 28 29	28 29 30 31	25 26 27 28 29 30	23 24 25 26 27 28 29
30			30 31

