the OBSERVER'S HANDBOOK 1978

seventieth year of publication

the ROYAL ASTRONOMICAL SOCIETY of CANADA

editor: JOHN R. PERCY

THE ORIGINS OF THE ROYAL ASTRONOMICAL SOCIETY OF CANADA

In the mid-nineteenth century, in the bustling Lake Ontario port city of Toronto, there were no professional astronomers. However, many inhabitants of the city were keenly interested in sciences and current developments in them. King's College, which grew into the University of Toronto, had been started in 1842. In 1849 it had 36 undergraduates attending, and had graduated a total of 55 students in the three faculties of arts, law and medicine. The Toronto Magnetic Observatory had been established in 1840. Its early directors and observers were officers and soldiers in garrison. Some of them, such as Captain J. F. Lefroy, contributed much to the cultural life of the city. Out of this body of interest came the Canadian Institute established in 1849 "to promote those pursuits which are calculated to refine and exalt a people".

Besides holding weekly meetings, the Canadian Institute accumulated an outstanding library. There many hours were spent in study by Andrew Elvins who had come to Canada from Cornwall in 1844. In 1860 he moved to Toronto, with a population then of 44,000, and became chief cutter in a well known clothing store on King Street. While the Canadian Institute held discussion meetings of all sciences, Elvins wished to concentrate on astronomy. For this purpose he gathered together a few like-minded friends.

On December 1, 1868 The Toronto Astronomical Club met for the first time, at the Elvins' home, "having for its object the aiding of each other in the pursuit of astronomical knowledge". The thousands of meteor sightings of the Leonid showers made in Toronto in November 1867 and 1868 had doubtless encouraged the project. In May, 1869 the word "Club" was changed to "Society". Written records were kept for the first year, until the secretary moved away. After that, the group met only sporadically, but by the distribution of materials Elvins kept interest alive.

As the century wore on, Elvins, who lived till 1918, acquired more kindred spirits, some of them influential and prominent. As a result, on March 10, 1890 the organization was incorporated as The Astronomical and Astrophysical Society of Toronto. In May, 1900 chiefly through the efforts of one of the important early members George E. Lumsden, the name was changed to The Toronto Astronomical Society. On March 3, 1903 through legal application the name took on its current form, The Royal Astronomical Society of Canada. For many years the Society had its offices and library in the Canadian Institute buildings, and held meetings there.

Early in the 1890's, Dr. Clarence A. Chant of the University of Toronto became deeply interested in the Society. The impetus which he gave to it until his death in 1956 still lingers. During its first fifteen years the Society published annually volumes containing its Transactions and Annual Report. In 1907 Dr. Chant started The Journal of the Royal Astronomical Society of Canada, and this Handbook, called then "The Canadian Astronomical Handbook". It is a remarkable fact that at the time of his death Dr. Chant had been the Editor of both the Journal and the Handbook for exactly 50 years. During this period he received generous assistance from many of the Society's members. At times the Journal was published monthly, but currently it is bi-monthly.

The change of name in 1903 led immediately to the concept that the Society should not be limited to Toronto, but should become national in scope. The second Centre to be established was that of Ottawa in 1906, where the Dominion Observatory was being established. Now the Society has 18 Centres from sea to sea across Canada, as listed elsewhere in this Handbook. The growth in membership to nearly 3000 also shows its flourishing state.

HELEN SAWYER HOGG

PRINTED IN CANADA BY THE UNIVERSITY OF TORONTO PRESS

the OBSERVER'S HANDBOOK 1978

seventieth year of publication

the ROYAL ASTRONOMICAL SOCIETY of CANADA

124 Merton Street, Toronto M4S 2Z2, Canada

editor: JOHN R. PERCY

ISSN 0080-4193

THE OBSERVER'S HANDBOOK for 1978 is the seventieth edition. It has now grown to 128 pages: the predictions of total and grazing lunar occultations have been considerably expanded to cover the whole of Canada and the U.S., and about a dozen other sections have been extensively revised and/or expanded.

I thank all those who contributed to the preparation of the 1978 edition: those whose names appear explicitly in the various sections, those mentioned below, and especially the editorial assistant, John F. A. Perkins. Among the many people who have given freely of their advice and assistance are: R. C. Brooks (an improved version of the sidereal time diagram), Terry Dickinson (further expansion of the important "Planets" section), Vic Gaizauskas (advice on eclipses and solar phenomena), Ian Halliday (advice on planetary and miscellaneous astronomical data), Janet A. Mattei (predictions of Algol and δ Cephei, as well as other variable star information), P. B. Robertson (revision of the "Impact Craters" section), T. Van Flandern (advice and assistance with the expansion of the occultation predictions) and Joe Veverka (advice on planetary satellite data). I also thank Helen S. Hogg and R. P. Van Zandt for their many comments and suggestions, and Rosemary Streeman and Lloyd Higgs for their assistance and support. Once again, the David Dunlap Observatory and Erindale College, University of Toronto, provided much-appreciated financial, technical and moral support for the HANDBOOK.

My indebtedness to H.M. Nautical Almanac Office, and to the *American Ephemeris*, is even greater than in past years. Leslie Morrison and his colleagues at H.M.N.A.O. provided all of the predictions of total and grazing lunar occultations, well in advance of our publication deadline; Gordon E. Taylor provided the predictions on planetary occultations [I hope that the results of these latter predictions are as exciting as they were in 1977!].

Finally, I must record, with sadness, the death of Dr. John F. Heard in October 1976. He was a major contributor to this HANDBOOK, a leader and counsellor of the R.A.S.C. for forty years, and an outstanding figure in Canadian astronomy.

JOHN R. PERCY

THE ROYAL ASTRONOMICAL SOCIETY OF CANADA

The history of the Royal Astronomical Society of Canada goes back to the middle of the nineteenth century (see inside front cover). The Society was incorporated in 1890, received its Royal Charter in 1903, and was federally incorporated in 1968. The National Office of the Society is located at 124 Merton Street, Toronto, Ontario M4S 2Z2; the business office and astronomical library are housed here.

The Society is devoted to the advancement of astronomy and allied sciences, and any serious user of this HANDBOOK would benefit from membership. Applicants may affiliate with one of the eighteen Centres across Canada established in St. John's, Halifax, Quebec, Montreal, Ottawa, Kingston, Hamilton, Niagara Falls, London, Windsor, Winnipeg, Saskatoon, Edmonton, Calgary, Vancouver, Victoria and Toronto, or join the National Society direct, as an unattached member.

Members receive the publications of the Society free of charge: the OBSERVER'S HANDBOOK (published annually in November), and the bimonthly JOURNAL, which contains articles on many aspects of astronomy. Membership applies to a given calendar year; new members joining after October 1 will receive membership and publications for the following calendar year. Annual fees are currently \$12.50, and \$7.50 for persons under 18 years.

SUGGESTIONS FOR FURTHER READING

The OBSERVER'S HANDBOOK is an annual guide to astronomical phenomena and data. The following is a *brief* list of publications which may be useful as an introduction to astronomy, as a companion to the HANDBOOK or for advanced work.

- Abell, G. O. *Realm of the Universe*. Toronto: Holt, Rinehart and Winston, 1976. Standard, non-technical college text.
- Becvar, A. Atlas of the Heavens. Cambridge, Mass.: Sky Publishing Corp., 1962. Useful star charts to magnitude 7.5.
- Hogg, Helen S. *The Stars Belong to Everyone*. Toronto: Doubleday Canada Ltd., 1976. Superb introduction to the sky.
- Mayall, R. N., Mayall, M. W. and Wyckoff, J. *The Sky Observer's Guide*. New York: Golden Press, 1971. Useful guide to practical astronomy.
- Mitton, S. ed. *The Cambridge Encyclopaedia of Astronomy*. Toronto: Prentice-Hall of Canada; New York: Crown Publ. Co., 1977. An exciting comprehensive guide to modern astronomy.
- Roth, G. D. Astronomy: A Handbook. New York: Springer-Verlag, 1975. A comprehensive advanced guide to amateur astronomy.
- Satterthwaite, G. ed. Norton's Star Atlas. Cambridge, Mass.: Sky Publishing Corp., 1973. A classic observing guide.
- Sky and Telescope. Sky Publishing Corp., 49-50-51 Bay State Rd., Cambridge, Mass. 02138. A monthly magazine containing articles on all aspects of astronomy.

ANNIVERSARIES AND FESTIVALS, 1978

New Year's DaySun.	Jan.	1	Memorial Day Mon.	May	29
EpiphanyFri.	Jan.	6	St. John Baptist		
Septuagesima Sunday	Jan.	22	(Mid-Summer Day)Sat.	June	24
Quinquagesima			Canada DaySat.	July	1
(Shrove) Sunday	Feb.	5	Independence DayTue.	July	4
Accession of Queen			Birthday of Queen Mother		
Elizabeth (1952)Mon.	Feb.	6	Elizabeth (1900)Fri.	Aug.	4
Ash Wednesday	Feb.	8	Civic HolidayMon.	Aug.	7
Lincoln's BirthdaySun.	Feb.	12	Labour Day Mon.	Sept.	4
Washington's BirthdayMon.	Feb.	20	St. Michael		
St. DavidWed	Mar.	1	(Michaelmas Day)Fri.	Sept.	29
St. Patrick Fri.	Mar.	17	Jewish New Year	-	
Palm Sunday	Mar.	19	(Rosh Hashanah)Mon.	Oct.	2
Good Friday	Mar.	24	Thanksgiving (Can.)Mon.	Oct.	9
Easter Sunday	Mar.	26	Columbus Day Mon.	Oct.	9
Birthday of Queen			Yom KippurWed.	Oct.	11
Elizabeth (1926)Fri.	Apr.	21	All Saints' DayWed.	Nov.	1
First day of Passover Sat.	Apr.	22	General Election DayTue.	Nov.	7
St. GeorgeSun.	Apr.	23	Remembrance Day Sat.	Nov.	11
Rogation Sunday	Apr.	30	Veterans' DaySat.	Nov.	11
Ascension DayThur.	May	4	Thanksgiving (U.S.)Thur.	Nov.	23
Pentecost (Whit Sunday)	May	14	St. AndrewThur.	Nov.	30
Trinity Sunday	May	21	First Sunday in Advent	Dec.	3
Victoria DayMon.	May	22	Christmas DayMon.	Dec.	25
Corpus Christi	May	25	-		

All dates are given in terms of the Gregorian calendar. January 14 corresponds to January 1, Julian reckoning. Italicized holidays are celebrated in the U.S. only.

SYMBOLS AND ABBREVIATIONS

SUN, MOON AND PLANETS

	The Sun New Moon Full Moon First Quarter Last Quarter	 	24 Jupiter b Saturn ∂ Uranus Ψ Neptune P Pluto
STAL STAL	Aries	SIGNS OF THE ZODIAC Ω Leo120° 𝔅 Virgo150° ≃ Libra180° 𝔅 Scorpius210°	 ✓ Sagittarius240° ♂ Capricornus270° ∞ Aquarius300°) (Pisces330°

THE GREEK ALPHABET

Α, α	Alpha	I, 1 Iota	P, p Rho
Β, β	Beta	К, к Карра	Σ, σ Sigma
Γ, γ	Gamma	Λ, λ Lambda	T,τ Tau
Δ, δ	Delta	M, μ Mu	τ, υ Upsilon
Ε, ε	Epsilon	N, V Nu	Φ, φ Phi
Ζ, ζ	Zeta	Ξ,ξ Χί	X, χ Chi
Η, η	Eta	O, o Omicron	Ψ, ψ Psi
Θ, θ, ξ	+ Theta	Π, π Ρί	Ω, ω Omega

CO-ORDINATE SYSTEMS AND TERMINOLOGY

Astronomical positions are usually measured in a system based on the *celestial* poles and celestial equator, the intersections of the earth's rotation axis and equatorial plane, respectively, and the infinite sphere of the sky. *Right ascension* (R.A. or α) is measured in hours (h), minutes (m) and seconds (s) of time, eastward along the celestial equator from the vernal equinox. Declination (Dec. or δ) is measured in degrees (°), minutes (′) and seconds (′) of arc, northward (N or +) or southward (S or -) from the celestial equator toward the N or S celestial pole. One hour of time equals 15 degrees.

Positions can also be measured in a system based on the *ecliptic*, the intersection of the earth's orbit plane and the infinite sphere of the sky. The sun appears to move eastward along the ecliptic during the year. *Longitude* is measured eastward along the ecliptic from the vernal equinox; *latitude* is measured at right angles to the ecliptic, northward or southward toward the N or S ecliptic pole. The *vernal equinox* is one of the two intersections of the ecliptic and the celestial equator; it is the one at which the sun crosses the celestial equator moving from south to north.

Objects are *in conjunction* if they have the same longitude or R.A., and are *in opposition* if they have longitudes or R.A.'s which differ by 180° . If the second object is not specified, it is assumed to be the sun. For instance, if a planet is "in conjunction", it has the same longitude as the sun. At *superior conjunction*, the planet is more distant than the sun; at *inferior conjunction*, it is nearer.

If an object crosses the ecliptic moving northward, it is at the *ascending node* of its orbit; if it crosses the ecliptic moving southward, it is at the *descending node*.

Elongation is the difference in longitude between an object and a second object (usually the sun). At conjunction, the elongation of a planet is thus zero.

THE CONSTELLATIONS

LATIN NAMES WITH PRONUNCIATIONS AND ABBREVIATIONS

Andromeda,		
ăn-drŏm′ḗ-d <i>a</i>	. And	Andr
Antlia, ănt'lĭ- <i>a</i>	. Ant	Antl
Apus, ā'p <i>ū</i> s	. Aps	Apus
Aquarius, a-kwâr'ĭ-ŭs	. Aar	Agar
Aquila, ăk 'wi-la	Aal	Agil
Ara. ā'ra	Ara	Arae
Aries ā'rĭ-ēz	Ari	Arie
Auriga \hat{o} -rī'ga	Aur	Auri
Boötes hō-ō'tēz	Boo	Root
Caelum sā'l <i>u</i> m	Cae	Cael
Camelonardalis	. Cut	Cael
ka-měl'o pär'da lis	Cam	Caml
Cancer kăn'săr	Cno	Canno
Cancel, Kall Sel	Che	Cane
kā nāz vā nět i si	CVn	CVan
Camia Major	. Cvn	Cven
Lains Major,	CM	CMa:
Ka nis ma jer	. CMa	CMaj
Canis Minor,	C) ('	C) ('
ka nis mi ner	. CMI	CMin
Capricornus,	~	~
kap'ri-kor'n <i>u</i> s	. Cap	Capr
Carina, ka-rī'na	. Car	Cari
Cassiopeia, kās'i-ō-pē'ya'.	.Cas	Cas
Centaurus, sĕn-tô'rŭs	. Cen	Cent
Cepheus, sē'fūs	Cep	Ceph
Cetus, sē't <i>ŭ</i> s	. Cet	Ceti
Chamaeleon, ka-mē'lē-ŭn.	.Cha	Cham
Circinus, sûr'sĭ-n <i>ŭ</i> s	. Cir	Circ
Columba, kō-lŭm'ba	. Col	Colm
Coma Berenices,		
kō'ma bĕr'ē-nī'sēz	Com	Coma
Corona, Australis,		
kō-rō'na ôs-trā'lĭs	.CrA	CorA
Corona Borealis,		
ka-rō na bō'rē-ā'lĭs	CrB	CorB
Corvus, kôr'v <i>ŭ</i> s	Crv	Corv
Crater, krā'tēr	.Crt	Crat
Crux, krŭks	. Cru	Cruc
Cygnus, sĭg'nŭs	Cvg	Cvgn
Delphinus, děl-fī'n <i>ü</i> s	Del	Diph
Dorado, dō-rā'dō	Dor	Dora
Draco, drā'kō	Dra	Drac
Equileus ē-kwoo'lē-ŭs	Fau	Faul
Fridanus ē-rīd'a-n <i>ū</i> s	Eri	Erid
Fornax fôr'năks	For	Forn
Gemini jěm'i-nī	Gem	Gemi
Grus grus	Gru	Grue
Hercules hûr/kū/lāz		Ulus
Horologium	Hor	Hare
LIUIUIUZIUIII.	Her	Herc
hor'o-lo'ii-im	Her	Herc
hŏr'ō-lô'jĭ-ŭm	Her	Herc Horo
hõr'õ-lõ'ji- \check{u} m Hydra, hī'dr a Hydru, hī'dr a	Her Hor Hya	Herc Horo Hyda

	Indus. ĭn′d <i>ŭ</i> s	Ind	Indi
	Lacerta, la -sûr'ta	Lac	Lacr
	Leo lē'ō	Leo	Leon
	Leo Minor lē'ā mī'nēr	IMI	I Min
	Leo Millor, le o lin her	Len	Lene
	Libra li/bra	Lib	Libr
		Lup	Lini
	Lupus, lu pus	Lup	Lupi
	Lyna, higks	I vr	Lync
	Mansa $m n' c a$. Lyı Mon	Mono
	Microscopium	. wien	wiens
	mī/krā skā/ni žm	Mic	Mior
	Monocaros m önös'är ös	Mon	Mono
	Muson musíka	Muo	Muse
	Norma pôríma	Nor	Norm
	Norma, nor ma	Oct	Norm
	Octains, ok tanz	. Oct	Octr
	Ophluchus, of I-ukus	. Opn	Opni
	Orion, o-ri <i>o</i> n	. Ori	Orio
	Pavo, Pa vo	Pav	Pavo
1	Pegasus, peg a-sús	. Peg	Pegs
	Perseus, pür'sūs	. Per	Pers
	Phoenix, fe'niks	. Phe	Phoe
	Pictor, pik'têr	. Pic	Pict
	Pisces, pĭs'ēz	. Psc	Pisc
	Piscis Austrinus,		
	pĭs'ĭs ôs-trī'n <i>ŭ</i> s	. PsA	PscA
	Puppis, pŭp'ĭs	. Pup	Pupp
1	Pyxis, pĭk′sĭs	. Pyx	Pyxi
	Reticulum,		
	rē-tĭk'ū-l <i>ŭ</i> m	. Ret	Reti
	Sagitta, sa-jĭt'a	. Sge	Sgte
	Sagittarius, săj'ĭ-tā'rĭ-ŭs	Sgr	Sgtr
	Scorpius, skôr pĭ-ŭs	. Sco	Scor
	Sculptor, skulp ter	. Scl	Scul
	Scutum, $sk\bar{u}'t\bar{u}m$,	. Sct	Scut
	Serpens, sûr'pěnz	Ser	Serp
	Sextans, sěks <i>tănz</i>	Sex	Sext
	Taurus, tô'r <i>ŭ</i> s	Tau	Taur
	Telescopium.		
	těl'é-skô'pĭ- <i>ŭ</i> m	Tel	Tele
	Triangulum.		
	trī-ăng gū-l <i>ŭ</i> m	Tri	Tria
	Triangulum Australe		
	trī-ăng'gū-l <i>ŭ</i> m ôs-trā'lē.	Tra	TrAu
	Tucana, tū-kā'na	Tuc	Tucn
	Ursa Major.		
	ûr's <i>a</i> mā'iēr	.UMa	UMai
	Ursa Minor.		2
	ûr'sa mi'nêr	.UMi	UMin
	Vela, vē'la	Vel	Velr
	Virgo, vûr'gō	Vir	Virg
	Volans vo ⁷ länz	Vol	Voln
	Vulpecula, vŭl-pěk'ū-la	Vul	Vuln
	, apooning fut por d-la		, unp

ā fāte; ā chāotic; ă tăp; ă finăl; à àsk; a idea; â câre; ä älms; au aught; ē bē; e crēate; ě ěnd; ě angěl; ë makër; ī tīme; ĭ bǐt; ĭ anĭmal; ō nōte; ō anatōmy; ŏ hŏt; ŏ ŏccur; ô ôrb; ōō mōōn; oo book; ou out; ū tūbe; ū unite; ŭ sŭn; ŭ säbmit; û hûrl.

	Mean Distance from Sun (a)		Period of Revolution		Eccen- tri-	In- clina-	Long. of	Long. of Peri-	Mean Long. at	
		millions	Sidereal	Syn-	city	tion	Node	helion	Epoch	
Planet	A. U.	of km	(P)	odic	(e)	(i)	(ଈ)	(π)	(L)	
				days		0	o	0	0	
Mercury	0.387	57.9	88.0d.	116	.206	7.0	47.9	76.8	222.6	
Venus	0.723	108.1	224.7	584	.007	3.4	76.3	131.0	174.3	
Earth	1.000	149.5	365.26		.017	0.0	0.0	102.3	100.2	
Mars	1.524	227.8	687.0	780	.093	1.8	49.2	335.3	258.8	
Jupiter	5.203	778.	11.86y.	399	.048	1.3	100.0	13.7	259.8	
Saturn	9.539	1427.	29.46	378	.056	2.5	113.3	92.3	280.7	
Uranus	19.18	2869.	84.01	370	.047	0.8	73.8	170.0	141.3	
Neptune	30.06	4497.	164.8	367	.009	1.8	131.3	44.3	216.9	
Pluto	39.44	5900.	247.7	367	.250	17.2	109.9	224.2	181.6	
	1	1	1	1	1	1	1	1	1	

PRINCIPAL ELEMENTS OF THE SOLAR SYSTEM

MEAN ORBITAL ELEMENTS

These elements, for epoch 1960 Jan. 1.5 E.T., are taken from the *Explanatory* Supplement to the American Ephemeris and Nautical Almanac.

	Object	Equat. Diam. km	Ob- late- ness	$ \begin{array}{l} \text{Mass} \\ \oplus \ = \ 1 \end{array} $	Den- sity g/cm ³	$Grav-ity \\ \oplus = 1$	Esc. Vel. km/s	Rotn. Period d	Incl.	Albedo
$\overline{\odot}$	Sun	1,392,000	0	332,946	1.41	27.8	616	25-35*		
Œ	Moon	3,476	0	0.0123	3.36	0.16	2.3	27.3215	6.7	0.067
ĝ	Mercury	4,878	0	0.0553	5.44	0.38	4.3	58.67	<7	0.056
Ŷ	Venus	12,104	0	0.8150	5.24	0.90	10.3	243†	~179	0.76
\oplus	Earth	12,756	1/298	1.000	5.52	1.00	11.2	0.9973	23.4	0.36
♂	Mars	6,794	1/192	0.1074	3.93	0.38	5.0	1.0260	24.0	0.16
21	Jupiter	142,796	1/16	317.9	1.33	2.87	63.4	0.4101	3.1	0.73
þ	Saturn	120,000	1/10	95.17	0.70	1.32	39.4	0.426	26.7	0.76
ð	Uranus	50,800	1/16	14.56	1.28	0.93	21.5	0.45?	97.9	0.93
Ψ	Neptune	48,600	1/50	17.24	1.75	1.23	24.2	0.67?	28.8	0.62
Б	Pluto	< 5,000 ?	?	< 0.1?	6?	0.6?	5?	6.3868	?	?

PHYSICAL ELEMENTS

The table gives the equatorial diameter and mass of the objects, as recommended by the I.A.U. in 1976, the mean density, the gravity and escape velocity at the pole, the rotation period, the inclination of equator to orbit, and the abedo. Evidence in 1977 suggests that the equatorial diameter of Uranus may be 55,800 km and that its oblateness may be 1/120. There is also some evidence that the rotation periods of Uranus and Neptune are 1.0 and 0.9 day, respectively; these values are about twice those given in the table.

SATELLITES OF THE SOLAR SYSTEM

	Vis. Diam. Mean Distance Revolution from Planet Period		on	Orbit					
Name	Mag.	km	km/1000	arc sec	d	h	m	°	Discovery
SATELLITE OF T	HE EARTH	H							
Moon	-12.7	3476	384.5	1	27	07	43	18-29	
SATELLITES OF	Mars								
Phobos	11.6	23	9.3	26	0	07	39	1.0	A. Hall, 1877
Deimos	12.7	13	23.5	63	1	06	18	1.3	A. Hall, 1877
SATELLITES OF	Jupiter								
V Amalthea	14.0	120	180	59	0	11	57	0.4	E. Barnard 1892
I Io	5.0	3640	422	138	1	18	28	0	Galileo, 1610
II Europa	5.3	3100	671	220	3	13	14	0	Galileo, 1610
III Ganymede	4.6	5270	1.070	351	7	03	43	0	Galileo, 1610
IV Callisto	5.6	4990	1.885	618	16	16	32	Ő	Galileo 1610
XIII Leda	20	< 10	11.094	3630	238	17		28.8	C. Kowal, 1974
VI Himalia	14.7	85	11.470	3765	250	14		27.6	C Perrine 1904
VII Elara	16.0	40	11,740	3850	259	16		24.8	C Perrine 1905
X Lysithea	18.8	< 20	11.850	3888	263	13		29.0	S Nicholson 1938
XII Ananke	18 3	< 20	21 200	6958	631	02		147	S Nicholson 1951
XI Carme	18 6	< 20	22,560	7404	692	12		164	S. Nicholson, 1938
VIII Pasiphae	18.1	< 20	23,500	7715	738	22		145	P Melotte 1908
IX Sinope	18.8	< 20	23,700	7779	758			153	S. Nicholson, 1914
SATELLITES OF	Saturn								
Janus	14	(300)	160	26	0	17	59	0.0	A. Dollfus, 1966
Mimas	12.9	(400)	187	30	ŏ	22	37	1.5	W. Herschel 1798
Enceladus	11.8	(500)	238	38	1	08	53	0.0	W. Herschel, 1789
Tethys	10.3	(950)	295	48	1	21	18	1.1	G. Cassini, 1684
Dione	10.4	1100	378	61		17	41	0.0	G. Cassini, 1684
Rhea	9.7	1600	526	85	4	12	25	0.4	G. Cassini, 1672
Titan	8.4	5800	1.221	197	15	22	41	0.3	C. Huygens, 1655
Hyperion	14.2	(320)	1,481	239	21	06	38	0.4	G. Bond. 1848
Iapetus	11.0v	1500	3.561	575	79	07	56	14.7	G. Cassini, 1671
Phoebe	16.5	(200)	12,960	2096	550	11		150	W. Pickering, 1898
SATELLITES OF	URANUS								
Miranda	16.5	(400)	128	9	1	09	56	0	G Kuiner 1948
Ariel	14 4	(1400)	192	14	2	12	29		W Lassell 1851
Umbriel	15 3	(1000)	267	20	Ĩ	03	38	Ň	W Lassell 1851
Titania	14 0	(1800)	438	33	8	16	56	0	W Herschel 1787
Oberon	14.2	(1600)	587	44	13	11	07	0	W. Herschel, 1787
SATEL LITES OF	VEDTUNE								
Triton	13.6	64000	354	1 17	1 5	21	03	160.0	W Loccoll 1946
Nereid	18.7	(600)	5600	264	359	10	05	27.4	G. Kuiper, 1949
					· · · · · · · · · · · · · · · · · · ·			·	

Apparent magnitude and mean distance from planet are at mean opposition distance. The inclination of the orbit is referred to the planet's equator; a value greater than 90° indicates retrograde motion. Values in brackets are uncertain.

MISCELLANEOUS ASTRONOMICAL DATA

UNITS OF LENGTH 1 Angstrom u	$mit = 10^{-8} \text{ cm}$	54 centimetres	1 micrometre, $\mu = 10^{-4}$ cm = 10 ⁴ A.							
1 yard 1 mile 1 astronomic 1 light-year 1 parsec 1 megaparsec	$ \begin{array}{llllllllllllllllllllllllllllllllllll$									
UNITS OF TIME										
Sidereal day Mean solar d Synodic mon Tropical year Sidereal year Eclipse year	= 23h = 24h = 24h = 29d = 29d = 365a = 365a = 346a	56m 04.09s of mean solar 03m 56.56s of mean sider 12h 44m 03s = 2945306 d 05h 48m 46s = 36542422 d 06h 09m 10s = 36542564 d 14h 52m 52s = 34646200	time eal time Sidereal month = $27d \ 07h \ 43m \ 12s$ = 2743216							
THE EARTH Equatorial ra Polar radius, 1° of latitude 1° of longitu Mass of earti Velocity of es	dius, $a = 6378.140$ b = 6356.755 = 111 de $= 11$ a = 5.9 cape from $\oplus = 11$.	0 km = 3963.19 mi: flatter 5 km = 3949.904 mi $1.133 - 0.559 \cos 2\phi \text{ km}$ $1.413 \cos \phi - 0.094 \cos 3\phi$ $76 \times 10^{24} \text{ kgm} = 13.17$ 2 km/sec = 6.94 mi/sec	hing, $c = (a - b)/a = 1/298.257$ = 69.055 - 0.347 cos 2 ϕ mi (at lat. ϕ) ϕ km = 69.229 cos ϕ - 0.0584 cos 3 ϕ mi \times 10 ²⁴ lb							
EARTH'S ORBITAL Solar paralla Constant of a Annual gener Orbital veloc Parabolic vel	MOTION $x = 8^{\prime\prime}.794$ (adopt liberration = 20^{\prime\prime}.4 ral precession = 50 city = 29.8 km/sec ocity at \oplus = 42.3	ed) 96 (adopted) 11.26; obliquity of ecliptic 18.5 mi/sec km/sec = 26.2 mi/sec	z = 23° 26′ 35′ (1970)							
Solar Motion Solar apex, F	R.A. 18h 04m, Dec.	+ 30°; solar velocity =	19.75 km/sec = 12.27 mi/sec							
THE GALACTIC SN North pole of Centre of gal Distance to c Rotational vo Rotational p Mass ~ 1.4	STEM f galactic plane R axy R.A. 17h 42.4r entre \sim 10,000 par elocity (at sun) \sim 2 eriod (at sun) \sim 2. \times 10 ¹¹ solar masse	A. $12h \ 49m$, Dec. $+ 27.^{\circ}4$ n, Dec. $- 28^{\circ} \ 55' \ (1950)$ rsccs; diameter $\sim 30,000$ 250 km/sec 46 $\times \ 10^8$ years s	(1950) (zero pt. for new gal. coord.) parsecs							
External Galax Red Shift =	1ES +50-75 km/s/meg	gaparsec (depending on m	ethod of determination)							
RADIATION CONST Velocity of li Frequency, v Solar constan Light ratio fo Stefan's cons	ANTS ght, $c = 2.9979245$ $= c/\lambda$; v in Hertz ht = 1.950 gram ca br one magnitude = tant = 5.66956 × 3	8×10^8 m/s (cycles per sec), c in cm/s lories/square cm/minute = 2.512; log ratio = c 10^{-5} cgs units	sec, λ in cm = 1.36 \times 10 ⁶ cgs units exactly 0.4							
MISCELLANEOUS Constant of g Mass of the Planck's cons Absolute tem 1 radian = =	pravitation, $G = 6.0$ electron, $m = 9.105$ tant, $h = 6.6262$ perature = T° K = $57^{\circ}.2958$ = 3437'.75 = 206,265''	6727×10^{-8} cgs units 96×10^{-28} gm: mass of 10^{-27} erg sec $= T^{\circ} C + 273^{\circ} = 5/9 (T^{\circ} \pi = 3.141,592,653,6$ No. of square degrees in 1 gram = 0.03527 oz	the proton = 1.6727×10^{-24} gm F + 459°) In the sky = 41,253							

SUN-EPHEMERIS AND CORRECTION TO SUN-DIAL

Date	Apparent R.A. 0h E.T.	Apparent Dec. 0h E.T.	Corr. to Sun-dial 12h E.T.	Date	Apparent R.A. 0h E.T.	Apparent Dec. 0h E.T.	Corr. to Sun-dial 12h E.T.
Jan. 1 4 7 10 13 16 19 22 25 28 31	h m s 18 44 26 18 57 40 19 10 50 19 23 56 19 36 57 19 49 53 20 02 42 20 15 24 20 28 00 20 40 28 20 52 49	-23 02.8 -22 46.7 -22 26.5 -22 02.3 -21 34.2 -21 02.4 -20 27.0 -19 48.1 -19 05.9 -18 20.6 -17 32.3		July 2 5 8 11 14 17 20 23 26 29	h m s 6 42 31 6 54 54 7 07 14 7 19 31 7 31 44 7 43 52 7 55 55 8 07 54 8 19 47 8 31 35	$\begin{array}{c} & & \\ +23 & 04.8 \\ +22 & 50.4 \\ +22 & 32.4 \\ +22 & 10.9 \\ +21 & 46.0 \\ +21 & 17.7 \\ +20 & 46.2 \\ +20 & 11.6 \\ +19 & 33.9 \\ +18 & 53.2 \end{array}$	
Feb. 3 6 9 12 15 18 21 24 27	21 05 03 21 17 10 21 29 10 21 41 02 21 52 48 22 04 26 22 15 59 22 27 25 22 38 46	$\begin{array}{c} -16 \ 41.1 \\ -15 \ 47.3 \\ -14 \ 51.1 \\ -13 \ 52.7 \\ -12 \ 52.2 \\ -11 \ 49.8 \\ -10 \ 45.8 \\ -9 \ 40.3 \\ -8 \ 33.4 \end{array}$	$\begin{array}{c} +13 & 50 \\ +14 & 06 \\ +14 & 15 \\ +14 & 17 \\ +14 & 11 \\ +13 & 59 \\ +13 & 41 \\ +13 & 17 \\ +12 & 47 \end{array}$	Aug. 1 4 7 10 13 16 19 22 25 28 31	8 43 18 8 54 56 9 06 28 9 17 54 9 29 16 9 40 32 9 51 43 10 02 50 10 13 53 10 24 52 10 35 48	$\begin{array}{c} +18 \ 09.8 \\ +17 \ 23.7 \\ +16 \ 35.0 \\ +15 \ 44.0 \\ +14 \ 50.7 \\ +13 \ 55.2 \\ +12 \ 57.8 \\ +11 \ 58.6 \\ +10 \ 57.6 \\ +9 \ 55.0 \\ +8 \ 51.1 \end{array}$	$\begin{array}{r} + \ 6 \ 17 \\ + \ 6 \ 04 \\ + \ 5 \ 45 \\ + \ 5 \ 21 \\ + \ 4 \ 52 \\ + \ 4 \ 18 \\ + \ 3 \ 39 \\ + \ 2 \ 55 \\ + \ 2 \ 08 \\ + \ 1 \ 17 \\ + \ 0 \ 23 \end{array}$
Mar. 1 4 7 10 13 16 19 22 25 28 31	$\begin{array}{c} 22 \ 46 \ 18 \\ 22 \ 57 \ 31 \\ 23 \ 08 \ 40 \\ 23 \ 19 \ 46 \\ 23 \ 30 \ 49 \\ 23 \ 51 \ 49 \\ 23 \ 52 \ 46 \\ 0 \ 03 \ 42 \\ 0 \ 14 \ 38 \\ 0 \ 25 \ 32 \\ 0 \ 36 \ 27 \end{array}$	$\begin{array}{c} - 7 \ 48.2 \\ - 6 \ 39.5 \\ - 5 \ 30.0 \\ - 4 \ 19.8 \\ - 3 \ 09.1 \\ - 1 \ 58.1 \\ - 0 \ 47.0 \\ + 0 \ 24.1 \\ + 1 \ 35.0 \\ + 2 \ 45.6 \\ + 3 \ 55.7 \end{array}$	$\begin{array}{r} +12 \ 25 \\ +11 \ 48 \\ +11 \ 07 \\ +10 \ 23 \\ +9 \ 35 \\ +8 \ 45 \\ +7 \ 53 \\ +6 \ 59 \\ +6 \ 04 \\ +5 \ 09 \\ +4 \ 15 \end{array}$	Sept. 3 6 9 12 15 18 21 24 27 30	10 46 41 10 57 32 11 08 21 11 19 08 11 29 54 11 40 39 11 51 24 12 02 11 12 12 58 12 23 48	$\begin{array}{r} + 7 & 45.8 \\ + 6 & 39.4 \\ + 5 & 32.1 \\ + 4 & 23.9 \\ + 3 & 15.0 \\ + 2 & 05.6 \\ + & 0 & 55.8 \\ - & 0 & 14.2 \\ - & 1 & 24.3 \\ - & 2 & 34.4 \end{array}$	- 0 34 - 1 33 - 2 35 - 3 38 - 4 42 - 5 46 - 6 50 - 7 53 - 8 55 - 9 55
Apr. 3 6 9 12 15 15 18 21 24 27 30	$\begin{array}{c} 0 & 47 & 23 \\ 0 & 58 & 21 \\ 1 & 09 & 20 \\ 1 & 20 & 21 \\ 1 & 31 & 25 \\ 1 & 42 & 31 \\ 1 & 53 & 41 \\ 2 & 04 & 55 \\ 2 & 16 & 13 \\ 2 & 27 & 36 \end{array}$	$\begin{array}{r} + 5 \ 05.2 \\ + 6 \ 13.9 \\ + 7 \ 21.6 \\ + 8 \ 28.1 \\ + 9 \ 33.4 \\ + 10 \ 37.3 \\ + 11 \ 39.6 \\ + 12 \ 40.1 \\ + 13 \ 38.8 \\ + 14 \ 35.5 \end{array}$	$\begin{array}{r} + & 3 & 21 \\ + & 2 & 29 \\ + & 1 & 39 \\ + & 0 & 51 \\ + & 0 & 06 \\ - & 0 & 37 \\ - & 1 & 16 \\ - & 1 & 51 \\ - & 2 & 22 \\ - & 2 & 48 \end{array}$	Oct. 3 6 9 12 15 18 21 24 27 30	12 34 40 12 45 34 12 56 32 13 07 34 13 18 40 13 29 51 13 41 07 13 52 30 14 03 58 14 15 34	$\begin{array}{r} - 3 \ 44.2 \\ - 4 \ 53.7 \\ - 6 \ 02.6 \\ - 7 \ 10.8 \\ - 8 \ 18.1 \\ - 9 \ 24.3 \\ -10 \ 29.4 \\ -11 \ 33.0 \\ -12 \ 35.1 \\ -13 \ 35.4 \end{array}$	$\begin{array}{c} -10 & 52 \\ -11 & 46 \\ -12 & 38 \\ -13 & 25 \\ -14 & 08 \\ -14 & 408 \\ -15 & 18 \\ -15 & 18 \\ -15 & 44 \\ -16 & 04 \\ -16 & 17 \end{array}$
May 3 6 9 12 15 15 18 21 24 27 30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} +15 \ 30.0 \\ +16 \ 22.2 \\ +17 \ 12.0 \\ +17 \ 59.1 \\ +18 \ 43.6 \\ +19 \ 25.2 \\ +20 \ 03.8 \\ +20 \ 39.4 \\ +21 \ 11.7 \\ +21 \ 40.8 \end{array}$	- 3 09 - 3 26 - 3 37 - 3 43 - 3 44 - 3 40 - 3 31 - 3 17 - 2 59 - 2 36	Nov. 2 5 8 11 14 17 20 23 26 29	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -14 \ 33.9 \\ -15 \ 30.2 \\ -16 \ 24.1 \\ -17 \ 15.6 \\ -18 \ 04.5 \\ -18 \ 50.5 \\ -19 \ 33.4 \\ -20 \ 13.2 \\ -20 \ 49.7 \\ -21 \ 22.7 \end{array}$	16 23 16 22 16 14 15 58 15 35 15 04 14 25 13 39 12 46 11 46
June 2 5 8 11 14 17 20 23 26 29	$\begin{array}{c} 4 & 38 & 12 \\ 4 & 50 & 31 \\ 5 & 02 & 54 \\ 5 & 15 & 18 \\ 5 & 27 & 45 \\ 5 & 40 & 13 \\ 5 & 52 & 42 \\ 6 & 05 & 10 \\ 6 & 17 & 38 \\ 6 & 30 & 05 \end{array}$	$\begin{array}{r} +22 \ 06.5 \\ +22 \ 28.7 \\ +22 \ 47.4 \\ +23 \ 02.5 \\ +23 \ 13.9 \\ +23 \ 21.7 \\ +23 \ 25.7 \\ +23 \ 26.0 \\ +23 \ 22.7 \\ +23 \ 15.5 \end{array}$	$\begin{array}{r} - & 2 & 10 \\ - & 1 & 40 \\ - & 1 & 06 \\ - & 0 & 31 \\ + & 0 & 07 \\ + & 0 & 45 \\ + & 1 & 24 \\ + & 2 & 03 \\ + & 2 & 41 \\ + & 3 & 18 \end{array}$	Dec. 2 5 8 11 14 17 20 23 26 29	16 31 05 16 44 06 16 57 11 17 10 21 17 23 34 17 36 50 17 50 08 18 03 27 18 16 46 18 30 05	$\begin{array}{c} -21 \ 52.0 \\ -22 \ 17.6 \\ -22 \ 39.3 \\ -22 \ 56.9 \\ -23 \ 10.5 \\ -23 \ 20.0 \\ -23 \ 25.2 \\ -23 \ 26.2 \\ -23 \ 26.2 \\ -23 \ 23.0 \\ -23 \ 15.5 \end{array}$	$\begin{array}{rrrrr} -10 & 39 \\ - & 9 & 28 \\ - & 8 & 11 \\ - & 6 & 50 \\ - & 5 & 26 \\ - & 4 & 00 \\ - & 2 & 31 \\ - & 1 & 02 \\ + & 0 & 28 \\ + & 1 & 57 \end{array}$

TIME

Any recurring event may be used to measure time. The various times commonly used are defined by the daily passages of the sun or stars caused by the rotation of the earth on its axis. The more uniform revolution of the earth about the sun, causing the return of the seasons, defines ephemeris time. The atomic second has been defined; atomic time has been maintained in various labs, and an internationally acceptable atomic time scale is under discussion.

A sundial indicates *apparent solar time*, but this is far from uniform because of the earth's elliptical orbit and the inclination of the ecliptic. If the real sun is replaced by a fictitious mean sun moving uniformly in the equator, we have *mean* (solar) *time*. *Apparent time* — *mean time* = *equation of time*. This is the same as *correction to sundial* on page 9, with reversed sign.

If instead of the sun we use stars, we have *sidereal time*. The sidereal time is zero when the vernal equinox or first point of Aries is on the meridian. As the earth makes one more rotation with respect to the stars than it does with respect to the sun during a year, sidereal time gains on mean time 3^m 56^s per day or 2 hours per month. Right Ascension (R.A.) is measured east from the vernal equinox, so that the R.A. of a body on the meridian is equal to the sidereal time.

Sidereal time is equal to mean solar time plus 12 hours plus the R.A. of the fictitious mean sun, so that by observation of one kind of time we can calculate the other. Local Sidereal time may be found approximately from Standard or zone time (0 h at midnight) by applying the corrections for longitude (p. 14) and sundial (p. 9) to obtain apparent solar time, then adding 12 h and R.A. sun (p. 9). (Note that it is necessary to obtain R.A. of the sun and correction to sundial at the standard time involved.)

Local sidereal time can also be found by adding the Greenwish sidereal time at midnight (this quantity is tabulated on the next page) to the local mean time. The G.S.T. must be obtained (by interpolation) at the exact date involved.

Local mean time varies continuously with longitude. The local mean time of Greenwich, now known as *Universal Time* (UT) is used as a common basis for timekeeping. Navigation and surveying tables are generally prepared in terms of UT. When great precision is required, UT1 and UT2 are used differing from UT by polar variation and by the combined effects of polar variation and annual fluctuation respectively.

To avoid the inconveniences to travellers of a changing local time, *standard time* is used. The earth is divided into 24 zones, each ideally 15 degrees wide, the zero zone being centered on the Greenwich meridian. All clocks within the same zone will read the same time.

In Canada and the United States there are 9 standard time zones as follows: Newfoundland (N), $3^h 30^m$ slower than Greenwich; 60th meridian or Atlantic (A), 4 hours; 75th meridian or Eastern (E), 5 hours; 90th meridian or Central (C), 6 hours; 105th meridian or Mountain (M), 7 hours; 120th meridian or Pacific (P), 8 hours; 135th meridian or Yukon (Y), 9 hours; 150th meridian or Alaska-Hawaii, 10 hours; and 165th meridian or Bering, 11 hours slower than Greenwich.

The mean solar second, defined as 1/86400 of the mean solar day, has been abandoned as the unit of time because random changes in the earth's rotation make it variable. The unit of time has been redefined twice within the past two decades. In 1956 it was defined in terms of Ephemeris Time (ET) as 1/31,556,925.9747 of the tropical year 1900 January 0 at 12 hrs. ET. In 1967 it was redefined as 9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium 133 atom. Ephemeris Time is required in celestial mechanics, while the cesium resonator makes the unit readily available. The difference, ΔT , between UT and ET is measured as a small error in the observed longitude of the moon, in the sense $\Delta T = ET - UT$. The moon's position is tabu-

lated in ET, but observed in UT. ΔT was zero near the beginning of the century, but in 1978 will be about 49 seconds.

RADIO TIME SIGNALS

National time services distribute co-ordinated time called UTC, which on January 1, 1972, was adjusted so that the time interval is the atomic second. The resulting atomic time gains on mean solar time at a rate of about a second a year. An approximation to UT1 is maintained by stepping the atomic time scale in units of 1 second on June 30 or December 31 when required so that the divergence from mean solar time (DUT1 = UT1 – UTC) does not exceed 0.6 second. The first such "leap second" occurred on June 30, 1972. These changes are coordinated through the Bureau International de l'Heure (BIH), so that most time services are synchronized to the tenth of a millisecond.

DUT1 is identified each minute on CHU and WWV by a special group of split or double pulses. The number of such marker pulses in a group gives the value of DUT1 in tenths of a second. If the group starts with the first (not zero) second of each minute, DUT1 is positive and mean solar time is ahead of the transmitted time; if with the 9th second DUT1 is negative, and mean solar time is behind.

Radio time signals readily available in Canada include:

 CHU Ottawa, Canada
 3330, 7335, 14670 kHz

 WWV Fort Collins, Colorado
 2.5, 5, 10, 15, 20, 25 MHz

 WWVH Maui, Hawaii
 2.5, 5, 10, 15 MHz.

JULIAN DAY CALENDAR, 1978

The Julian date is commonly used by astronomers to refer to the time of astronomical events, because it avoids some of the annoying complexities of the civil calendar. The Julian day corresponding to a given date is the number of days which have elapsed since Jan. 1, 4713 B.C.

This system was introduced in 1582 by Josephus Justus Scaliger under the name of the Julian period. The Julian period lasts 7980 years, and is the least common multiple of three cycles: the solar cycle of 28 Julian years, the lunar (or Metonic) cycle of 19 Julian years, and the Roman indiction cycle of 15 years. On Jan. 1, 4713 B.C., all three cycles began together. For more information, see "The Julian Period", by C. H. Cleminshaw in the *Griffith Observer*, April 1975

This table lists the Julian Date, and also the Greenwich sidereal time at midnight. The latter quantity is the amount which must be added to the local mean time to give local sidereal time; it increases by 3 m 56 s each day.

Date 0 h U.T.	JD 2443000+	G.S.T.	Date 0 h G.T.	JD 2443000+	G.S.T.	Date 0 h U.T.	JD 2443000+	G.S.T.
Jan. 1 Feb. 1 Mar. 1 Apr. 1	509.5 540.5 568.5 599.5	h m 6 41.2 8 43.4 10 33.8 12 36.0	May 1 June 1 July 1 Aug. 1	629.5 660.5 690.5 721.5	h m 14 34.3 16 36.5 18 34.8 20 37.0	Sept. 1 Oct. 1 Nov. 1 Dec. 1	752.5 782.5 813.5 843.5	h m 22 29.2 0 37.5 2 39.7 4 38.0

The Julian day commences at noon so that J.D. 2443510 = Jan. 1.5U.T. $1978 = 12^{h}$ U.T. Jan. 1, 1978.

ASTRONOMICAL TWILIGHT AND SIDEREAL TIME

latitude on a given date and (ii) the local sidereal time (L.S.T., diagonal lines) at a given L.M.T. on a given date. The L.S.T. is also the right ascension of an object on the observer's celestial meridian. To use the diagram, draw a line downward from the given date; the line cuts the curved lines at the L.M.T. of beginning and end of twilight, and cuts each diagonal line at the L.M.T. cor-The diagram gives (i) the local mean time (L.M.T.) of the beginning and end of astronomical twilight (curved lines) at a given responding to the L.S.T. marked on the line. See pages 10 and 21 for definitions of L.M.T., L.S.T. and astronomical twilight.

PRODUCED BY THE SURVEYS AND MAPPING BRANCH, DEPARTMENT OF ENERGY, MINES AND RESOURCES, OTTAWA, CANADA, 1973.

The map shows the number of hours by which each time zone is *slower* than Greenwich, that is, the number of hours which must be *added* to the zone's standard time to give Greenwich (Universal) Time.

Note: Since the preparation of the above map, the standard time zones have been changed so that all parts of the Yukon Territory now observe Pacific Standard Time. The Yukon Standard Time Zone still includes a small part of Alaska, as shown on the above map.

TIMES OF RISING AND SETTING OF THE SUN AND MOON

The times of sunrise and sunset for places in latitudes ranging from 30° to 54° are given on pages 15 to 20, and of twilight on page 21. The times of moonrise and moonset for the 5 h meridian are given on pages 22 to 27. The times are given in Local Mean Time, and in the table below are given corrections to change from Local Mean Time to Standard Time for the cities and towns named.

The tabulated values are computed for the sea horizon for the rising and setting of the upper limb of the sun and moon, and are corrected for refraction. Because variations from the sea horizon usually exist on land, the tabulated times can rarely be observed.

The Standard Times for Any Station

To derive the Standard Time of rising and setting phenomena for the places named, from the list below find the approximate latitude of the place and the correction in minutes which follows the name. Then find in the monthly table the Local Mean Time of the phenomenon for the proper latitude on the desired day. Finally apply the correction to get the Standard Time. The correction is the number of minutes of time that the place is west (plus) or east (minus) of the standard meridian. The corrections for places not listed may be obtained by converting the longitude found from an atlas into time $(360^\circ = 24 h)$.

CANADIAN CITIES AND TOWNS							AMERICAN CITIES		
	Lat.	Corr.		Lat.	Corr.			Lat.	Corr.
Athabasca Baker Lake Brantford Calgary Charlottetown Churchill Cornwall Edmonton Fredericton Glace Bay Granby Guelph Halifax Hamilton Hull Kapuskasing Kingston Kitchener London Medicine Hat Moosonee Moose Jaw Niagara Falls North Bay Ottawa Owen Sound Penticton	55° 64 50 43 51 46 45 45 45 45 45 45 45 45 45 45 45 45 45	$\begin{array}{r} + 33M\\ + 24C\\ + 40C\\ + 40C\\ + 40E\\ + 36M\\ + 17E\\ + 12B\\ + 17E\\ + 12B\\ + 112B\\ +$	Peterborough Port Harrison Prince Albert Prince Rupert Quebec Regina St. Catharines St. Hyacinthe Saint John, N.B. St. John's, Nidd. Sarnia Saskatoon Sault Ste. Marie Shawinigan Sherbrooke Stratford Sudbury Sydney The Pas Timmins Toronto Three Rivers Thunder Bay Trail Truro Vancouver Victoria Whitehorse Windsor Windsor Windsor	44 59 53 46 47 47 43 46 43 46 45 43 47 45 43 47 45 43 47 45 43 47 45 43 47 45 43 47 45 43 47 45 43 47 45 45 45 45 45 45 45 45 45 45 45 45 45	$\begin{array}{c} +13E\\ +13E\\ +3E\\ +3E\\ +3E\\ +3E\\ +3E\\ +3E\\ +3E\\ +$		Atlanta Baltimore Birmingham Boston Buffalo Chicago Cincinnati Cleveland Denver Detroit Fairbanks Flagstaff Indianapolis Juneau Kansas City Los Angeles Louisville Memphis Miami Milwaukee Minneapolis New Orleans New York Omaha Phitsburgh St. Louis San Francisco Seattle Washington	34° 39 33 42 39 42 33 42 42 42 42 42 42 45 5 40 42 45 35 40 42 43 35 40 42 43 45 43 441 41 40 9 38 848 43 43 45 35 36 38 39 37 39 37 39 37 39 37 39 39 39 39 39 39 39 39 39 39 39 39 39	+37E +37E +37E +38E +15E -16E +15E +15E +27C 00M +32E +27C 00AL +32E +27C 00AL +32E +27C 00AL +32E +27C 00AL +32C +32C +32C 00AL +32C +32C +32C +32C +32C +32C +32C +32C

Example—Find the time of sunrise at Owen Sound, on February 12.

In the above list Owen Sound is under " 45° ", and the correction is +24 min. On page 15 the time of sunrise on February 12 for latitude 45° is 7.06; add 24 min. and we get 7.30 (Eastern Standard Time).

		January			r edfuary	
	16520	18379	232323		12 12 12 13 13 12 10 10 10 10 10 10 10 10 10 10 10 10 10	222228
Latitu Sunrise	h m 6 56 6 57 6 57 6 57 6 57	6 57 6 57 6 57 6 57 6 56	6 56 6 55 6 53 6 53 6 53	6 51 6 50 6 49 6 48 6 48	6 44 6 43 6 39 6 38 8 38	6 36 6 34 6 32 6 30 6 30 6 30
ide 30° Sunset	h m 17 11 17 12 17 12 17 15 17 15	17 19 17 20 17 22 17 24 17 24	17 28 17 29 17 31 17 33 17 33	17 36 17 38 17 39 17 41 17 41	17 45 17 46 17 48 17 50 17 51	17 53 17 54 17 55 17 57 17 57
Latitu Sunrise	h n 4 00 00 00 00 00 00 00 00 00	7 09 7 09 7 08 7 07 06	7 06 7 05 7 04 7 03 7 03	7 00 6 59 6 57 6 56 6 54	6 52 6 50 6 48 6 43 6 43	6 41 6 38 6 36 6 34 6 31
ude 35° s Sunset	h m 16 59 17 00 17 02 17 05	17 07 17 09 17 11 17 13 17 13	17 17 17 19 17 21 17 23 17 23	17 27 17 29 17 31 17 33 17 33	17 37 17 39 17 41 17 43 17 43	17 47 17 49 17 51 17 53 17 53
Latitu Sunrise	ћ 222222 222222 222222 222222 222222 2222	7 22 7 21 7 20 7 19 18	7 17 7 16 7 15 7 13 7 13	$\begin{array}{c} 7 & 10 \\ 7 & 08 \\ 7 & 06 \\ 7 & 04 \\ 02 \end{array}$	7 00 6 57 6 55 6 52 6 50	6 44 6 44 8 38 36 38 38 38 38 38 38 38 38 38 38 38 38 38
ude 40 ° s Sunset	h m 16 45 16 45 16 47 16 51 16 53	16 55 16 57 16 59 17 01 17 03	17 05 17 08 17 10 17 12 17 15	17 17 17 20 17 22 17 24 17 24	17 30 17 32 17 34 17 36 17 36	17 41 17 44 17 46 17 48 17 50
Latitu Sunrise	h m 7 35 7 35 7 35 7 35 7 35	7 33 7 33 7 31 7 31 30	7 28 7 27 7 25 7 23 21	7 19 7 17 7 15 7 12 7 09	7 07 7 04 6 58 6 56	6 53 6 46 6 43 6 33 6 39
ide 44° Sunset	h m 16 32 16 34 16 36 16 38 16 40	16 42 16 45 16 47 16 49 16 52	16 54 16 57 16 59 17 02 17 05	17 08 17 11 17 14 17 16 17 16	17 22 17 25 17 28 17 31 17 33	17 36 17 38 17 41 17 44 17 47
Latitu Sunrise	h m 4243 443 442 442 414 414 414 414 414 414 414 414	7 41 7 40 7 38 7 37 36	7 33 7 33 7 29 7 27	7 24 7 21 7 19 7 16 14	7 11 7 08 7 05 7 05 6 59	6 56 6 53 6 49 6 45 6 42
ude 46° Sunset	h m 16 25 16 27 16 29 16 31 16 33	16 36 16 38 16 41 16 43 16 43	16 48 16 51 16 54 16 57 17 00	17 03 17 06 17 06 17 12 17 12	17 18 17 21 17 24 17 24 17 30	17 33 17 36 17 36 17 39 17 42
Latit	h m 7 51 7 50 7 50 7 49	7 47 7 47 7 46 7 44 43	7 41 7 38 7 36 7 34 7 32	7 30 7 27 7 24 7 21	7 15 7 12 7 09 7 06	6 59 6 56 6 48 6 48 44 8
ude 48 ° s Sunset	h m 16 17 16 19 16 21 16 23 16 23	16 28 16 31 16 34 16 36 16 36	16 42 16 45 16 48 16 51 16 54	16 57 17 00 17 04 17 07 17 10	17 13 17 16 17 20 17 20 17 23	17 29 17 33 17 36 17 36 17 39
Latitu Sunrise	h m 7 59 7 59 7 57 7 57	7 55 7 54 7 51 50	7 45 7 45 7 41 38 38	7 35 7 32 7 23 7 23 7 23	7 20 7 17 7 13 7 10 7 06	7 02 6 59 6 51 6 51
ide 50° Sunset	h m 16 09 16 11 16 13 16 13 16 18	16 20 16 23 16 26 16 29 16 33	16 35 16 35 16 38 16 42 16 45	16 51 16 55 16 59 17 02 17 05	17 09 17 12 17 16 17 19 17 22	17 25 17 29 17 33 17 36 17 36
Latitu Sunrise	h m 8 19 8 18 8 18 8 18 8 17 8 16	8 14 8 13 8 13 8 09 8 07	8 04 8 02 7 59 53 53	7 49 7 46 7 39 35	7 31 7 27 7 19 14	7 10 7 05 6 57 6 57
de 54° Sunset	h m 15 48 15 51 15 53 15 53 15 56 15 59	16 02 16 05 16 08 16 11 16 11	16 18 16 22 16 26 16 30 16 34	16 38 16 42 16 46 16 50 16 54	16 58 17 02 17 06 17 10 17 14	17 18 17 28 17 26 17 30 17 34

		VBIVI		<u></u>	 əunç	
	-6226	12210	28828	20498	86420	923989
Latitı Sunrise	h m 55 11 55 12 51 12 51 12 51 12	5 10 5 08 5 06 5 05	5 00 5 03 00 00 00 00 00 00 00 00 00 00 00 00 0	$\begin{array}{c} 5 \\ 4 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 8 \\ 5 \\ 8 \\ 8 \\ 8 \\ 8$	$\begin{array}{r} 4 & 4 & 5 \\ 4 & 5 & 4 & 5 \\ 8 & 5 & 8 & 8 \\ 8 & 5 & 8 & 8 \\ 8 & 5 & 9 & 6 \\ \end{array}$	4 5 5 00 5 00 010 010 010 010 010 010 010 010 010
ude 3 e Sur	ч 18 18 18 18 18 18 18	$\begin{smallmatrix}&&1\\1&&&\\1&&&\\1&&&\\1&&&\\1&&&\\1&&&\\1&&&$	$\begin{smallmatrix}&1\\1\\8\\1\\8\\1\\8\end{smallmatrix}$	$\begin{smallmatrix}&1\\1\\8\\1\\1\\8\end{smallmatrix}$	91 91 91 91 91 91	61 61 61 61 61 61 61 61
30° nset	41 41 41 40 83 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	45 45 49 49 49	55 53 53 53	55 59 59 00	03 02 01	00 00 00 00 00 00 00 00 00 00 00 00 00
Lati Sunr	h 1 5 05 5 05 7 05 7 05 7 05 7 05 7 05 7 05	557 57 57 57 57 57 57 57 57	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4444 7444 7464 7464 7464 7464 7464 7464	44444 4444 465444 66544	44444 44444 744844 8444
tude ise St	4 888 888	0 2 1 3 2 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	616666	66666	66666	666666
35° inset	н 454 848 50 850 81 21	55 56 58 58 58	02 05 07 07	08 09 11 12	115 115 116	- 188 81 81 81 81 81 81 81 81 81 81 81 81
Lat Suni	т 0 <u>2</u> 2222	44444 44444	44444 400000	44444 wwwww	44444 U <u>Ū</u> ŪŪŪ	444444 0000000
itude rise S	T 2004-	02000	0%/04	888855 22222	-000-	-00004
: 40° unset	52 22 A	90 05 10 08 12 08 10 08 10 10 08 10 10 08 10 08 10 08 10 08 10 10 08 10 10 08 10 10 10 10 10 10 10 10 10 10 10 10 10) 13 9 17 9 17 9 18 7 13 9 20	255 42 255 42 255 42 27	9 28 9 31 9 31 9 32 9 32 9 32 9 32 9 32 9 32 9 32 9 32	8888888
La Su	도 44444	44444	44444	44444	44444	44444
atitud nrise	n 234444	332 332 332 332 332	52328	20 119 178	16 116 116	209
le 44 Sunse	н 12 19 12 12 12 12 12 12 12 12 12 12 12 12 12	19 14 19 17 19 19 19 21 19 21 19 21	19 25 19 25 19 31 19 31 19 31	19 35 19 36 19 38 19 39	19 42 19 43 19 46 19 46	91 91 91 91 91 91 91 91 91 91 91 91 91 9
r S L	т 44444	44444	44444	44444	44444	44444
atitu unrise	в 844168 86	331 226 23	21 19 16 15	060 11 12 13 09 11 12 13	688888	5110080
de 46 Suns	4 10 10 10 10 10 10 10 10 10 10 10 10 10	19 2 2 19 2 2 19 2 2 19 2 2	0119 0119 00 00 00 00 00 00 00 00 00 00 00 00 00	$ \begin{array}{c} 19 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4$	19 5 19 5 19 5 19 5	195555 195555
ू , इ	- τοωνæ	0~~~0	04000	04920	0-0-04	400000
Latit Sunri	h m 4 42 m 4 42 m 4 333 5 4 4 20 m 4 30 m 4	4 27 4 24 1 19 1 16	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	44 05 44 05 40 01 00 10 01 01	4 % % % % % % % % % % % % % % % % % % %	0001000 000000000000000000000000000000
ude 4 se Su	4 6 6 6 6 6	61 61 61 61 61 61	61 9 10 10 10 10 10 10 10 10 10 10 10 10 10	61 61 61 61 61 61 61 61 61	52222	222222
18 ° nset	221825 H	332 332 332 332 332 332 332 332 332 332	4444 4444 46	51 55 56 58	630108 030108	844444
Latit Sunris	h m 4 33 4 4 33 4 23 23 23 23	$\begin{array}{c} 4 & 4 & 2 \\ 4 & 1 & 4 & 1 \\ 4 & 1 & 2 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{c} 4 & 4 \\ 4 & 04 \\ 0 & 4 \\ 0 & 02 \\ 3 & 58 \\ 0 & 02 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 $	3 55 3 55 3 53 3 53 53	3 50 3 50 3 50 3 50	2222 22225 22225 22225 22225 22222 22222 22222 22222 22222 22222 2222
ude 5 se Sur	4 66666	19 19 19	61 61 61 61 61 61	22225	88888	888888
50° nset	322211 a	45 333 33	55 55 57	05 03 06 03	111008	2222222
Lat	T 44444	44 <i>www</i> 002222	00000 44440	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	88888 88888	00000000000000000000000000000000000000
itude ise Si	4 5 5 5 5 5 5	200012	xxxxx xomax	88888	88888	888888 -00877
54° unset	9 46 33 33 B	64 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1412	22222 28222 28222	0 33 0 33 0 33 0 35 0 35 0 32 0 32 0 32 0 32 0 32 0 32 0 32 0 32	336 336 336 336 336 336 336 336 336 336

		AluL			12NSuA	
	64480	20816412 20816412	888853		112121	222222
Latiti Sunrise	h m 5 02 5 03 5 04 5 05 06	5 07 5 08 5 08 5 10 5 11	5 13 5 14 5 15 5 16 5 18	5 19 5 20 5 21 5 22	5 25 5 26 5 28 5 28 5 30	5 5 5 5 33 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3
ude 3 e Sur	н 19 19 19	19 19 19 19	$\begin{smallmatrix}&1\\1\\8\\1\\8\\1\\8\end{smallmatrix}$	$\begin{smallmatrix}&&1\\1&&&\\1&&&\\1&&&\\1&&&\\1&&&\\1&&&\\1&&&$	$\begin{smallmatrix}&&1\\1&&\\1&&\\1&&\\1&&\\1&&\\1&&\\1&&\\1&&\\1&&$	$\begin{smallmatrix}&1\\1\\8\\1\\8\\1\\8\\1\\8\\1\\8\\1\\8\\1\\8\\1\\8\\1\\8\\1$
S0°	т 2005 да 2005 да	022033	55 55 55 55 55	52 52 54 64 7	444 842 86	33 33 26 29 29 26
Lati Sunr	h 4 4 4 4 4 50 5 551 5 552	4444 00 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	88888 99999 99999	82225 1112 1112	22222 22222 22222	336555 22222
itude ise Sı	4 10 21 15 21 15 19 19	2512 212 212 212 212 212 212 212 212 212	12487 2121 2121 2121 2121	212 212 218 212 212 212 212 212 212 212	× 1882	1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
35° Inset	m 188 118	12 12 12 12 12 12 12 12 12 12 12 12 12 1	11 08 07 05 05	588013 588013	51 54 49 45 49	337 337 29 337 29 29
Lat Suni	г 44444 - ссосо	44444 44444	4444 40000	44 <i>NNN</i> NN000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	22221 22221
titude rise S	087653		0 - 2 4 9	80200	7910V	- 6 1 6 4 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
c 40° tunset	n m 9 33 9 31 9 31 9 31	9 29 30 9 28 9 27 9 25	9 24 9 22 9 18 9 16	9 14 9 12 9 05 05	9 03 8 57 8 52 8 52	8 49 8 46 8 43 8 37 8 37
La Sun	₩ 44444	44444	44444	44444	45555	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
atitud arise	22232 II	333128	841 45 45 45 45 45 45 45 45 45 45 45 45 45	55294 56497	003 005 005 005	21864120
le 44 [°] Sunset	h 611949 1949 1949 1949 1949 1949 1949 194	446119 446119 4498 800	19 30 19 30 19 30 19 30	19 22 19 22 19 14	19 11 19 05 19 05 19 05 19 05	254 45 55 394 45 55 394 45 55
L Si I	L 44444	44444	44444	44444	44400	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
atitu unrise	н 11 15 19 19 19	225220 2862220	332 33 333 33 39	5444 51 51	54 58 01 03	$\begin{array}{c} 06\\ 08\\ 11\\ 16\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18$
ide 4 Suns	4 666666	61 61 61	61 61 61	61 61 61	61 61 61 61 61 61 61 61 61	0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
6°	222222 B	5 6444 6444	338862	1225831	116 113 113 116 116	0826651
Latit Sunris	h 4 4 4 4 4 4 4 4 05 4 10 10 10 10 10 10 10 10 10 10 10 10 10	4 4 4 12 4 16 4 12 20 20	4 25 4 25 4 30 4 30	4 4 35 4 4 37 4 40 45 45	4 4 54 4 54 56 59 59	5 05 5 05 5 13 5 15
tude . se Sui	88888 4	61 61 61 61 61	61 61 61 61 61 61	61 61 61 61 61	19 19 19 19	19 19 18 18 18 18 18 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10
48° nset	E 22228	58 55 55 52	50 45 40 40 40	37 31 28 25	22 118 07	485584 485584
Lati Sunri	h w w w 44 555555 0000	4 4 4 4 06 100 130 130 130 130 130 130 130 130 130	4444 15 15 15 15 15 15 15 15 15 15 15 15 15	44444 25 26 26 26 26 20 20 20 20 20 20 20 20 20 20 20 20 20	44444 4444 4422 5525 5525	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
tude : se Sur	52222 H	122222	61 61 61 61 61 61 61 61 61 61 61 61 61 6	19 19 19	91 9 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9	119 119 119 119 119 119
50° nset	80011212 B	07 03 03 03	52 52 49 49	30 40 43 44 43 44 44 44 44 44 44 44 44 44 44	27 23 19 12	80 90 15 15 15 15 15 15 15 15 15 15 15 15 15
Lati Sunris	h m m 33 33 40 33 40 40 40 40 40 40 40 40 40 40 40 40 40	33 53 3 53 53 50 53 50 54 55 50 50 50 50 50 50 50 50 50 50 50 50	50 259 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{c} 4 \\ 4 \\ 4 \\ 19 \\ 19 \\ 22 \\ 26 \\ 26 \\ 26 \\ 26 \\ 26 \\ 26 \\ 2$	44 429 44 29 440 4	4 4 51 5 44 53 5 05 05 05
tude Sur	4 88888	22222	22222	19 19 19 19	19 19 19	19 19 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19
54°	333335 H	192258	12000000000000000000000000000000000000	83 14 15 15 15 15 15 15 15 15 15 15 15 15 15	228333 26333	17 13 03 59 55

	<u></u>	September			October	
	, 10 10 10 10	12 14 18 20 20	22288°	,4980	112 112 112 112 112 112 112 112 112 112	32228
Latiti Sunrise	h m 5 37 5 38 5 40 5 42	5 5 5 43 5 44 5 45 44 47 47	5 49 5 50 5 51 5 51 5 51 5 51 5 51 5 51 5 51	5 55 5 55 5 57 5 57 5 57 5 57 5 57 5 57	6 00 6 01 6 03 6 03	6 06 6 07 6 09 6 10 6 12
ude 30 ° : Sunset	h m 18 22 18 19 18 17 18 17 18 15 18 15	18 10 18 08 18 05 18 05 18 03 18 03	17 58 17 55 17 53 17 50 17 48	17 45 17 43 17 40 17 38 17 35	17 33 17 31 17 29 17 29 17 25	17 23 17 21 17 19 17 17 17 17
Lat Suni	н ххххх - ссулуу - ссолос	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00000 44000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00000	00000
titude rise Su	n h 6 18 9 18 18 18 18	6 4 3 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 1 8 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1	6 1 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7	20 117 20 117 20 117	03 17 05 177 06 177 08 177 09 177	8 117 8 117 8 117
35° nset	m 226 21 18 15	12 09 01 01	55 55 49 46	44 35 32 32 32	30 22 19 22 19	17 13 08 08
Latitu Sunrise	h m 5 28 5 30 5 34 5 35	5 37 5 39 5 41 5 43	5 53 5 53 5 53 5 53	5 57 5 59 6 01 6 03 6 05	6 07 6 09 6 11 6 13 6 13	$\begin{array}{c} 6 & 17 \\ 6 & 19 \\ 6 & 22 \\ 6 & 24 \\ 6 & 26 \end{array}$
ide 40° Sunset	h m 18 31 18 28 18 28 18 24 18 21 18 18	18 15 18 11 18 08 18 05 18 05 18 02	17 58 17 55 17 55 17 52 17 48 17 45	17 42 17 38 17 35 17 35 17 32 17 29	17 26 17 23 17 23 17 17 17 17	17 11 17 08 17 08 17 03 17 03
Lati Sunri	h m 5 23 5 28 5 30 5 32	8 8 8 8 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	5 54 5 53 5 53 5 53 56	5 6 6 6 03 6 08 6 08	6 10 6 13 6 18 6 20	6 28 6 28 6 31 6 31 6 33
tude 4 ise Sun	4 81 81 81 81 81 81 81 81 81 81 81 81 81	80 80 80 80 80 80 80 80 80 80 80 80 80 8	11777	111111	11777	110
⊳ 4 iset	2258233 I	0860377	48 55 55 48 48	223336	01192	900 826 856 856
Latitu Sunrise	h m 5 21 5 23 5 31	5 33 5 36 5 41 5 43	5 46 5 51 5 53 5 56	5 59 6 02 6 09 6 09	6 12 6 15 6 18 6 20 6 23	6 26 6 29 6 32 6 37
ide 46 Sunse	h п 18 37 п 18 36 18 37 п 18 26 18 26	18 12 18 12 18 12 18 02 18 18 18 18 18 18 18 18 18 18 18 18 18 1	17 55 17 55 17 51 17 511	777334 177334 177334	17 17 17 11 17 10 17 10	16 55 59 16 55 59 16 55 59
s ال	L 0 4 0 0 0	x4000 vvvvvv	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00000	00000 20370	00000 0700
atituc unrise	224 118 1222 1222 1222 1222 1222 1222 12	31 34 42 1 1 2 34 1 1 2 34 1 1 2 34 1 2 3 34 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	45 51 54 54 1 57	196830	2230 2114 26	42 33 32 5 33 32 5 42 8 32 5 32 5 32 5 32 5 45 8 32 5 32 5 45 8 32 5 8 32 5 8 32 5 8 32 5 8 32 5 8 32 5 8 32 5 8 32 5 8 32 5 8 5 8 3 2 5 8 5 8 2 5 8 5 8 5 8 5 8 5 8 5 8 5 8
le 48° Sunset	h m 18 40 18 35 8 33 8 28 8 28	18 20 18 16 18 11 18 11 18 07 18 03	17 59 17 55 17 51 17 47 17 43	17 38 17 38 17 30 17 26	17 18 17 14 17 10 17 07 17 03	16 59 16 56 16 49 16 49
Latit	h m 5 16 5 22 5 22 5 27 5 27	5 33 5 36 5 36 5 36 5 36 5 36 5 36 5 36	5 45 5 48 5 51 5 57 5 57	6 01 6 03 6 07 6 10 6 13	6 16 6 19 6 22 6 25 6 29	6 32 6 36 6 39 6 42 6 42
ude 50 [°] se Sunse	h m 18 43 18 38 18 38 18 29 18 29	18 21 18 16 18 12 18 12 18 08 18 03	17 59 17 55 17 51 17 47 17 42	17 37 17 33 17 29 17 29 17 25	17 16 17 12 17 08 17 08 17 00	16 56 16 52 16 45 16 45 16 43
t Sun	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	いちちちち こうううか	~~~~ 44~~~~	0 1 1 0 0 0 0 0 0 0 0 0 0	00000	00000 44400
titude rise Su	n 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7 1 4 8 1 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	96 117 85 96 117 8	его 4 г СССССС	6 16 15 15 15 15 15 15 15 15 15 15 15 15 15	73950 16016 16016
54° Inset	E 23 24 20 E	25 15 05 10 10	00 55 64 60 7 7 7 7 8 90 8 90 8 90 8 90 8 90 8 90	35 30 21 16	11 01 57 57 57 57	84 33 35 39 31 39

1 1	53 7 7 7 7 7 1 1 5 5 5 1 1 5 5 4 1 5 5 1 1 16 2 7 3 1 2 7 3 1 2 7 3 1 2 7 3 1 2 7 3 1 2 1 4 1 1 6 2 7 4 1 6 2 7 2 1 6 2 7 4 1 6 2 7 2 16 3 7 2 16 3 1 4 1 6 2 1 6 2 1 6 3 1 4 1 6 3 1 4 1 6 3 1 3 1 6 3 3 3 3 3 3 3 3 3 3
itude 35 ° Latitude se Sunset 35 Sunset 35 Sunset 35 Sunset 36 Latitude 37 Latitude 38 L6 53 17 03 17 04 6 17 01 6 16 53 17 03 16 53 17 03 16 53 16 49 16 53 16 53 16 53 16 53 16 53 16 53 17 12 19 16 16 49 16 49 16 53 16 53 17 00 16 16 16 49 17 00 16 16 16 16 16 49 17 00 16 16 16 10 17 00 19 10 19 10 10 10 11 10 10 10 11 10	6 16 55 7 20 16 6 16 55 7 20 16 7 16 57 7 21 10 8 16 58 7 22 10
Latitude 30° Latitude 30° Sumits Sumst Sumits Sumst Sumst Sumst <	5 6 5 17 08 7 06 7 06 7 06 7 06 7 06 7 06 7 06 7 06 7 07 17 10 10 10 10 10 10 10 10

		Latitu	ide 35°	Latitu	de 40°	Latitu	ide 45°	Latitu	ide 50°	Latitude 54°		
		Morn.	Eve.	Morn.	Eve.	Morn.	Eve.	Morn.	Eve.	Morn.	Eve.	
Jan. Feb.	0 10 20 30 9	h m 5 37 5 39 5 38 5 34 5 27	h m 18 29 18 37 18 44 18 53 19 02	h m 5 45 5 46 5 44 5 39 5 30	h m 18 21 18 30 18 39 18 49 19 00	h m 5 51 5 53 5 49 5 42 5 32	h m 18 14 18 23 18 33 18 45 18 59	h m 6 00 6 00 5 55 5 47 5 34	h m 18 07 18 16 18 29 18 42 18 57	h m 6 06 6 05 6 00 5 49 5 34	h m 18 00 18 10 18 24 18 40 18 57	
Mar.	19 1 11 21 31	5 18 5 08 4 54 4 39 4 24	19 11 19 19 19 28 19 37 19 46	5 19 5 06 4 50 4 33 4 16	19 11 19 21 19 32 19 44 19 56	5 19 5 03 4 45 4 25 4 04	19 11 19 25 19 38 19 52 20 08	5 18 4 59 4 38 4 14 3 49	19 12 19 29 19 46 20 04 20 24	5 16 4 54 4 29 4 03 3 33	19 15 19 34 19 54 20 16 20 40	
Apr. May	10 20 30 10 20	4 09 3 54 3 39 3 25 3 14	19 56 20 06 20 18 20 29 20 41	3 57 3 39 3 20 3 04 2 49	20 08 20 22 20 36 20 51 21 05	3 42 3 19 2 57 2 35 2 15	20 23 20 41 21 01 21 21 21 40	3 22 2 54 2 24 1 52 1 16	20 44 21 08 21 34 22 05 22 42	3 01 2 24 1 42 0 39	21 07 21 39 22 19 23 26	
June July	30 9 19 29 9	3 04 3 00 2 59 3 01 3 08	20 51 20 59 21 04 21 05 21 02	2 37 2 30 2 28 2 30 2 38	21 19 21 29 21 35 21 36 21 31	1 58 1 45 1 40 1 43 1 55	21 59 22 15 22 23 22 23 22 13	0 29	23 35			
Aug.	19 29 8 18 28	3 17 3 27 3 38 3 49 3 59	20 55 20 44 20 32 20 18 20 02	2 50 3 03 3 17 3 32 3 45	21 21 21 07 20 51 20 33 20 16	2 12 2 31 2 50 3 10 3 27	21 58 21 39 21 18 20 55 20 32	1 00 1 40 2 12 2 40 3 04	23 07 22 29 21 56 21 25 20 55	1 16 2 02 2 37	22 49 22 00 21 21	
Sept. Oct.	7 17 27 7 17	4 09 4 18 4 27 4 34 4 42	19 46 19 30 19 14 19 00 18 47	3 58 4 09 4 21 4 31 4 41	19 57 19 38 19 20 19 04 18 48	3 44 3 59 4 13 4 26 4 38	20 10 19 48 19 27 19 07 18 51	3 26 3 44 4 03 4 20 4 36	20 28 20 01 19 37 19 14 18 53	3 05 3 30 3 52 4 12 4 31	20 47 20 16 19 48 19 21 18 57	
Nov. Dec.	27 6 16 26 6	4 50 4 58 5 07 5 15 5 23	18 37 18 28 18 22 18 19 18 18	4 51 5 01 5 11 5 21 5 29	18 36 18 25 18 17 18 12 18 12 18 12	4 51 5 03 5 15 5 26 5 36	18 35 18 22 18 13 18 07 18 05	4 51 5 05 5 19 5 33 5 43	18 36 18 20 18 08 18 01 17 57	4 49 5 06 5 23 5 37 5 50	18 36 18 19 18 05 17 55 17 50	
Jan.	16 26 5	5 29 5 35 5 38	18 21 18 26 18 32	5 37 5 42 5 45	18 14 18 18 18 25	5 44 5 50 5 52	18 06 18 11 18 18	5 53 5 58 6 00	17 57 18 02 18 11	5 59 6 05 6 07	17 51 17 55 18 05	

BEGINNING OF MORNING AND ENDING OF EVENING TWILIGHT

The above table gives the local mean time of the beginning of morning twilight, and of the ending of evening twilight, for various latitudes. To obtain the corresponding standard time, the method used is the same as for correcting the sunrise and sunset tables, as described on page 12. The entry —— in the above table indicates that at such dates and latitudes, twilight lasts all night. This table, taken from the American Ephemeris, is computed for astronomical twilight, i.e. for the time at which the sun is 108° from the zenith (or 18° below the horizon).

MOONRISE AND MOONSET, 1978; LOCAL MEAN TIME

DATE	Latitu	de 30°	Latitu	ide 35°	Latitu	ide 40°	Latitu	ide 45°	Latitu	de 50°	Latitu	ide 54°
	Mo	bon	Mo	bon	Mo	oon	Mo	bon	Mo	on	M	oon
	Rise	Set	Rise	Set	Rise	Set	Rise	Set	Rise	Set	Rise	Set
Jan. 1 2 C 3 4 5	h m 23 50 	h m 11 15 11 53 12 33 13 17 14 06	h m 23 52 	h m 11 15 11 50 12 28 13 10 13 57	h m 23 54 00 58 02 04 03 12	h m 11 14 11 47 12 22 13 02 13 47	h m 23 56 01 03 02 12 03 22	h m 11 13 11 43 12 16 12 53 13 36	h m 23 59 01 09 02 22 03 35	h m 11 12 11 39 12 08 12 42 13 22	h m 00 02 01 15 02 31 03 48	h m 11 11 11 35 12 01 12 32 13 09
6	04 00	15 01	04 09	14 51	04 20	14 40	04 33	14 27	$\begin{array}{ccc} 04 & 48 \\ 05 & 56 \\ 06 & 58 \\ 07 & 50 \\ 08 & 33 \end{array}$	14 11	05 03	13 55
7	05 05	16 01	05 15	15 51	05 26	15 39	05 40	15 26		15 09	06 13	14 53
8	06 07	17 06	06 17	16 57	06 28	16 46	06 41	16 33		16 17	07 14	16 01
9	07 04	18 13	07 13	18 05	07 24	17 56	07 35	17 44		17 31	08 04	17 17
10	07 57	19 20	08 04	19 14	08 12	19 07	08 22	18 58		18 48	08 45	18 38
11 12 13 14 15 🔊	08 44 09 27 10 06 10 44 11 21	20 26 21 28 22 28 23 25 	08 49 09 30 10 07 10 42 11 17	20 21 21 26 22 28 23 28 	08 55 09 33 10 08 10 41 11 13	20 17 21 24 22 29 23 31	09 02 09 37 10 09 10 39 11 09	20 11 21 21 22 29 23 34	09 10 09 41 10 10 10 37 11 03	20 04 21 18 22 30 23 38	09 18 09 46 10 11 10 35 10 58	19 58 21 15 22 30 23 42
16	11 58	00 21	11 53	$\begin{array}{cccc} 00 & 25 \\ 01 & 21 \\ 02 & 16 \\ 03 & 09 \\ 03 & 59 \end{array}$	11 47	00 31	11 40	00 37	11 31	00 44	11 23	00 51
17	12 36	01 15	12 29		12 21	01 29	12 12	01 37	12 01	01 47	11 50	01 57
18	13 16	02 08	13 08		12 58	02 25	12 47	02 35	12 34	02 48	12 21	03 01
19	13 59	03 00	13 49		13 39	03 19	13 26	03 31	13 11	03 46	12 56	04 00
20	14 43	03 50	14 34		14 22	04 10	14 09	04 24	13 53	04 39	13 37	04 55
21	15 31	04 38	15 21	04 48	15 10	04 59	14 57	05 12	14 40	05 29	14 24	05 45
22	16 21	05 24	16 11	05 34	16 01	05 44	15 48	05 57	15 33	06 13	15 18	06 28
23	17 12	06 08	17 04	06 16	16 54	06 26	16 43	06 38	16 30	06 52	16 16	07 06
24	18 05	06 49	17 58	06 56	17 50	07 05	17 41	07 15	17 30	07 27	17 19	07 38
25	18 59	07 28	18 54	07 34	18 48	07 41	18 41	07 48	18 33	07 58	18 25	08 07
26 27 28 29 30 31 C	19 54 20 49 21 45 22 42 23 42 	08 05 08 41 09 17 09 54 10 33 11 14	19 50 20 48 21 46 22 46 23 47 	08 09 08 44 09 18 09 52 10 29 11 08	19 47 20 46 21 47 22 49 23 53 	08 14 08 46 09 18 09 50 10 24 11 01	$\begin{array}{c} 19 & 42 \\ 20 & 45 \\ 21 & 48 \\ 22 & 53 \\ \vdots & \vdots & \vdots \\ 00 & 00 \end{array}$	08 19 08 49 09 18 09 47 10 19 10 53	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	08 26 08 52 09 18 09 44 10 12 10 43	19 32 20 41 21 51 23 03 	08 32 08 56 09 18 09 42 10 06 10 34
Feb.	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m
1	00 42	11 59	00 49	11 51	00 58	11 42	01 07	11 32	01 19	11 19	01 30	11 07
2	01 44	12 49	01 53	12 40	02 03	12 29	02 15	12 17	02 29	12 02	02 43	11 48
3	02 47	13 45	02 57	13 35	03 08	13 23	03 21	13 10	03 37	12 54	03 53	12 38
4	03 48	14 45	03 58	14 35	04 10	14 24	04 23	14 11	04 40	13 54	04 56	13 38
5	04 47	15 50	04 56	15 41	05 07	15 30	05 20	15 18	05 35	15 03	05 50	14 49
6	05 41	16 56	05 49	16 49	05 59	16 40	06 10	16 30	06 23	16 18	06 36	16 06
7	06 31	18 03	06 37	17 57	06 45	17 51	06 53	17 44	07 03	17 35	07 13	17 26
8	07 17	19 07	07 21	19 04	07 26	19 01	07 31	18 56	07 38	18 51	07 44	18 46
9	07 59	20 10	08 01	20 09	08 03	20 08	08 05	20 07	08 09	20 06	08 11	20 04
10	08 39	21 10	08 38	21 12	08 38	21 13	08 38	21 15	08 37	21 18	08 37	21 20
11 12 13 14 D 15	09 17 09 55 10 34 11 14 11 55	$\begin{array}{c} 22 & 08 \\ 23 & 05 \\ 23 & 59 \\ \dot{0}\dot{0} & 52 \end{array}$	09 15 09 51 10 28 11 06 11 47	$\begin{array}{cccc} 22 & 12 \\ 23 & 10 \\ \vdots & \vdots \\ 00 & 06 \\ 01 & 01 \end{array}$	09 12 09 46 10 20 10 57 11 36	$\begin{array}{c} 22 & 16 \\ 23 & 17 \\ \vdots \\ 00 & 15 \\ 01 & 10 \end{array}$	09 09 09 40 10 12 10 47 11 25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09 05 09 33 10 02 10 34 11 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09 01 09 26 09 53 10 22 10 56	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
16 17 18 19 20	12 39 13 26 14 15 15 05 15 58	$\begin{array}{ccc} 01 & 43 \\ 02 & 32 \\ 03 & 19 \\ 04 & 04 \\ 04 & 46 \end{array}$	12 30 13 16 14 05 14 57 15 51	01 53 02 42 03 29 04 13 04 54	12 19 13 05 13 54 14 47 15 42	$\begin{array}{cccc} 02 & 03 \\ 02 & 53 \\ 03 & 40 \\ 04 & 23 \\ 05 & 03 \end{array}$	$\begin{array}{c} 12 & 06 \\ 12 & 52 \\ 13 & 42 \\ 14 & 35 \\ 15 & 32 \end{array}$	02 16 03 06 03 53 04 35 05 14	11 50 12 36 13 26 14 21 15 20	$\begin{array}{ccc} 02 & 31 \\ 03 & 22 \\ 04 & 09 \\ 04 & 50 \\ 05 & 26 \end{array}$	$\begin{array}{c} 11 & 35 \\ 12 & 20 \\ 13 & 11 \\ 14 & 07 \\ 15 & 08 \end{array}$	02 46 03 38 04 24 05 04 05 39
21	16 52	05 26	16 46	05 33	16 39	05 40	16 32	05 49	16 22	05 59	16 13	06 09
22	17 47	06 04	17 43	06 09	17 38	06 15	17 33	06 21	17 27	06 29	17 20	06 36
23	18 43	06 42	18 41	06 45	18 38	06 48	18 36	06 52	18 33	06 56	18 30	07 01
24	19 39	07 18	19 39	07 19	19 40	07 20	19 40	07 21	19 40	07 23	19 40	07 24
25	20 37	07 56	20 39	07 54	20 42	07 53	20 45	07 51	20 49	07 49	20 53	07 48
26 27 28	21 36 22 36 23 37	08 34 09 14 09 58	21 41 22 43 23 46	08 31 09 09 09 51	21 46 22 50 23 55	08 27 09 03 09 43	21 52 22 59 	08 22 08 56 09 33	21 59 23 09	08 17 08 47 09 22	22 06 23 19 	08 12 08 39 09 11

DATE	Latitu Mo Rise	de 30° oon Set	Latitu Mo Rise	de 35° oon Set	Latitu Mo Rise	de 40° oon Set	Latitu Mo Rise	de 45° on Set	Latitu Mo Rise	ide 50° oon Set	Latitu Mo Rise	de 54° oon Set
Mar. 1 2 C 3 4 5	h m 00 38 01 38 02 36 03 30	h m 10 46 11 38 12 35 13 36 14 39	h m 00 48 01 48 02 46 03 39	h m 10 37 11 28 12 25 13 26 14 31	h m 00 59 02 00 02 57 03 49	h m 10 27 11 17 12 14 13 16 14 22	h m 00 06 01 11 02 13 03 10 04 01	h m 10 16 11 04 12 00 13 03 14 11	h m 00 19 01 26 02 29 03 26 04 15	h m 10 02 10 49 11 44 12 47 13 57	h m 00 32 01 42 02 45 03 41 04 29	h m 09 48 10 33 11 28 12 32 13 44
6 7 800 9 10	04 20 05 07 05 50 06 31 07 10	15 44 16 48 17 51 18 52 19 52	04 28 05 12 05 53 06 32 07 09	15 37 16 43 17 49 18 53 19 55	04 36 05 18 05 57 06 33 07 07	15 30 16 39 17 46 18 53 19 58	$\begin{array}{c} 04 & 45 \\ 05 & 25 \\ 06 & 01 \\ 06 & 34 \\ 07 & 06 \end{array}$	15 21 16 33 17 44 18 53 20 01	$\begin{array}{ccc} 04 & 57 \\ 05 & 33 \\ 06 & 05 \\ 06 & 35 \\ 07 & 03 \end{array}$	15 11 16 26 17 41 18 54 20 05	$\begin{array}{c} 05 & 08 \\ 05 & 41 \\ 06 & 10 \\ 06 & 36 \\ 07 & 01 \end{array}$	15 01 16 19 17 37 18 54 20 09
11 12 13 14 15	07 49 08 28 09 08 09 50 10 34	20 50 21 47 22 41 23 34	07 46 08 23 09 01 09 42 10 24	20 55 21 53 22 49 23 43 	07 42 08 17 08 53 09 32 10 14	21 00 22 00 22 58 23 53	07 37 08 10 08 44 09 21 10 01	21 06 22 09 23 09 	07 32 08 01 08 33 09 07 09 46	21 13 22 19 23 22 00 20	07 27 07 53 08 22 08 54 09 31	21 21 22 29 23 34
16 € 17 18 19 20	11 19 12 07 12 57 13 49 14 42	00 24 01 12 01 58 02 41 03 22	11 10 11 58 12 48 13 41 14 35	00 34 01 22 02 07 02 49 03 29	10 59 11 47 12 38 13 32 14 28	00 45 01 33 02 18 02 59 03 37	10 46 11 34 12 26 13 21 14 19	00 58 01 46 02 30 03 10 03 46	10 30 11 18 12 11 13 08 14 08	01 14 02 02 02 45 03 24 03 58	10 14 11 02 11 56 12 55 13 58	01 29 02 18 03 00 03 37 04 09
21 22 23 24 25	15 36 16 32 17 29 18 27 19 27	$\begin{array}{ccc} 04 & 01 \\ 04 & 38 \\ 05 & 16 \\ 05 & 53 \\ 06 & 32 \end{array}$	15 31 16 29 17 28 18 29 19 31	04 06 04 42 05 17 05 53 06 29	15 26 16 26 17 27 18 30 19 35	04 12 04 46 05 19 05 52 06 26	15 19 16 22 17 26 18 32 19 40	04 20 04 51 05 22 05 52 06 23	15 12 16 18 17 25 18 35 19 46	04 29 04 57 05 24 05 51 06 19	15 04 16 13 17 24 18 37 19 52	04 37 05 03 05 27 05 51 06 15
26 27 28 29 30 31 &	20 28 21 30 22 33 23 33 00 31	07 12 07 56 08 43 09 35 10 30 11 29	20 34 21 38 22 42 23 43 00 41	07 08 07 49 08 35 09 25 10 20 11 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07 03 07 42 08 26 09 15 10 09 11 09	$\begin{array}{cccc} 20 & 49 \\ 21 & 57 \\ 23 & 04 \\ \hline 00 & 08 \\ 01 & 06 \end{array}$	06 56 07 33 08 15 09 02 09 56 10 56	$\begin{array}{cccc} 20 & 58 \\ 22 & 09 \\ 23 & 19 \\ \hline 00 & 24 \\ 01 & 22 \end{array}$	06 49 07 23 08 01 08 47 09 40 10 40	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06 42 07 13 07 48 08 32 09 23 10 24
Apr. 1 2 3 4 5	h m 01 26 02 16 03 02 03 45 04 26	h m 12 31 13 33 14 36 15 37 16 38	h m 01 35 02 24 03 08 03 49 04 28	h m 12 22 13 26 14 31 15 35 16 37	h m 01 45 02 33 03 15 03 54 04 30	h m 12 12 13 18 14 25 15 31 16 37	h m 01 57 02 43 03 23 03 59 04 32	h m 12 01 13 09 14 18 15 27 16 36	h m 02 12 02 55 03 33 04 05 04 35	h m 11 46 12 57 14 10 15 22 16 35	h m 02 27 03 08 03 42 04 11 04 38	h m 11 33 12 46 14 02 15 18 16 34
6 7 8 9 10	05 05 05 44 06 22 07 02 07 44	17 38 18 36 19 34 20 29 21 24	05 05 05 41 06 18 06 56 07 36	17 39 18 40 19 39 20 37 21 32	05 04 05 38 06 13 06 49 07 27	17 41 18 44 19 46 20 45 21 42	05 04 05 35 06 07 06 40 07 16	17 43 18 49 19 53 20 55 21 53	05 03 05 31 06 00 06 30 07 04	17 46 18 55 20 02 21 07 22 07	$\begin{array}{c} 05 & 02 \\ 05 & 27 \\ 05 & 53 \\ 06 & 21 \\ 06 & 52 \end{array}$	17 48 19 00 20 11 21 18 22 21
11 12 13 14 15 🔊	08 27 09 12 09 59 10 48 11 39	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	08 18 09 02 09 50 10 39 11 30	22 25 23 15 00 01 00 44	08 08 08 51 09 38 10 28 11 21	22 36 23 26 00 12 00 55	07 56 08 39 09 25 10 16 11 09	22 48 23 39 00 25 01 06	$\begin{array}{c} 07 & 41 \\ 08 & 23 \\ 09 & 09 \\ 10 & 00 \\ 10 & 56 \end{array}$	$\begin{array}{cccc} 23 & 04 \\ 23 & 55 \\ \vdots & \vdots \\ 00 & 40 \\ 01 & 21 \end{array}$	$\begin{array}{c} 07 & 27 \\ 08 & 07 \\ 08 & 54 \\ 09 & 45 \\ 10 & 42 \end{array}$	23 19 00 11 00 56 01 35
16 17 18 19 20	12 31 13 24 14 19 15 15 16 12	$\begin{array}{ccc} 01 & 17 \\ 01 & 56 \\ 02 & 34 \\ 03 & 11 \\ 03 & 48 \end{array}$	12 24 13 19 14 15 15 13 16 13	$\begin{array}{c} 01 & 25 \\ 02 & 02 \\ 02 & 39 \\ 03 & 14 \\ 03 & 49 \end{array}$	12 15 13 12 14 11 15 11 16 13	$\begin{array}{ccc} 01 & 33 \\ 02 & 10 \\ 02 & 44 \\ 03 & 17 \\ 03 & 49 \end{array}$	$\begin{array}{c} 12 & 06 \\ 13 & 05 \\ 14 & 06 \\ 15 & 09 \\ 16 & 14 \end{array}$	$\begin{array}{cccc} 01 & 44 \\ 02 & 18 \\ 02 & 50 \\ 03 & 20 \\ 03 & 50 \end{array}$	$\begin{array}{cccc} 11 & 54 \\ 12 & 56 \\ 14 & 00 \\ 15 & 06 \\ 16 & 15 \end{array}$	01 56 02 28 02 57 03 24 03 51	11 43 12 47 13 54 15 04 16 16	02 08 02 37 03 04 03 28 03 52
21 22 😨 23 24 25	17 12 18 14 19 17 20 21 21 25	$\begin{array}{ccc} 04 & 26 \\ 05 & 06 \\ 05 & 49 \\ 06 & 36 \\ 07 & 27 \end{array}$	17 15 18 19 19 24 20 30 21 34	04 25 05 02 05 43 06 28 07 18	17 18 18 24 19 32 20 40 21 45	04 23 04 58 05 37 06 20 07 08	17 21 18 31 19 41 20 51 21 58	$\begin{array}{ccc} 04 & 21 \\ 04 & 53 \\ 05 & 29 \\ 06 & 09 \\ 06 & 56 \end{array}$	17 26 18 39 19 53 21 05 22 14	04 18 04 47 05 20 05 57 06 41	$\begin{array}{c} 17 & 30 \\ 18 & 46 \\ 20 & 04 \\ 21 & 19 \\ 22 & 30 \end{array}$	04 16 04 42 05 11 05 45 06 27
26 27 28 29 C 30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	08 23 09 23 10 24 11 27 12 29	22 36 23 32 00 23 01 08	08 13 09 13 10 15 11 19 12 24	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	08 02 09 01 10 05 11 11 12 17	$\begin{array}{cccc} 23 & 00 \\ 23 & 55 \\ \vdots & \vdots \\ 00 & 43 \\ 01 & 25 \end{array}$	07 49 08 48 09 53 11 00 12 09	23 17 00 11 00 56 01 35	07 33 08 32 09 38 10 48 12 00	$\begin{array}{cccc} 23 & 33 \\ \vdots & \vdots & \vdots \\ 00 & 26 \\ 01 & 09 \\ 01 & 45 \end{array}$	07 17 08 16 09 23 10 36 11 51

DATE	Latitu	de 30°	Latitu	de 35°	Latitu	de 40°	Latitu	ide 45°	Latitu	de 50°	Latitu	de 54°
	Mo	Don	Mc	oon	Mo	oon	Mo	Don	Mo	oon	Mc	on
	Rise	Set	Rise	Set	Rise	Set	Rise	Set	Rise	Set	Rise	Set
May	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m
1	01 45	13 31	01 50	13 27	01 55	13 23	02 01	13 18	02 09	13 12	02 16	13 06
2	02 26	14 31	02 28	14 29	02 31	14 27	02 34	14 25	02 38	14 23	02 42	14 21
3	03 04	15 29	03 05	15 30	03 05	15 31	03 06	15 32	03 06	15 33	03 07	15 34
4	03 42	16 27	03 40	16 30	03 38	16 33	03 36	16 37	03 33	16 42	03 31	16 46
5	04 20	17 24	04 16	17 29	04 12	17 34	04 07	17 41	04 01	17 49	03 55	17 56
60)	04 59	18 20	04 53	18 26	04 47	18 34	04 39	18 43	04 30	18 54	04 21	19 04
7	05 39	19 14	05 32	19 23	05 23	19 32	05 14	19 43	05 02	19 56	04 51	20 09
8	06 21	20 07	06 13	20 17	06 03	20 27	05 51	20 39	05 37	20 55	05 24	21 09
9	07 06	20 58	06 56	21 08	06 45	21 19	06 33	21 32	06 17	21 48	06 02	22 04
10	07 52	21 46	07 42	21 56	07 31	22 07	07 18	22 20	07 02	22 36	06 46	22 52
11 12 13 14 15 J	08 41 09 31 10 22 11 14 12 07	22 31 23 14 23 53 00 31	08 31 09 22 10 14 11 08 12 02	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	08 20 09 12 10 05 11 00 11 57	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	08 07 09 00 09 55 10 52 11 51	23 04 23 42 00 17 00 50	07 51 08 45 09 42 10 42 11 44	23 19 23 56 00 29 00 58	07 36 08 31 09 29 10 32 11 37	23 33 00 09 00 39 01 06
16	13 01	01 07	12 59	01 11	12 56	01 15	12 52	01 20	12 48	01 25	12 44	01 31
17	13 57	01 44	13 57	01 45	13 56	01 47	13 55	01 49	13 54	01 52	13 53	01 54
18	14 55	02 20	14 57	02 20	14 58	02 19	15 00	02 19	15 03	02 18	15 06	02 17
19	15 55	02 59	15 59	02 56	16 03	02 53	16 08	02 50	16 15	02 45	16 20	02 41
20	16 58	03 40	17 04	03 35	17 11	03 29	17 19	03 23	17 28	03 16	17 38	03 08
21	18 02	04 25	18 10	04 18	18 19	04 10	18 30	04 01	18 43	03 50	18 55	03 40
22	19 08	05 14	19 17	05 06	19 28	04 56	19 40	04 45	19 56	04 31	20 11	04 18
23	20 12	06 09	20 22	06 00	20 34	05 49	20 47	05 36	21 04	05 20	21 20	05 04
24	21 13	07 09	21 23	06 59	21 34	06 48	21 47	06 34	22 03	06 18	22 19	06 01
25	22 09	08 13	22 18	08 03	22 28	07 52	22 40	07 39	22 54	07 23	23 08	07 08
26 27 28 C 29 30 31	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09 17 10 22 11 24 12 25 13 24 14 22	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09 09 10 15 11 20 12 23 13 24 14 24	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	08 59 10 08 11 15 12 20 13 24 14 26	$\begin{array}{cccc} 23 & 25 \\ 00 & 04 \\ 00 & 38 \\ 01 & 10 \\ 01 & 40 \end{array}$	08 48 09 59 11 09 12 17 13 24 14 29	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	08 35 09 48 11 02 12 14 13 24 14 33	23 48 	08 21 09 38 10 55 12 01 13 24 14 36
June	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m
1	02 21	15 18	02 18	15 23	02 14	15 27	02 10	15 33	02 06	15 40	02 01	15 46
2	02 59	16 14	02 54	16 20	02 48	16 27	02 41	16 35	02 33	16 45	02 26	16 54
3	03 38	17 08	03 31	17 16	03 23	17 25	03 14	17 35	03 04	17 47	02 53	18 00
4	04 19	18 01	14 11	18 10	04 01	18 21	03 50	18 33	03 37	18 47	03 24	19 01
5∰	05 02	18 53	04 53	19 03	04 42	19 14	04 30	19 27	04 15	19 42	04 00	19 58
6	05 48	19 42	05 38	19 52	05 27	20 03	05 13	20 16	04 57	20 33	04 42	20 49
7	06 35	20 28	06 25	20 38	06 14	20 49	06 01	21 02	05 45	21 17	05 29	21 33
8	07 25	21 12	07 15	21 20	07 05	21 31	06 52	21 42	06 37	21 56	06 22	22 10
9	08 16	21 52	08 07	22 00	07 58	22 09	07 46	22 19	07 33	22 31	07 19	22 43
10	09 07	22 30	09 00	22 37	08 52	22 44	08 43	22 52	08 31	23 01	08 20	23 11
11 12 13 D 14 15	09 59 10 52 11 46 12 42 13 39	$\begin{array}{c} 23 & 07 \\ 23 & 42 \\ \vdots \\ 00 & 18 \\ 00 & 54 \end{array}$	09 54 10 49 11 45 12 42 13 42	23 11 23 45 00 18 00 53	09 48 10 45 11 43 12 43 13 45	$\begin{array}{cccc} 23 & 16 \\ 23 & 48 \\ \vdots & \vdots \\ 00 & 19 \\ 00 & 51 \end{array}$	09 40 10 40 11 41 12 43 13 48	$\begin{array}{cccc} 23 & 22 \\ 23 & 51 \\ \vdots & \vdots \\ 00 & 20 \\ 00 & 49 \end{array}$	09 32 10 34 11 38 12 44 13 53	23 29 23 55 00 20 00 46	09 23 10 29 11 36 12 45 13 57	23 36 23 59 00 21 00 44
16 17 18 19 20 ☺	14 39 15 41 16 46 17 52 18 55	$\begin{array}{cccc} 01 & 33 \\ 02 & 14 \\ 03 & 01 \\ 03 & 52 \\ 04 & 50 \end{array}$	14 44 15 48 16 55 18 01 19 05	01 29 02 08 02 53 03 43 04 40	14 49 15 56 17 05 18 12 19 17	$\begin{array}{ccc} 01 & 25 \\ 02 & 02 \\ 02 & 44 \\ 03 & 33 \\ 04 & 29 \end{array}$	14 56 16 05 17 16 18 26 19 31	01 20 01 54 02 34 03 21 04 15	15 04 16 17 17 30 18 42 19 47	01 14 01 45 02 22 03 06 03 59	15 11 16 28 17 44 18 58 20 04	01 09 01 37 02 10 02 51 03 43
21 22 23 24 25	19 56 20 51 21 40 22 25 23 07	05 53 06 59 08 06 09 12 10 16	20 05 20 59 21 47 22 29 23 09	05 43 06 50 07 59 09 07 10 13	20 16 21 08 21 54 22 34 23 11	$\begin{array}{cccc} 05 & 32 \\ 06 & 40 \\ 07 & 50 \\ 09 & 00 \\ 10 & 09 \end{array}$	20 29 21 19 22 02 22 40 23 13	05 18 06 27 07 40 08 53 10 05	20 44 21 32 22 12 22 46 23 16	$\begin{array}{ccc} 05 & 02 \\ 06 & 13 \\ 07 & 28 \\ 08 & 45 \\ 10 & 00 \end{array}$	20 59 21 45 22 22 22 53 23 19	04 45 05 58 07 16 08 36 09 55
26 27 € 28 29 30	$\begin{array}{cccc} 23 & 45 \\ \dot{0}0 & 23 \\ 01 & 01 \\ 01 & 39 \end{array}$	11 17 12 16 13 14 14 09 15 04	$\begin{array}{cccc} 23 & 45 \\ \dot{00} & 21 \\ 00 & 56 \\ 01 & 33 \end{array}$	11 16 12 18 13 17 14 15 15 11	$\begin{array}{cccc} 23 & 45 \\ \dot{00} & \dot{18} \\ 00 & 51 \\ 01 & 26 \end{array}$	11 15 12 19 13 21 14 21 15 19	$\begin{array}{cccc} 23 & 45 \\ \dot{00} & \dot{15} \\ 00 & 46 \\ 01 & 18 \end{array}$	11 14 12 21 13 26 14 28 15 29	23 44 i 00 11 00 39 01 08	11 13 12 23 13 31 14 37 15 40	23 44 00 08 00 32 00 58	11 11 12 25 13 37 14 46 15 52

DATE	Latitu	de 30°	Latitu	de 35°	Latitu	de 40°	Latitu	de 45°	Latitu	de 50°	Latitu	de 5
	Mo	oon	Mo	oon	Mo	bon	Mo	on	Mo	oon	Mo	oon
	Rise	Set	Rise	Set	Rise	Set	Rise	Set	Rise	Set	Rise	Se
July	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h
1	02 19	15 57	02 11	16 06	02 02	16 16	01 52	16 27	01 40	16 41	01 28	16
2	03 01	16 49	02 52	16 59	02 42	17 09	02 30	17 22	02 16	17 37	02 01	17
3	03 45	17 39	03 36	17 49	03 25	18 00	03 12	18 13	02 56	18 29	02 40	18
4	04 32	18 26	04 22	18 36	04 11	18 47	03 58	19 00	03 41	19 16	03 25	19
5	05 21	19 11	05 11	19 20	05 00	19 30	04 47	19 42	04 32	19 57	04 16	20
6	06 11	19 52	06 02	20 00	05 52	20 10	05 40	20 20	05 26	20 33	05 12	20
7	07 02	20 31	06 55	20 38	06 46	20 46	06 36	20 55	06 24	21 05	06 12	21
8	07 54	21 08	07 48	21 13	07 41	21 19	07 33	21 26	07 24	21 34	07 14	21
9	08 47	21 44	08 43	21 47	08 38	21 51	08 32	21 55	08 25	22 00	08 18	22
10	09 40	22 19	09 37	22 20	09 35	22 22	09 32	22 23	09 28	22 25	09 24	22
11 12 13 ⊅ 14 15	10 34 11 29 12 26 13 25 14 27	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 33 11 31 12 30 13 31 14 35	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 33 11 33 12 34 13 38 14 44	22 53 23 25 23 59 	10 33 11 35 12 39 13 46 14 54	22 52 23 21 23 53 00 29	10 32 11 38 12 46 13 56 15 07	22 51 23 17 23 45 00 18	10 31 11 41 12 52 14 05 15 19	22 23 23
16	15 31	01 39	15 40	01 31	15 50	01 21	16 03	01 10	16 18	$\begin{array}{cccc} 00 & 57 \\ 01 & 44 \\ 02 & 40 \\ 03 & 46 \\ 05 & 00 \end{array}$	16 33	00
17	16 34	02 32	16 44	02 23	16 56	02 12	17 09	01 59	17 26		17 42	01
18	17 36	03 32	17 46	03 22	17 58	03 10	18 11	02 57	18 27		18 43	02
19 €	18 35	04 36	18 44	04 26	18 54	04 15	19 06	04 02	19 20		19 35	03
20	19 28	05 43	19 36	05 35	19 44	05 25	19 54	05 14	20 06		20 17	04
21	20 17	06 52	20 22	06 45	20 28	06 38	20 35	06 29	20 44	06 18	20 52	06
22	21 01	07 58	21 04	07 54	21 08	07 49	21 12	07 43	21 17	07 36	21 21	07
23	21 43	09 03	21 44	09 01	21 44	08 59	21 45	08 56	21 47	08 53	21 48	08
24	22 22	10 05	22 21	10 06	22 19	10 06	22 17	10 07	22 15	10 07	22 13	10
25	23 01	11 05	22 57	11 08	22 53	11 11	22 48	11 14	22 43	11 18	22 37	11
26 C	23 39	12 03	23 34	12 07	23 28	12 13	23 20	12 19	23 12	12 26	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12
27		12 58		13 05		13 12	23 54	13 21	23 43	13 32		13
28	00 19	13 53	00 12	14 01	00 04	14 10		14 21		14 33		14
29	01 01	14 45	00 52	14 54	00 42	15 05	00 31	15 17	00 18	15 32		15
30	01 44	15 35	01 35	15 45	01 24	15 56	01 11	16 09	00 56	16 25		16
31	02 30	16 23	02 20	16 33	02 09	16 45	01 56	16 58	01 40	17 14		17
Aug. 1 2 3 4 5	h m 03 18 04 07 04 58 05 50 06 43	h m 17 09 17 52 18 32 19 10 19 46	h m 03 08 03 58 04 50 05 44 06 38	h m 17 18 18 00 18 39 19 15 19 50	h m 02 57 03 48 04 41 05 36 06 32	h m 17 29 18 10 18 47 19 22 19 54	h m 02 44 03 36 04 30 05 27 06 26	h m 17 42 18 21 18 57 19 29 19 59	h m 02 28 03 21 04 17 05 17 06 18	h m 17 57 18 35 19 08 19 38 20 06	h m 02 12 03 06 04 04 05 06 06 10	h 18 19 19 20
6 7 8 9 10	07 36 08 29 09 24 10 20 11 17	20 21 20 56 21 32 22 09 22 49	07 33 08 28 09 25 10 23 11 22	20 23 20 56 21 30 22 05 22 43	07 29 08 27 09 26 10 26 11 28	20 26 20 56 21 28 22 01 22 37	07 25 08 26 09 27 10 30 11 35	20 28 20 56 21 25 21 55 22 29	07 20 08 24 09 29 10 35 11 43	20 31 20 56 21 22 21 49 22 19	07 16 08 22 09 30 10 40 11 51	20 20 21 21 21 22
11 3 12 13 14 15	12 16 13 17 14 18 15 19 16 18	23 33 00 22 01 16 02 16	12 23 13 25 14 28 15 29 16 27	23 26 00 13 01 07 02 07	12 31 13 35 14 39 15 40 16 38	$\begin{array}{cccc} 23 & 17 \\ \dot{00} & \dot{03} \\ 00 & 55 \\ 01 & 55 \end{array}$	12 40 13 46 14 52 15 54 16 51	$\begin{array}{cccc} 23 & 07 \\ 23 & 51 \\ \vdots & \vdots \\ 00 & 42 \\ 01 & 42 \end{array}$	12 51 14 00 15 07 16 10 17 06	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13 03 14 14 15 23 16 26 17 21	22 23 00 01
16 17 183 19 20	17 13 18 04 18 51 19 35 20 16	03 21 04 28 05 36 06 42 07 47	17 21 18 10 18 55 19 37 20 16	$\begin{array}{cccc} 03 & 12 \\ 04 & 20 \\ 05 & 30 \\ 06 & 39 \\ 07 & 46 \end{array}$	17 31 18 18 19 00 19 39 20 15	03 01 04 12 05 24 06 35 07 45	17 42 18 26 19 06 19 41 20 15	02 49 04 01 05 16 06 31 07 44	17 55 18 36 19 12 19 45 20 14	$\begin{array}{cccc} 02 & 34 \\ 03 & 49 \\ 05 & 07 \\ 06 & 26 \\ 07 & 43 \end{array}$	18 08 18 46 19 19 19 47 20 14	02 03 04 06 07
21	20 56	08 50	20 54	08 51	20 51	08 53	20 47	08 55	20 43	08 57	20 40	09
22	21 36	09 50	21 31	09 54	21 26	09 58	21 20	10 03	21 13	10 09	21 06	10
23	22 16	10 48	22 10	10 54	22 03	11 01	21 54	11 08	21 44	11 17	21 34	11
24	22 58	11 44	22 50	11 52	22 41	12 00	22 30	12 10	22 18	12 22	22 05	12
25 ©	23 41	12 38	23 32	12 47	23 22	12 57	23 10	13 09	22 55	13 23	22 41	13
26 27 28 29 30 31	00 26 01 14 02 03 02 53 03 45	13 30 14 19 15 06 15 49 16 31 17 09	00 17 01 04 01 53 02 45 03 38	13 40 14 29 15 15 15 58 16 38 17 16	$\begin{array}{c} \cdot \cdot & \cdot \cdot \\ 00 & 06 \\ 00 & 53 \\ 01 & 43 \\ 02 & 35 \\ 03 & 30 \end{array}$	13 50 14 40 15 26 16 08 16 47 17 23	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14 03 14 53 15 39 16 20 16 57 17 31	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14 19 15 09 15 54 16 34 17 09 17 41	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14 15 16 16 17 17

DATE	Latitu Mo Rise	de 30° oon Set	Latitu Mo Rise	de 35° Don Set	Latitu Mo Rise	de 40° oon Set	Latitu Mo Rise	de 45° oon Set	Latitu Mo Rise	de 50° oon Set	Latitu Mo Rise	de 54° on Set
Sept. 1 2 3 4 5	h m 04 37 05 31 06 25 07 19 08 15	h m 17 46 18 22 18 58 19 34 20 11	h m 04 32 05 27 06 23 07 20 08 17	h m 17 51 18 25 18 59 19 32 20 07	h m 04 26 05 23 06 21 07 20 08 20	h m 17 56 18 28 18 59 19 31 20 04	h m 04 18 05 18 06 19 07 20 08 23	h m 18 02 18 32 19 00 19 29 19 59	h m 04 09 05 12 06 16 07 21 08 27	h m 18 09 18 36 19 01 19 27 19 54	h m 04 01 05 06 06 13 07 21 08 31	h m 18 16 18 40 19 02 19 25 19 49
6 7 8 9 ♪ 10	09 12 10 10 11 10 12 09 13 09	20 50 21 32 22 18 23 09 	09 16 10 17 11 18 12 19 13 19	20 45 21 25 22 10 23 00 23 56	09 21 10 24 11 27 12 29 13 30	20 39 21 17 22 00 22 49 23 44	09 27 10 32 11 37 12 42 13 43	20 32 21 08 21 49 22 36 23 31	09 35 10 43 11 51 12 57 13 59	20 23 20,56 21 35 22 21 23 15	09 41 10 53 12 03 13 12 14 15	20 15 20 45 21 21 22 05 22 59
11 12 13 14 15	14 06 15 01 15 52 16 40 17 25	$\begin{array}{c} 00 & 05 \\ 01 & 06 \\ 02 & 10 \\ 03 & 15 \\ 04 & 21 \end{array}$	14 16 15 10 16 00 16 46 17 28	00 56 02 01 03 09 04 17	14 27 15 20 16 08 16 52 17 32	00 46 01 52 03 01 04 12	14 40 15 32 16 18 16 59 17 36	00 33 01 41 02 53 04 06	14 56 15 46 16 29 17 07 17 41	00 17 01 27 02 42 03 59	15 12 16 00 16 41 17 15 17 45	00 02 01 14 02 32 03 52
16 ♀ 17 18 19 20	18 07 18 48 19 29 20 10 20 52	05 26 06 30 07 32 08 33 09 31	18 08 18 47 19 25 20 04 20 45	05 24 06 31 07 35 08 38 09 38	18 09 18 45 19 21 19 58 20 36	05 22 06 31 07 38 08 43 09 46	18 10 18 43 19 16 19 51 20 27	05 19 06 31 07 42 08 50 09 55	18 11 18 41 19 11 19 42 20 15	05 16 06 32 07 46 08 57 10 05	18 13 18 39 19 05 19 33 20 04	05 13 06 32 07 50 09 05 10 16
21 22 23 24 © 25	21 35 22 21 23 08 23 56 	10 28 11 21 12 12 13 00 13 45	21 27 22 11 22 58 23 47 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 45 11 41 12 33 13 21 14 05	21 06 21 48 22 34 23 23 	10 56 11 53 12 46 13 34 14 17	20 52 21 32 22 18 23 07 	11 09 12 08 13 02 13 50 14 32	20 38 21 17 22 02 22 52 23 47	11 22 12 23 13 18 14 05 14 46
26 27 28 29 30	00 46 01 37 02 30 03 23 04 16	14 27 15 07 15 45 16 21 16 57	$\begin{array}{cccc} 00 & 37 \\ 01 & 30 \\ 02 & 23 \\ 03 & 18 \\ 04 & 14 \end{array}$	14 35 15 14 15 50 16 24 16 58	00 27 01 21 02 16 03 13 04 11	14 45 15 22 15 56 16 28 17 00	00 16 01 11 02 08 03 07 04 08	14 56 15 31 16 03 16 33 17 02	00 01 00 58 01 58 03 00 04 04	15 09 15 41 16 11 16 38 17 04	$\begin{array}{c} \\ 00 & 46 \\ 01 & 49 \\ 02 & 53 \\ 04 & 00 \end{array}$	15 21 15 52 16 19 16 43 17 06
Oct. 1 2 3 4 5	h m 05 11 06 08 07 05 08 04 09 04	h m 17 33 18 10 18 49 19 31 20 17	h m 05 11 06 09 07 09 08 10 09 11	h m 17 32 18 07 18 44 19 24 20 08	h m 05 10 06 11 07 13 08 16 09 20	h m 17 32 18 04 18 39 19 17 19 59	h m 05 10 06 13 07 18 08 24 09 30	h m 17 31 18 01 18 33 19 08 19 48	h m 05 09 06 16 07 24 08 33 09 42	h m 17 30 17 57 18 26 18 58 19 35	h m 05 09 06 19 07 30 08 42 09 55	h m 17 29 17 53 18 19 18 48 19 22
6 7 8 9 ₪ 10	10 04 11 04 12 01 12 56 13 47	21 06 22 01 22 59 00 00	10 13 11 14 12 11 13 05 13 55	20 57 21 51 22 49 23 51 	10 23 11 25 12 22 13 16 14 04	20 46 21 39 22 38 23 41 	10 35 11 38 12 36 13 28 14 14	20 34 21 26 22 25 23 29	10 50 11 54 12 52 13 43 14 27	20 19 21 10 22 09 23 15 	11 04 12 10 13 08 13 58 14 40	20 04 20 54 21 53 23 01
11 12 13 14 15	14 34 15 19 16 01 16 41 17 22	$\begin{array}{cccc} 01 & 03 \\ 02 & 07 \\ 03 & 10 \\ 04 & 13 \\ 05 & 15 \end{array}$	14 41 15 23 16 03 16 41 17 19	00 56 02 02 03 07 04 13 05 17	14 48 15 27 16 05 16 40 17 16	00 48 01 56 03 04 04 12 05 19	14 56 15 33 16 07 16 40 17 12	00 38 01 48 03 00 04 11 05 21	15 05 15 39 16 10 16 39 17 08	$\begin{array}{ccc} 00 & 26 \\ 01 & 40 \\ 02 & 55 \\ 04 & 10 \\ 05 & 23 \end{array}$	15 15 15 45 16 13 16 39 17 04	00 15 01 32 02 50 04 08 05 26
16 😨 17 18 19 20	18 02 18 44 19 27 20 12 20 59	06 16 07 16 08 14 09 10 10 03	17 57 18 37 19 19 20 03 20 49	$\begin{array}{cccc} 06 & 20 \\ 07 & 22 \\ 08 & 22 \\ 09 & 19 \\ 10 & 13 \end{array}$	17 52 18 30 19 10 19 53 20 38	06 24 07 28 08 30 09 29 10 23	17 46 18 21 18 59 19 40 20 25	06 30 07 36 08 40 09 41 10 36	17 39 18 11 18 46 19 26 20 10	$\begin{array}{ccc} 06 & 36 \\ 07 & 46 \\ 08 & 52 \\ 09 & 55 \\ 10 & 52 \end{array}$	17 31 18 01 18 34 19 11 19 54	06 41 07 55 09 04 10 09 11 07
21 22 23 @ 24 25	21 48 22 38 23 28 	10 53 11 40 12 23 13 03 13 42	21 38 22 28 23 20 	11 03 11 49 12 32 13 11 13 48	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11 14 12 00 12 41 13 19 13 54	21 14 22 05 23 00 23 56 	11 27 12 12 12 53 13 29 14 02	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11 43 12 28 13 07 13 41 14 12	20 42 21 36 22 33 23 34 	11 59 12 43 13 21 13 53 14 21
26 27 28 29 30 31 ())	$\begin{array}{cccc} 01 & 12 \\ 02 & 05 \\ 03 & 00 \\ 03 & 55 \\ 04 & 53 \\ 05 & 52 \end{array}$	$\begin{array}{rrrrr} 14 & 18 \\ 14 & 54 \\ 15 & 30 \\ 16 & 06 \\ 16 & 45 \\ 17 & 26 \end{array}$	$\begin{array}{cccc} 01 & 07 \\ 02 & 02 \\ 02 & 58 \\ 03 & 56 \\ 04 & 56 \\ 05 & 57 \end{array}$	14 22 14 56 15 30 16 04 16 41 17 20	01 01 01 58 02 57 03 57 04 59 06 03	14 27 14 59 15 30 16 02 16 36 17 13	00 54 01 54 02 55 03 58 05 03 06 09	$\begin{array}{c} 14 & 33 \\ 15 & 02 \\ 15 & 31 \\ 16 & 00 \\ 16 & 31 \\ 17 & 06 \end{array}$	00 46 01 48 02 53 03 59 05 07 06 17	14 39 15 05 15 31 15 57 16 25 16 57	$\begin{array}{cccc} 00 & 38 \\ 01 & 43 \\ 02 & 51 \\ 04 & 00 \\ 05 & 12 \\ 06 & 25 \end{array}$	14 46 15 09 15 32 15 55 16 20 16 48

DATE	Latitu Mo Rise	de 30° on Set	Latitu Mc Rise	de 35° on Set	Latitu Mo Rise	de 40° on Set	Latitu Mo Rise	de 45° on Set	Latitu Mo Rise	de 50° on Set	Latitu Mc Rise	de 54° on Set
Nov. 1 2 3 4 5	h m 06 53 07 55 08 57 09 57 10 53	h m 18 11 19 00 19 55 20 53 21 54	h m 07 00 08 04 09 06 10 07 11 03	h m 18 03 18 51 19 45 20 43 21 45	h m 07 08 08 13 09 17 10 18 11 14	h m 17 55 18 41 19 33 20 31 21 34	h m 07 17 08 25 09 30 10 31 11 26	h m 17 45 18 29 19 20 20 18 21 22	h m 07 28 08 39 09 46 10 48 11 42	h m 17 32 18 14 19 04 20 02 21 07	h m 07 40 08 53 10 02 11 04 11 57	h m 17 20 18 00 18 48 19 46 20 52
6 7 D 8 9 10	11 45 12 33 13 18 13 59 14 39	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11 54 12 40 13 23 14 02 14 40	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 12 & 03 \\ 12 & 48 \\ 13 & 28 \\ 14 & 05 \\ 14 & 40 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 15 12 57 13 35 14 09 14 41	22 29 23 39 00 48 01 58	$\begin{array}{cccc} 12 & 28 \\ 13 & 08 \\ 13 & 42 \\ 14 & 13 \\ 14 & 42 \end{array}$	$\begin{array}{cccc} 22 & 16 \\ 23 & 29 \\ \vdots & \vdots \\ 00 & 42 \\ 01 & 55 \end{array}$	12 42 13 18 13 49 14 17 14 42	$\begin{array}{cccc} 22 & 04 \\ 23 & 19 \\ \dot{00} & \dot{36} \\ 01 & 53 \end{array}$
11 12 13 14 15	15 18 15 58 16 38 17 20 18 04	$\begin{array}{cccc} 03 & 04 \\ 04 & 04 \\ 05 & 03 \\ 06 & 01 \\ 06 & 58 \end{array}$	15 17 15 54 16 32 17 13 17 55	$\begin{array}{ccc} 03 & 05 \\ 04 & 07 \\ 05 & 08 \\ 06 & 08 \\ 07 & 06 \end{array}$	15 15 15 49 16 26 17 04 17 45	03 06 04 10 05 14 06 16 07 16	15 12 15 44 16 18 16 54 17 34	03 07 04 14 05 21 06 25 07 27	15 10 15 38 16 09 16 42 17 19	03 08 04 19 05 29 06 36 07 41	$\begin{array}{c} 15 & 07 \\ 15 & 32 \\ 16 & 00 \\ 16 & 30 \\ 17 & 06 \end{array}$	03 09 04 23 05 36 06 47 07 54
16 17 18 19 20	18 50 19 39 20 28 21 19 22 11	07 53 08 45 09 33 10 18 11 00	18 41 19 29 20 19 21 10 22 03	08 02 08 54 09 43 10 27 11 08	18 30 19 18 20 08 21 00 21 54	08 13 09 06 09 54 10 38 11 17	18 17 19 04 19 55 20 49 21 44	08 25 09 19 10 07 10 50 11 28	18 01 18 48 19 39 20 34 21 32	08 41 09 35 10 23 11 05 11 41	17 46 18 32 19 24 20 20 21 20	08 56 09 51 10 39 11 19 11 54
21 22 @ 23 24 25	23 02 23 54 00 47 01 41	11 39 12 16 12 51 13 26 14 02	22 56 23 50 00 45 01 41	11 46 12 21 12 54 13 27 14 01	22 49 23 45 00 42 01 41	11 53 12 27 12 58 13 29 14 00	22 41 23 40 00 39 01 40	12 02 12 33 13 02 13 31 13 59	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 13 12 41 13 08 13 33 13 58	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 23 12 49 13 12 13 35 13 57
26 27 28 29 30 @	02 37 03 35 04 35 05 38 06 41	14 38 15 18 16 01 16 49 17 42	$\begin{array}{ccc} 02 & 39 \\ 03 & 39 \\ 04 & 42 \\ 05 & 46 \\ 06 & 51 \end{array}$	14 36 15 13 15 54 16 40 17 33	02 41 03 44 04 48 05 55 07 01	14 32 15 07 15 46 16 31 17 21	02 43 03 49 04 56 06 05 07 14	14 29 15 01 15 37 16 20 17 09	$\begin{array}{cccc} 02 & 46 \\ 03 & 55 \\ 05 & 06 \\ 06 & 18 \\ 07 & 29 \end{array}$	14 24 14 53 15 27 16 06 16 53	02 49 04 01 05 16 06 31 07 44	14 20 14 46 15 16 15 53 16 37
Dec. 1 2 3 4 5	h m 07 44 08 44 09 40 10 32 11 18	h m 18 40 19 43 20 47 21 52 22 56	h m 07 54 08 54 09 50 10 39 11 24	h m 18 30 19 33 20 39 21 45 22 51	h m 08 06 09 06 10 00 10 48 11 30	h m 18 19 19 22 20 29 21 37 22 46	h m 08 19 09 19 10 12 10 58 11 37	h m 18 05 19 09 20 17 21 28 22 39	h m 08 36 09 35 10 27 11 10 11 46	h m 17 49 18 53 20 04 21 17 22 32	h m 08 52 09 51 10 41 11 21 11 55	h m 17 32 18 37 19 50 21 07 22 25
6 🔊 7 8 9 10	12 01 12 41 13 20 13 58 14 37	23 58 00 58 01 58 02 56	12 04 12 42 13 19 13 55 14 32	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 08 12 44 13 18 13 51 14 26	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 13 12 45 13 16 13 47 14 19	23 49 5 00 58 02 05 03 11	12 18 12 47 13 15 13 42 14 11	23 46 5 00 58 02 08 03 18	12 23 12 49 13 13 13 38 14 03	23 42 00 58 02 12 03 24
11 12 13 14 😳 15	15 17 16 00 16 45 17 32 18 21	03 53 04 50 05 45 06 37 07 27	15 10 15 51 16 35 17 22 18 11	04 00 04 58 05 54 06 47 07 37	15 03 15 42 16 25 17 11 18 00	$\begin{array}{ccc} 04 & 07 \\ 05 & 07 \\ 06 & 04 \\ 06 & 58 \\ 07 & 49 \end{array}$	14 53 15 31 16 12 16 57 17 47	04 15 05 17 06 16 07 11 08 02	14 43 15 17 15 57 16 41 17 30	04 25 05 30 06 31 07 27 08 18	14 32 15 04 15 42 16 25 17 14	04 35 05 42 06 46 07 43 08 34
16 17 18 19 20	19 11 20 03 20 54 21 46 22 38	08 14 08 57 09 37 10 15 10 51	19 02 19 54 20 47 21 41 22 35	08 24 09 06 09 45 10 21 10 55	18 52 19 45 20 40 21 35 22 31	08 34 09 16 09 53 10 28 10 59	18 39 19 34 20 31 21 28 22 27	08 47 09 27 10 03 10 35 11 05	18 24 19 21 20 20 21 20 22 21	09 03 09 41 10 15 10 45 11 11	18 09 19 08 20 09 21 12 22 16	09 18 09 55 10 26 10 53 11 18
21 22 @ 23 24 25	23 31 00 24 01 20 02 17	11 25 11 59 12 34 13 11 13 51	$\begin{array}{cccc} 23 & 29 \\ \dot{0} & \dot{2} \\ 00 & 25 \\ 01 & 22 \\ 02 & 22 \end{array}$	11 27 12 00 12 33 13 08 13 46	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 11 & 30 \\ 12 & 00 \\ 12 & 31 \\ 13 & 03 \\ 13 & 39 \end{array}$	23 26 00 27 01 29 02 34	$\begin{array}{c} 11 & 33 \\ 12 & 00 \\ 12 & 28 \\ 12 & 58 \\ 13 & 32 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11 36 12 01 12 26 12 52 13 22	$\begin{array}{cccc} 23 & 22 \\ \dot{00} & \dot{29} \\ 01 & 38 \\ 02 & 50 \end{array}$	11 40 12 01 12 23 12 47 13 14
26 27 28 29 30 31	03 17 04 20 05 23 06 26 07 26 08 22	14 36 15 26 16 21 17 23 18 28 19 36	03 24 04 28 05 33 06 36 07 36 08 30	14 28 15 16 16 11 17 13 18 19 19 28	03 32 04 38 05 44 06 48 07 47 08 40	14 20 15 06 16 00 17 01 18 08 19 19	$\begin{array}{ccccccc} 03 & 41 \\ 04 & 50 \\ 05 & 57 \\ 07 & 01 \\ 08 & 00 \\ 08 & 51 \end{array}$	14 09 14 54 15 47 16 48 17 56 19 09	03 52 05 04 06 13 07 18 08 15 09 04	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	04 03 05 17 06 29 07 35 08 31 09 18	13 46 14 25 15 14 16 15 17 26 18 44

THE PLANETS FOR 1978

BY TERENCE DICKINSON

MERCURY

At just over one-third Earth's distance from the sun, Mercury is the solar system's innermost planet and the only one known to be almost entirely without an atmosphere. Mercury is a small world only 6% as large as the Earth by volume—barely larger than our moon.

Until the advent of interplanetary probes, virtually nothing was known about the surface of Mercury. Only the vaguest smudges have been seen through Earth-based telescopes. In 1974 the U.S. spacecraft Mariner 10 photographed one hemisphere of Mercury revealing it to be extremely heavily cratered, in many respects identical in appearance to the far side of Earth's moon. There is no interplanetary mission planned to photograph the other hemisphere.

Mercury's orbit is the most elliptical of any planet except Pluto's. Once each orbit Mercury approaches to within 0.31 A.U. of the sun and then half an orbit (44 days) later it is out to 0.47 A.U. This amounts to a 24 million km range in distance from the sun, making the sun in Mercury's sky vary from about four times the size we see it to more than ten times its apparent size from Earth. Mercury's sidereal rotation period of 59 days combines with the 88 day orbital period of the planet to produce a solar day (one sunrise to the next) of 176 days—the longest of any planet.

Of the five planets visible to the unaided eye Mercury is by far the most difficult to observe and is seldom conveniently located for either unaided eye or telescopic observation. The problem for observers is Mercury's tight orbit which constrains the planet to a small zone on either side of the sun as viewed from Earth. When Mercury is east of the sun we may see it as an evening star low in the west just after sunset. When it is west of the sun we might view Mercury as a morning star in the east before sunrise. But due to celestial geometry involving the tilt of the Earth's axis and Mercury's orbit we get much better views of Mercury at certain times of the year.

The best time to see the planet in the evening is in the spring and in the morning in the fall (from the northern hemisphere). Binoculars are of great assistance in searching for the planet about 40 minutes to an hour after sunset or before sunrise during the periods when it is visible. Mercury generally appears about the same colour and brightness as the planet Saturn.

Telescopic observers will find the rapidly changing phases of Mercury of interest. The planet appears to zip from gibbous to crescent phase in about three weeks during each of its elongations. In the table below the visual magnitude, phase and apparent diameter of Mercury as seen through a telescope are tabulated for the two most

Date E.S.T.	Elong.	Mag.	App. Diam.	
	o		,,	
Jan. 11	23 W	0.0	6.6	
*Mar. 24	19 E	-0.1	7.3	
May 9	26 W	+0.7	8.2	
July 21	27 E	+0.6	7.7	
*Sept. 4	18 W	+0.1	7.4	
Nov. 15	23 E	-0.1	6.4	
Dec. 24	22 W	-0.1	6.7	

GREATEST ELONGATIONS OF MERCURY IN 1978

*favourable elongations

TELESCOPIC OBSERVING DATA FOR FAVOURABLE ELONGATIONS

Date	Mag	App. Diam.	Phase (% Ill.)	
Mar. 12	$-1.1 \\ -0.8 \\ -0.2 \\ +0.6 \\ +1.4$	5.6	86	
17		6.2	70	
22		7.1	50	
27		8.2	30	
Apr. 1		9.5	14	
Aug. 29	+1.0 +0.1 -0.6 -1.0	8.6	21	
Sept. 3		7.4	41	
8		6.4	63	
13		5.7	81	

favourable elongations. Throughout the March elongation Mercury will be within 10° of Venus which should make locating the inner planet especially easy this year.

Mercury's phases have been glimpsed with telescopes of 3-inch aperture or less, but generally a 4-inch or larger telescope is required to distinguish them. In larger instruments under conditions of excellent seeing (usually when Mercury is viewed in the daytime) dusky features have been glimpsed by experienced observers. Recent analysis has shown only a fair correlation between these visually observed features and the surface of the planet as photographed by Mariner 10.

VENUS

Venus is the only planet in the solar system that closely resembles Earth in size and mass. It also comes nearer to the Earth than any other planet, at times approaching as close as 41 million km. Despite the fundamental similarity, Earth and Venus differ greatly according to findings of recent spacecraft missions to the planet.

We now know that Venus is infernally hot over its entire surface, ranging little from a mean of $+480^{\circ}$ C. The high temperature is due to the dense carbon dioxide atmosphere of Venus which, when combined with small quantities of water vapour and other gases known to be present, has the special property of allowing sunlight to penetrate to the planet's surface but not permitting the resulting heat to escape. In much the same way as the glass cover of a greenhouse keeps plants warm, an atmosphere of carbon dioxide can heat up a planetary surface to a higher temperature than would be achieved by normal sunlight.

Venus' atmosphere has a thick haze layer extending down from a level about 65 kilometers above the surface. However, the Soviet Venera 9 and 10 spacecraft that landed on Venus in October 1975 and photographed the planet's surface showed that sunlight similar to that received on Earth on a heavily overcast day does penetrate down to the surface, proving that previously predicted layers of opaque clouds do not exist. The cloud-like haze that cloaks the planet, believed to consist chiefly of droplets of sulphuric acid, is highly reflective making Venus brilliant in the nighttime sky. However, telescopically the planet is virtually a featureless orb.

Venus is the brightest natural celestial object in the nighttime sky apart from the moon and whenever it is visible is readily recognized. Because its orbit is within that of the Earth, Venus is never separated from the sun by an angle greater than 47 degrees. However, this is sufficient for it to be seen in black skies under certain conditions and at these times it is a truly dazzling object. Such circumstances occur during the summer of 1978. From March through to early October Venus dominates the evening sky in the west after sunset. For the last few weeks of the year the planet is a prominent object in early morning skies.

Like Mercury, Venus exhibits phases although they are much easier to distinguish because of Venus' greater size. When it is far from us (near the other side of its orbit) we see the planet nearly fully illuminated, but because of its distance it appears small —about 10 seconds of arc in diameter. As Venus moves closer to Earth the phase decreases (we see less of the illuminated portion of the planet) but the diameter increases until it is a thin slice nearly a minute of arc in diameter. It takes Venus several months to run through from one of these extremes to the other compared to just a few weeks for Mercury.

When Venus is about a 20% crescent even rigidly held good quality binoculars can be used to distinguish that the planet is not spherical or a point source. A 60 mm refractor should be capable of revealing all but the gibbous and full phases of Venus. Experienced observers prefer to observe Venus during the daytime and indeed the planet is bright enough to be seen with the unaided eye if one knows where to look.

Venus appears to most observers to be featureless no matter what type of telescope was used or what the planet's phase. However, over the past century some observers using medium or large size telescopes have reported dusky, patchy markings usually described as slightly less brilliant than the dazzling white of the rest of the planet.

The dotted boxes labelled "Uranus" and "Neptune" show the areas covered by the maps of the paths of those two planets.

We now know that there are many subtle variations in the intensity of the clouds of Venus as photographed in ultraviolet by Earth-based telescopes and by the cameras of Mariner 10 as it swung by the planet in February 1974. But when the ultraviolet photos are compared to drawings of the patchy markings seen by visual observers the correlation is fair at best.

When Venus is less than 10% illuminated the cusps (the points at the ends of the crescent) can sometimes be seen to extend into the night side of the planet. This is an actual observation of solar illumination being scattered by the atmosphere of Venus. When Venus is a thin sliver of a crescent the extended cusps may be seen to ring the entire planet.

Date	Mag.	App. Diam.	Phase (% Ill.)	Date	Mag.	App. Diam.	Phase (% Ill.)
Apr. 1 May 1 June 1 July 1 Aug. 1 9 Sept. 8 23 Oct. 3 13 18	$ \begin{array}{r} -3.4 \\ -3.4 \\ -3.5 \\ -3.7 \\ -3.9 \\ -4.1 \\ -4.2 \\ -4.2 \\ -4.1 \\ \end{array} $	10.4 11.2 12.6 15.5 18.5 22.2 28.0 34.5 40.4 47.6 51.6	96 91 84 74 63 54 43 33 26 17 12	Oct. 23 28 Nov. 2 7 12 17 22 Dec. 2 12 27	$ \begin{array}{r} -3.9 \\ -3.7 \\ -3.0 \\ -3.3 \\ -3.7 \\ -4.0 \\ -4.3 \\ -4.4 \\ -4.4 \end{array} $	55.5 59.5 61.4 62.5 61.8 59.7 56.4 48.7 41.4 32.8	8 4 1.3 0.3 1.1 3.6 7 16 26 37

VENUS-TELESCOPIC OBSERVING DATA 1978

MARS

Mars is the planet that has long captivated the imagination of mankind as a possible abode of life. One of the major objectives of the Viking spacecraft which landed on Mars in 1976 was the quest for Martian microorganisms. The Viking biology experiments have completed their search and although the results are somewhat ambiguous there is no convincing evidence of life processes we are familiar with. However, Viking and its predecessors have shown that water was abundant enough on Mars to leave major structures on the planet resembling riverbeds. Analysis of high resolution Viking photographs of these structures has led most planetary scientists to conclude that they were carved largely during the planet's early history.

The red planet's atmosphere is less than 1% as dense as Earth's and consists of about 96% carbon dioxide, 2.5% nitrogen, 1.5% argon and small amounts of other gases. Winds in the thin atmosphere reach velocities exceeding 300 km/hr and in so doing raise vast amounts of dust that can envelop the planet for weeks at a time. The dust-storms were thought to occur with seasonal regularity shortly after Mars passed the perihelion point of its elliptical orbit, but recent Viking observations have revealed complex weather patterns that require further analysis.

As 1978 opens Mars is near opposition and is a brilliant object (magnitude -1) in the constellation Cancer. In many ways Mars is the most interesting planet to observe with the unaided eye. It moves rapidly among the stars—its motion can usually be detected after an interval of less than a week—and it varies in brightness over a far greater range than any other planet. During February and March it makes particularly striking configurations as it moves among the stars of Gemini. On the evening of June 4 Mars and Saturn are only 0.1 degree apart, close enough for both to be seen in the same telescopic field and a striking naked eye alignment. Mars may be distinguished by its orange-red colour, a hue that originates with rust-coloured dust that covers much of the planet.

Telescopically Mars is usually a disappointingly small featureless ochre disk except within a few months of opposition when its distance from the Earth is then near minimum. If Mars is at perihelion at these times the separation can be as little as 56 million km. Such close approaches occur at intervals of 15 to 17 years; the most

recent was in 1971. At a perihelion opposition the telescopic disk of Mars is 25 seconds of arc in diameter and much detail on the planet can be distinguished with telescopes of 4-inch aperture or greater. At oppositions other than when Mars is at perihelion the disk is correspondingly smaller.

Opposition occurs on January 22, a very unfavourable one with the minimum distance between Earth and Mars being 97.7 million km and the apparent diameter less than 15 seconds of arc. For further information see the table on page 82. Throughout the year, the north pole of Mars is tipped toward the Earth and the north polar cap should be the most prominent feature visible in small telescopes. Because of its high declination when it is nearest Earth this year, Mars will appear almost overhead for observers in mid-northern latitudes. The main features on the map of Mars on page 82 can be seen with a good 4-inch telescope when the planet is within 1 A.U. of the Earth. The features of the map can be correlated to the planet's rotation by use of the table on page 82.

JUPITER

Jupiter, the solar system's largest planet, is a colossal ball of hydrogen and helium without any solid surface comparable to land masses on Earth. In many respects Jupiter is more like a star than a planet. Jupiter likely has a small rocky core encased in a thick mantle of metallic hydrogen which is enveloped by a massive atmospheric cloak topped by a quilt of multi-coloured clouds.

The windswept visible surface of Jupiter is constantly changing. Vast dark belts merge with one another or sometimes fade to insignificance. Brighter zones actually smeared bands of ammonia clouds—vary in intensity and frequently are carved up with dark rifts or loops called festoons. The equatorial region of Jupiter's clouds rotates five minutes faster than the rest of the planet: 9 hours 50 minutes compared to 9 hours 55 minutes. This means constant interaction as one region slips by the other at about 400 km/hr.

The rapid rotation also makes the great globe markedly oval so that it appears about 7% "squashed" at the poles. Jupiter's apparent equatorial diameter ranges from 48'' at opposition (there is no opposition of Jupiter in 1978) to a minimum of 32'' at conjunction on July 10.

The Great Red Spot, a towering vortex whose colour may possibly be due to organic-like compounds that are constantly spewed from some heated atmospheric source below, is the most conspicuous and longest-lived structure on the visible surface of Jupiter. The spot and the changing cloud structures can be easily observed in small telescopes because the apparent size of the visible surface of Jupiter is far greater than that of any other planet.

The smallest of telescopes will reveal Jupiter's four large moons, each of which is equal to or larger than Earth's satellite. The moons provide a never-ending fascination for amateur astronomers. Sometimes the satellites are paired on either side of the belted planet; frequently one is missing—either behind Jupiter or in the planet's shadow. Even more interesting are the occasions when one of the moons casts its shadow of one of the planet. The tiny black shadow of one of the moons can be particularly evident if it is cast on one of the bright zones of Jupiter. According to some observers this phenomenon is evident in a good 60 mm refractor. Both the satellite positions and the times of their interaction with the Jovian disk are given elsewhere in the HANDBOOK. Jupiter's other satellites are photographic objects for large instruments.

As 1978 opens Jupiter is bright and unmistakable in the early evening sky and is ideally placed for telescopic study having just passed opposition in late 1977. By early June the planet will be lost in the twilight glow in the west after sunset. Shortly before that, on the evening of May 28, Venus and Jupiter will be less than 2 degrees apart forming a striking pair low in the west. In early August Jupiter is visible in the morning sky just before sunrise and by the end of the year the planet is visible all night as a brilliant object—the brightest in the late night sky—located not far from

M44 in Cancer. Despite the fact that it is five times Earth's distance from the sun Jupiter's giant size and reflective clouds make it a celestial beacon that is unmistakable, particularly around opposition.

Opposition occurred December 23, 1977, when Jupiter was 621 million km (4.151 A.U.) from Earth. Minimum possible distance between the two planets is 590 million km.

SATURN

Saturn is the telescopic showpiece of the night sky. The chilling beauty of the small pale orb floating in a field of velvet is something no photographs or description can adequately duplicate. The rings consist of billions of particles which, according to recent photometric, radar and other data, are believed to be approximately fist-sized and made of—or covered by—water ice. This would account for their exceed-ingly high reflectivity. The reason that "rings" is plural and not singular is that gaps and brightness differences define distinct rings. The most famous gap, called Cassini's Division, was discovered in 1675 and is visible in 3-inch and larger telescopes. More information on the rings and satellites of Saturn is given on page 87.

The disk of Saturn appears about 1/6 the size Jupiter appears through the same telescope with the same magnification. In telescopes less than 4 inches aperture probably no features will ever be seen on the surface of the planet other than the shadow cast by the rings. As the size of the telescope is increased the whitish equatorial region and the darker polar regions become evident. Basically, Saturn has a belt system like Jupiter's but it is much less active and the contrast is reduced. Seldom in telescopes less than 8-inch aperture do more than one or two belts come into view. Very rarely a spot among the Saturnian clouds will appear unexpectedly, but less than a dozen notable spots have been recorded since telescopic observation of Saturn commenced in the 17th century. Saturn, probably more than any other planet can be subjected to very high telescopic powers, probably because of its low surface brightness (due to its great distance from the sun).

From year to year the rings of Saturn take on different appearances. The planet's orbit is an immense 29.5 year circuit about the sun, so in the course of an observing season the planet moves relatively little in its orbit (and thus appears to remain in about the same general area of the sky) and maintains an essentially static orientation toward the Earth. In 1973 the rings were presented to their fullest extent (27°) as viewed from the Earth. In 1980 the rings will be seen edge-on and will effectively disappear from view. In apparent width the rings are equal to the equatorial diameter of Jupiter. In 1978 the south side of the rings and the southern hemisphere of Saturn are presented to our view.

As 1978 opens Saturn's rings are tilted 10.1° with respect to the Earth. This increases to 13.1° in mid-April after which the rings seem to close up, having a tilt of 11.5° by July 1. Saturn will then be too close to the sun for observation until autumn. The rings, with respect to the Earth, will be tipped 5.1° on Nov. 1, and 4.1° Jan. 1, 1979.

Opposition is February 16 when Saturn is 1.233 billion km (8.22 A.U.) from Earth, in the constellation Leo. At that time the rings are $45.6^{\prime\prime}$ in apparent width and the planet is $18.1^{\prime\prime}$ in polar diameter. Saturn ranges from magnitude +0.3 in February to +1.1 throughout autumn.

URANUS

Although Uranus can be seen with the unaided eye under a clear, dark sky it was apparently unknown until 1781 when it was accidentally discovered by William Herschel with a 6-inch reflecting telescope. It can be easily seen with binoculars and a telescope will reveal its small greenish featureless disk.

Jupiter, Saturn, Uranus and Neptune are rather similar in the sense that their interiors consist mainly of hydrogen and helium and their atmospheres consist of these same elements and simple compounds of hydrogen. Unlike the three other giant planets, the axis of Uranus is tipped almost parallel to the plane of the solar

The Path of Uranus: See caption on page 30 for more information.

system. This means that we can view Uranus nearly pole-on at certain points in its 84 year orbit of the sun. The northern hemisphere of Uranus is now directed toward the Earth and we will be viewing the planet almost exactly toward its north pole in 1985. Uranus has five satellites, all smaller than Earth's moon, none of which can be detected in small or moderate sized telescopes.

The 1977 discovery of at least five rings encircling Uranus is regarded as one of the major planetary finds in recent years. Their detection emerged during a relatively routine occultation observation from an airborne observatory—an experiment initially intended to provide a more accurate measure of the diameter of Uranus. Refinement of the observations made over the Indian Ocean and by several ground-based teams indicates that the five rings are relatively evenly spaced from 16,000 to 26,000 km above the cloudy surface of Uranus. The outer ring is about 100 km wide while the others are between 5 and 10 km across.

These dimensions are markedly different from Saturn's three major rings, each of which is thousands of kilometres wide. Although different in scale, the composition of the Uranian rings is probably much the same as Saturn's—swarms of particles varying from dust-size up to small flying mountains each in its own orbit. The rings are not as dense as Saturn's major ring since the occulted star did not completely disappear during passage behind them. The Uranian rings are invisible by direct observation because of their small dimensions and the enormous distance that separates us from Uranus.

Estimates of the seventh planet's size were refined in 1977 by techniques developed at New Mexico State University. If confirmed the new diameter estimate of 55,800 km is substantially greater than those of previous studies but similar to some made more than a generation ago by cruder techniques. If the diameter measure is not refined downward Uranus, like Saturn, will prove to have an average density less than that of water.

The long quoted rotation period of Uranus (about 11 hours) now appears to have been in error by a factor of at least 2. A seven month study at Kitt Peak National Observatory (near Tucson, Ariz.) using the 158-inch telescope and its echelle spectrograph indicates a 23 hour rotation period. As with the new Uranus diameter estimate, this figure remains unconfirmed. However, the techniques utilized in both instances were significant advancements over those used in previous work.

Throughout 1978 Uranus is in Libra, near Alpha Librae (see p. 44). Uranus is at opposition on May 5 when it is 2.64 billion km (17.61 A.U.) from Earth. At this time its magnitude is +5.7 and its apparent diameter is 3.9 seconds of arc.

The Path of Neptune: See caption on page 30 for more information.

NEPTUNE

The discovery of Neptune in 1846, after its existence in the sky had been predicted from independent calculations by Leverrier in France and Adams in England, was regarded as the crowning achievement of Newton's theory of universal gravitation. Actually Neptune had been seen—but mistaken for a star—several times before its "discovery".

Telescopically the planet appears as a 2.5 second of arc featureless bluish-green disk. Neptune's large moon Triton can be seen by an experienced observer using a 12-inch telescope. Triton is an exceptionally large satellite and may prove to be the solar system's biggest moon. The moon varies from 8 to 17 seconds of arc from Neptune durings its 5.9 day orbit.

No surface features have ever been distinctly seen on Neptune's visible surface. The planet's rotation period, determined spectroscopically, was tentatively revised upward to 22 hours in 1977. Neptune's diameter is known with high precision due to analysis of a series of observations of a rare occultation in 1969.

In 1978 Neptune is buried in the Milky Way in Ophiuchus and is not well placed for northern observers. At opposition on June 8 Neptune is magnitude +7.7 and 4.38 billion km (29.27 A.U.) distant from Earth.

PLUTO

Pluto, the most distant known planet, was discovered at the Lowell Observatory in 1930 as a result of an extensive search started two decades earlier by PercivaI Lowell. The faint star-like image was first detected by Clyde Tombaugh by comparing photographs taken on different dates.

In 1976, in the first successful attempt to investigate Pluto's surface composition, a team of astronomers from the University of Hawaii detected frozen methane on the planet. This is the first direct evidence that the temperature was below -225° C when the planet formed. Because Pluto is so distant and cold the methane may have remained undisturbed and frozen since the creation of the solar system. If most of the surface of Pluto is covered with methane ice as these new observations imply, the reflectivity of the outermost planet is likely much higher than previously thought. If this is true Pluto may prove to be a substantially smaller planet than scientists have guessed—perhaps as small as Earth's moon. Previous estimates of Pluto's diameter ranged around twice that of our moon.

At opposition on April 5 Pluto's astrometric position is R.A. (1950) $13^{h}22.3^{m}$ Dec. (1950) $+10^{\circ}25'$ and its distance from Earth will be 4.41 billion km (29.42 A.U.). With an apparent magnitude of +14 Pluto is a difficult target in moderate-sized amateur telescopes.

THE SKY MONTH BY MONTH

Introduction—In the monthly descriptions of the sky on the following pages, positions of the sun and planets are given for 0 h Ephemeris Time, which differs only slightly from Standard Time on the Greenwich meridian. The times of transit at the 75th meridian are given in *local mean time*; to change to Standard Time, see p. 14. Estimates of altitude are for an observer in latitude 45° N. Unless noted otherwise, the descriptive comments about the planets apply to the middle of the month.

The Sun—The values of the equation of time are for noon E.S.T. on the first and last days of the month. For times of sunrise and sunset and for changes in the length of the day, see pp. 15–20. See also p. 9.

The Moon—Its phases, perigee and apogee times and distances, and its conjunctions with the planets are given in the "Astronomical Phenomena Month by Month". For times of moonrise and moonset, see pp. 22–27.

Age, Elongation and Phase of the Moon—The elongation is the angular distance of the moon from the sun in degrees, counted eastward around the sky. Thus, elongations of 0° , 90° , 180° , and 270° correspond to new, first quarter, full, and last quarter moon. For certain purposes the phase of the moon is more accurately described by elongation than by age in days because the moon's motion per day is not constant. However, the equivalents in the table below will not be in error by more than half a day.

Elong.	Age	Elong.	Age	Elong.	Age.
0 °	0 ^d .0	120°	9 ^d .8	240°	19 ^d .7
30°	2.5	150°	12.3	270°	22.1
60°	4.9	180°	14.8	300°	24.6
90°	7.4	210°	17.2	330°	27.1

The sun's selenographic colongitude is essentially a convenient way of indicating the position of the sunrise terminator as it moves across the face of the moon. It provides an accurate method of recording the exact conditions of illumination (angle of illumination), and makes it possible to observe the moon under exactly the same lighting conditions at a later date. The sun's selenographic colongitude is numerically equal to the selenographic longitude of the sunrise terminator reckoned eastward from the mean centre of the disk. Its value increases at the rate of nearly 12.2° per day or about $\frac{1}{2}$ ° per hour; it is approximately 270°, 0°, 90° and 180° at New Moon, First Quarter, Full Moon and Last Quarter respectively. Values of the sun's selenographic colongitude are given on the following pages for the first day of each month.

Sunrise will occur at a given point *east* of the central meridian of the moon when the sun's selenographic colongitude is equal to the eastern selenographic longitude of the point; at a point *west* of the central meridian when the sun's selenographic colongitude is equal to 360° minus the western selenographic longitude of the point. The longitude of the sunset terminator differs by 180° from that of the sunrise terminator.

Libration is the shifting, or rather apparent shifting, of the visible disk of the moon. Sometimes the observer sees features farther around the eastern or the western limb (libration in longitude), or the northern or southern limb

(libration in latitude). When the libration in longitude is positive, the mean central point of the disk of the moon is displaced eastward on the celestial sphere, exposing to view a region on the west limb. When the libration in latitude is positive, the mean central point of the disk of the moon is displaced towards the south, and a region on the north limb is exposed to view.

The dates of the greatest positive and negative values of the libration in longitude and latitude are given in the following pages.

The Planets—Further information in regard to the planets, including Pluto, is found on pp. 28–35. For the configurations of Jupiter's satellites, see "Astronomical Phenomena Month by Month", and for their eclipses, see p. 87.

In the diagrams of the configurations of Jupiter's four Galilean satellites, the central vertical band represents the equatorial diameter of the disk of Jupiter. Time is shown by the vertical scale, each horizontal line denoting 0^h Universal Time. (Be sure to convert to U.T. before using these diagrams.) The relative positions of the satellites at any time with respect to the disk of Jupiter are given by the four labelled curves (I, II, III, IV). In constructing these diagrams, the positions of the satellites in the direction perpendicular to the equator of Jupiter are necessarily neglected. Note that the orientation is for an inverting telescope.

The motions of the satellites, and the successive phenomena (see p. 87) are shown in the diagram at right. Satellites move from east to west across the face of the planet, and from west to east behind it. Before opposition, shadows fall to the west, and after opposition, to the east. OD The sequence of phenomena in the diagram is: transit ingress (TI), transit egress OR^{-1} (Te), shadow ingress (SI), shadow egress ED. (Se), occultation disappearance (OD), occultation reappearance (OR), eclipse disappearance (ED) and eclipse reappearance (ER), but this sequence will depend on the actual sun-Jupiter-earth angle.

Minima of Algol—The times of mid-eclipse are given in "Astronomical Phenomena Month by Month" and are calculated from the ephemeris

heliocentric minimum = 2440953.4657 + 2.8673075 E

and are rounded off to the nearest ten minutes.

THE SKY FOR JANUARY 1978

On January 19, the first of a series of about a dozen occultations of Aldebaran by the moon takes place. Last year it was Uranus which underwent a series of occultations. Why?

As seen from the earth, the moon sweeps out a band in the sky as it moves around its orbit. Anything in this band may be occulted (or eclipsed). This band is not coincident with the ecliptic (or we would have a solar eclipse each month) but is tilted by 5° . Furthermore, this band is not stationary, but drifts westward along the ecliptic by about 20° each year. An object (such as Uranus) which was in this band in 1977—and would be occulted—may not be in this band in 1978. [See "The Sky for May" for further discussion].

The westward drift of the moon's orbit is called "the regression of the nodes", the nodes being the intersection points of the moon's orbit and the ecliptic. The ascending node, at which the moon crosses the ecliptic from S. to N., moves from longitude 190.5° to 171.0° in 1978; the descending node is 180° different. The sun is in these parts of the ecliptic in early spring and early fall; eclipses may therefore occur around these times.

The Sun—During January the sun's R.A. increases from 18 h 44 m to 20 h 57 m and its Decl. changes from $-23^{\circ}03'$ to $-17^{\circ}16'$. The equation of time changes from -3 m 36 s to -13 m 29 s. The earth is in perihelion on Jan. 1, at a distance of 147,100,000 km (91,405,000 mi) from the sun.

The Moon—On Jan. 1.0 E.S.T., the age of the moon is 21.5 d. The sun's selenographic colongitude is 171.6° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Jan. 14 (8°) and minimum (east limb exposed) on Jan. 2 (7°) and Jan. 30 (6°). The libration in latitude is maximum (north limb exposed) on Jan. 22 (7°) and minimum (south limb exposed) on Jan .8 (6°).

Mercury on the 1st is in R.A. 17 h 22 m, Decl. $-20^{\circ}10'$, and on the 15th is in R.A. 18 h 06 m, Decl. $-22^{\circ}23'$. For a few days around the 11th, it may be seen low in the south-east before sunrise. At greatest elongation west, the planet is about 14° above the horizon at sunrise.

Venus on the 1st is in R.A. 18 h 22 m, Decl. $-23^{\circ}38'$, and on the 15th it is in R.A. 19 h 39 m, Decl. $-22^{\circ}19'$, mag. -3.5, and transits at 12 h 03 m. It is too close to the sun for observation, being in superior conjunction on Jan. 22.

Mars on the 15th is in R.A. 8 h 31 m, Decl. $+23^{\circ}20'$, mag. -1.0, and transits at 0 h 54 m. In Cancer, it rises at about sunset and is visible all night, opposition being on the 21st (E.S.T.).

Jupiter on the 15th is in R.A. 5 h 52 m, Decl. $+23^{\circ}14'$, mag. -2.3, and transits at 22 h 11 m. Moving from Gemini into Taurus, it is well up in the east at sunset and sets before dawn. [It was in opposition on 22 Dec. 1977.]

Saturn on the 15th is in R.A. 10 h 09 m, Decl. $+13^{\circ}02'$, mag. +0.5, and transits at 2 h 31 m. In Leo, it rises about 3 hours after sunset and is low in the west at sunrise. On the 20th it is 1.1° N of Regulus.

Uranus on the 15th is in R.A. 14 h 54 m, Decl. $-16^{\circ}12'$, mag. +5.9, and transits at 7 h 16 m.

Neptune on the 15th is in R.A. 17 h 05 m, Decl. $-21^{\circ}24'$, mag. +7.8, and transits at 9 h 26 m.

1978	•			JANUARY E.S.T.	Min. of Algol	Configuration of Jupiter's Satellites (Date Markers are U.T.)
Sun. Mon. Tues.	d 1 2 3	h 18 07 14	m 07	Earth at perihelion	h m 9 20	W JAN. E
Wed. Thur. Fri.	4 5 6	17 21		Uranus 3° S. of Moon Neptune 3° S. of Moon	6 10	20
Sat. Sun.	8	08 07 23	00	Mercury 3° S. of Moon Moon at perigee (357,450 km) New Moon	3 00	5.0 6.0 7.0
Tues. Wed.	9 10 11	04		Mercury greatest elong. W. (23°)	23 50	8.0
Fri. Sat.	12 13 14	22	03	Eirst Quarter	20 40	
Mon. Tues.	15 16 17 18	16	03	9 First Quarter	17 30	
Thur. Fri.	19 20	10 22 14 07 21		Mars nearest to Earth Aldebaran 1° S. of Moon. Occ'n ¹ Saturn 1.1° N. of Regulus	14 20	170 180 180
Sat. Sun.	21 22	02 19		Jupiter 5° N. of Moon Mars at opposition Mercury at descending node	11 10	20.0
Mon. Tues.	23 24	00 01		Venus in superior conjunction Mars 9° N. of Moon		23.0 24.0 25.0
Wed. Thur.	25 26	02 21 07	55	Full Moon Pluto stationary Saturn 5° N. of Moon	8 00	28.0
Fri. Sat. Sun.	27 28 29 30			Venus at aphelion	4 50	30.0
Tues.	30 31	18	51	C Last Quarter	1 40	32.0

ASTRONOMICAL PHENOMENA MONTH BY MONTH

¹Visible in Greenland.

THE SKY FOR FEBRUARY 1978

Have you noticed that the moon appears larger when it is near the horizon than when it is high in the sky? This well-known effect, called the "Moon Illusion", is discussed in *Scientific American* 207, No. 1, 120 (1962) and in *Mercury* 5, No. 2, 20 (1976).

You can verify that this is an illusion by measuring the apparent diameter of the moon. Take a small coin of diameter d, and place it at the *minimum* distance D from your eye, at which it will exactly cover the disc of the moon. The apparent diameter of the moon is then $(57d/D)^{\circ}$. Try this on a night near full moon, once when the moon is near the horizon, once when it is high in the sky.

The moon's apparent diameter actually varies during the *month* because of its varying distance from the earth; this effect is about 10 per cent. See if you can detect this effect by doing the coin experiment once near perigee (see opposite page) and once near apogee.

The Sun—During February the sun's R.A. increases from 20 h 57 m to 22 h 46 m and its Decl. changes from $-17^{\circ}16'$ to $-7^{\circ}48'$. The equation of time changes from -13 m 38 s to -12 m 34 s, reaching a maximum of -14 m 17 s on Feb. 11.

The Moon—On Feb. 1.0 E.S.T., the age of the moon is 23.0 d. The sun's selenographic colongitude is 188.5° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Feb. 11 (7°) and minimum (east limb exposed) on Feb. 26 (5°). The libration in latitude is maximum (north limb exposed) on Feb. 18 (7°) and minimum (south limb exposed) on Feb. 4 (7°).

Mercury on the 1st is in R.A. 19 h 46 m, Decl. $-22^{\circ}22'$, and on the 15th is in R.A. 21 h 19 m, Decl. $-17^{\circ}49'$. Early in the month it may be seen very low in the south-east before sunrise, but by the end of the month it is too close to the sun for observation, superior conjunction being on the 26th (E.S.T.).

Venus on the 1st is in R.A. 21 h 08 m, Decl. $-17^{\circ}48'$, and on the 15th it is in R.A. 22 h 17 m, Decl. $-12^{\circ}14'$, mag. -3.4, and transits at 12 h 39 m. It is too close to the sun for observation.

Mars on the 15th is in R.A. 7 h 46 m, Decl. $+25^{\circ}26'$, mag. -0.6, and transits at 22 h 02 m. Moving from Cancer into Gemini it is about 30° above the eastern horizon at sunset and sets shortly before sunrise. It forms a pretty conjunction with Castor and Pollux.

Jupiter on the 15th is in R.A. 5 h 43 m, Decl. $+23^{\circ}16'$, mag. -2.1, and transits at 20 h 00 m. In Taurus, it is high in the east at sunset and sets about 4 hours before sunrise. On Feb. 19 (E.S.T.) it is stationary and resumes direct motion.

Saturn on the 15th is in R.A. 10 h 00 m, Decl. $+13^{\circ}53'$, mag. +0.3, and transits at 0 h 20 m. It rises at about sunset and is above the horizon all night, being at opposition on the 15th, in the constellation Leo.

Uranus on the 15th is in R.A. 14 h 56 m, Decl. $-16^{\circ}22'$, mag. +5.8, and transits at 5 h 16 m.

Neptune on the 15th is in R.A. 17 h 08 m, Decl. $-21^{\circ}28'$, mag. +7.8, and transits at 7 h 28 m.

1978				FEBRUARY E.S.T.	Min. of Algol	Configuration of Jupiter's Satellites (Date Markers are U.T.)
	d	h	m		hm	
Wed.	1			Mercury at aphelion		W FEB. E
	-	01		Uranus 3° S. of Moon		
Thur.	2				22 30	
Fri.	3	07		Neptune 3° S. of Moon		
Sat.	4			-		
Sun.	5	16		Moon at perigee (361,350 km)	19 20	
Mon.	6					5.0
Tues.	7	09	54	Wew Moon		6.0
Wed.	8				16 10	^{7.0}
Thur.	9					8.0
Fri.	10					9.0 V K
Sat.	11				12 50	10.0 - 10.0 - 10.0
Sun.	12					11.0
Mon.	13					12.0
Tues.	14	17	11	First Quarter	9 40	13.0
Wed.	15	21		Aldebaran 0.9° S. of Moon. Occ'n ¹		14.0
		23		Saturn at opposition		15.0
Thur.	16					16.0
Fri.	17	01		Mars 3° S. of Pollux	6 30	17.0 /1
		06		Jupiter 5° N. of Moon		
		13		Moon at apogee (405,150 km)		
Sat.	18					
Sun.	19			Venus at greatest hel. lat. S.		
		12		Uranus stationary		21.0
		15		Mars 9° N. of Moon		22.0-
		21		Jupiter stationary		23.0
Mon.	20				3 20	24.0
Tues.	21			Mercury at greatest hel. lat. S.		25.0
Wed.	22	09		Saturn 5° N. of Moon		28.0
		20	26	Full Moon		27.0
Thur.	23				0 10	28.0
Fri.	24					29.0
Sat.	25				21 00	30.0
Sun.	26	22		Mercury in superior conjunction		31.0
Mon.	27					32.0
Tues.	28	07		Uranus 3° S. of Moon	17 50	

¹Visible in Siberia, N. America, N.W. Europe.

THE SKY FOR MARCH 1978

This is a good month to observe the visible effects of the seasons. Here are some sample projects (suitable also for school classes). (i) Look up the *sunrise and sunset times* in the newspaper, calculate the length of day and night, and tabulate or plot these four quantities for each day in March. When are day and night equal? At the equinox? Are sunrise and sunset symmetrical about noon? (ii) On each clear day in March, observe and sketch the *sunrise or sunset point* as seen from a constant vantage point (with a clear horizon). Can you see the northward motion of the sun? When does the sun rise/set due east/west? (iii) On each clear day in March, measure the maximum altitude of the sun. The best way to do this is to measure the minimum length of the shadow of a vertical pole or stick, of known height. The altitude of the sun—its angular distance above the horizon—can then be determined by simple geometry or trigonometry. Alternatively, you can make a simple altitude each day? At noon? In what direction? How does the maximum altitude change during the month?

The Sun—During March the sun's R.A. increases from 22 h 46 m to 0 h 40 m and its Decl. changes from $-7^{\circ}48'$ to $+4^{\circ}19'$. The equation of time changes from -12 m 23 s to -4 m 11 s. On March 20, at 18 h 34 m E.S.T., the sun crosses the equator on its way north, and spring begins.

The Moon—On March 1.0 E.S.T., the age of the moon is 21.6 d. The sun's selenographic colongitude is 169.2° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on March 11 (5°) and minimum (east (limb exposed) on March 24 (5°). The libration in latitude is maximum (north limb exposed) on March 17 (7°) and minimum (south limb exposed) on March 4 (7°) and March 31 (7°).

Mercury on the 1st is in R.A. 22 h 55 m, Decl. $-8^{\circ}45'$, and on the 15th is in R.A. 0 h 30 m, Decl. $+3^{\circ}42'$. Early in the month, it is too close to the sun to be seen, but by March 24 it is at greatest elongation east (19°), at which time it stands about 16° above the horizon at sunset.

Venus on the 1st is in R.A. 23 h 22 m, Decl. $-5^{\circ}35'$, and on the 15th it is in R.A. 0 h 26 m, Decl. $+1^{\circ}33'$, mag. -3.4 and transits at 12 h 58 m. It can be seen very low in the south-west after sunset.

Mars on the 15th is in R.A. 7 h 43 m, Decl. $+24^{\circ}41'$, mag. +0.1, and transits at 20 h 10 m. Moving from Gemini back into Cancer (it was stationary on the 2nd), it is high in the south-east at sunset and sets a few hours before sunrise.

Jupiter on the 15th is in R.A. 5 h 47 m, Decl. $+23^{\circ}21'$, mag. -1.9, and transits at 18 h 14 m. In Taurus, it is on the meridian at sunset and sets shortly after midnight.

Saturn on the 15th is in R.A. 9 h 52 m, Decl. $+14^{\circ}38'$, mag. +0.4, and transits at 22 h 18 m. In Leo, it is well up in the east at sunset and sets before sunrise.

Uranus on the 15th is in R.A. 14 h 55 m, Decl. $-16^{\circ}17'$, mag. +5.8, and transits at 3 h 25 m.

Neptune on the 15th is in R.A. 17 h 10 m, Decl. $-21^{\circ}28'$, mag. +7.8, and transits at 5 h 39 m.

1978				MARCH E.S.T.	Min. of Algol	Configuration of Jupiter's Satellites (Date Markers are U.T.)
Wed.	d 1	h	m		h m	
Thur.	2	0.2	24	Mars at greatest hel. lat. N.		
		15	54	Rentune 4°S of Moon		W MAR. E
		16		Mars stationary		
Fri.	3				14 40	20
Sat.	4					3.0
Sun.	5	12		Moon at perigee (366,850 km)		40
Mon.	6				11 30	5.0
Tues.	7	21	20			6.0
wea.	ð	21	30	We New Moon	8 20	7.0
Fri	10	20		venus 2 S. of Woon	0 20	8.0
Sat.	11					9.0
Sun.	12			Mercury at ascending node	5 10	10.0 - 12
		17		Mercury 1.3° N. of Venus		110 - / · · · · · · · · · · · · · · · · · ·
Mon.	13					12.0
Tues.	14					13.0
Wed.	15	05		Aldebaran 0.8° S. of Moon. Occ'n ¹	2 00	140 +
Thur.	16	13	21	First Quarter		15.0
17-1	17	16		Jupiter 5° N. of Moon	22 50	18.0
rn.	17	00		Mars 4° S of Pollux	22 50	17.0
		00		Moon at apogee $(404 450 \text{ km})$		18.0
Sat.	18					19.0
Sun.	19	01		Mars 8° N. of Moon		20.0
Mon.	20	17		Neptune stationary	19 30	210
		18	34	Equinox. Spring begins		22.0
Tues.	21	14		Saturn 5° N. of Moon		23.0
Wed.	22	07		Occ'n: SAO 160266 by Vesta	16.20	
Inur.	23	11	20	Tull Moon colinse of C n 64	16 20	28.0
1.11.	24	12	20	Mercury greatest elong F (19°)		270
Sat.	25	12		Whereary greatest chorig. E. (19)		28.0 1/ (11) 111
Sun.	26				13 10	28.0
Mon.	27			Mercury at greatest hel. lat. N.		30.0
		12		Uranus 3° S. of Moon		31.0
Tues.	28	14		Mercury 4° N. of Venus		32.0
Wed.	29	20		Neptune 4° S. of Moon	10 00	
Thur.	30			Manual 1997 (200 050 h		
rri.	51	10	11	Moon at perigee (369,950 km)		
		10	11	W Lasi Quarter		

¹Visible in E. Europe, Asia, N. America.

THE SKY FOR APRIL 1978

Have you ever seen Uranus? This would be a good month to try. At the end of April, Uranus is approaching opposition, and is technically bright enough (5^m7) to be seen with the unaided eye against a clear, dark sky. In binoculars or a small telescope, it will be an easy target.

On April 27, Uranus is only 5' north of the double star α Librae (Zubenelgenubi for the *cognoscenti*). The primary, α^2 Lib, is 2^m8, and the secondary, α^1 Lib, is 5^m2, about 4' north and west. For a few days around the 27th, Uranus, α^2 Lib and α^1 Lib will provide a fascinating sight as the planet moves westward past the two fixed stars.

The Sun—During April the sun's R.A. increases from 0 h 40 m to 2 h 31 m and its Decl. changes from $+4^{\circ}19'$ to $+14^{\circ}54'$. The equation of time changes from -3 m 53 s to +2 m 50 s, being zero on April 15.

The Moon—On April 1.0 E.S.T., the age of the moon is 23.1 d. The sun's selenographic colongitude is 186.8° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on April 7 (5°) and minimum (east limb exposed) on April 20 (6°). The libration in latitude is maximum (north limb exposed) on April 13 (7°) and minimum (south limb exposed) on April 27 (7°).

Mercury on the 1st is in R.A. 1 h 32 m, Decl. $+13^{\circ}07'$, and on the 15th is in R.A. 1 h 08 m, Decl. $+8^{\circ}46'$. At the beginning of the month, Mercury is still visible very low in the west after sunset, but by April 11 it is in inferior conjunction. Later in the month it is still too close to the sun to be easily visible.

Venus on the 1st is in R.A. 1 h 44 m, Decl. $+10^{\circ}02'$, and on the 15th it is in R.A. 2 h 50 m, Decl. $+16^{\circ}14'$, mag. -3.3, and transits at 13 h 19 m. It is well up in the west at sunset and sets about two hours later.

Mars on the 15th is in R.A. 8 h 17 m, Decl. $+22^{\circ}10'$, mag. +0.8, and transits at 18 h 44 m. In Cancer, it is on the meridian at sunset and sets shortly after midnight.

Jupiter on the 15th is in R.A. 6 h 02 m, Decl. $+23^{\circ}27'$, mag. -1.7, and transits at 16 h 28 m. Moving from Taurus into Gemini, it is high in the south-west at sunset and sets about 5 hours later.

Saturn on the 15th is in R.A. 9 h 46 m, Decl. $+15^{\circ}03'$, mag. +0.5, and transits at 20 h 11 m. In Leo, it is high in the south-east at sunset and sets about $2\frac{1}{2}$ hours before sunrise. On the 25th it is stationary and resumes direct motion with respect to the background stars.

Uranus on the 15th is in R.A. 14 h 52 m, Decl. $-16^{\circ}00'$, mag. +5.7, and transits at 1 h 19 m.

Neptune on the 15th is in R.A. 17 h 09 m, Decl. $-21^{\circ}26'$, mag. +7.7, and transits at 3 h 36 m.

1978		•		APRIL E.S.T.	Min. of Algol	Configuration of Jupiter's Satellites (Date Markers are U.T.)
	d	h	m		hm	
Sat.	1	09		Mercury stationary	6 50	W APR. E
Sun.	2					
Mon.	3					10 - 1/ 0
Tues.	4				3 40	20
Wed.	5	06		Pluto at opposition		3.0
Thur.	6					4.0!(:]\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Fri.	7	10	15	In the matrix the second s	0 30	5.0
Sat.	8	22		Venus 3° N. of Moon		8.0
Sun.	9			Mars at aphelion	21 20	7.0
Mon.	10			Jupiter at ascending node		8.0
Tues.	11	12		Mercury in inferior conjunction		
		13		Aldebaran 0.8° S. of Moon. Occ'n ¹		10.0
Wed.	12				18 10	
Thur.	13	06		Jupiter 5° N. of Moon		
Fri.	14	05		Moon at apogee (404,450 km)		
Sat.	15	03		Pallas stationary	15 00	3.0
_		08	56	First Quarter		
Sun.	16			Venus at ascending node		15.0
		02		Mars 7° N. of Moon		16.0
Mon.	17	21		Saturn 5° N. of Moon		17.0
Tues.	18				11 50	
Wed.	19					19.0
Thur.	20			Mercury at descending node		20.0
Fri.	21			~	8 40	21.0
Sat.	22	10		Lyrid Meteors		22.0
~		23	11	🙄 Full Moon		23.0
Sun.	23	18		Uranus 3° S. of Moon		24.0
		19		Vesta stationary		25.0
		21		Mercury stationary		26.0
Mon.	24	1.4			5.20	27.0
Tues.	25	14		Saturn stationary		
wed.	26	02		Neptune 3° S. of Moon		28.0
1 1		03		Moon at perigee (365,950 km)	• • •	29.0
I nur.	21				2 10	30.0
Fri.	28	1.0				31.0
Sat.	29	16	02	C Last Quarter	23 00	32.0
Sun.	30			Mercury at aphelion		

¹Visible in N. America, Europe, Asia Minor.

THE SKY FOR MAY 1978

From time to time you will see such statements as "Aldebaran 0.9° S of moon; occultation" in the pages opposite. This statement means that, as seen from the *centre* of the earth, Aldebaran is 0.9° south of the *centre* of the moon. Since the moon's disc is only 0.25° in radius, an occultation would not be seen from the *centre* of the earth.

Because of the effect of parallax, however, the *centre* of the moon's disc is displaced about 1° south or north when viewed from the north or south pole of the earth, respectively. Also, because of the 0.25° radius of the moon's disc, Aldebaran could be as much as 1.25° north or south of the moon, and an occultation could be seen somewhere on the earth. Thus, the "band" referred to in "The Sky for January" is 2.5° wide.

When the occulted object is south of the moon, the occultation is generally visible in the northern hemisphere, and *vice versa*. Check the opposite pages and verify that this is so.

The Sun—During May the sun's R.A. increases from 2 h 31 m to 4 h 34 m and its Decl. changes from $+14^{\circ}54'$ to $+21^{\circ}58'$. The equation of time changes from +2 m 57 s to +2 m 26 s, reaching a maximum of +3 m 44 s on May 14.

The Moon—On May 1.0 E.S.T., the age of the moon is 23.6 d. The sun's selenographic colongitude is 192.7° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on May 3 (5°) and May 30 (6°) and minimum (east limb exposed) on May 18 (7°). The libration in latitude is maximum (north limb exposed) on May 11 (7°) and minimum (south limb exposed) on May 24 (7°).

Mercury on the 1st is in R.A. 1 h 03 m, Decl. $+4^{\circ}12'$, and on the 15th is in R.A. 1 h 50 m, Decl. $+7^{\circ}56'$. On May 9, Mercury is at greatest elongation west (26°) but because of the unfavourable orientation of the ecliptic, the planet is only 11° above the horizon at sunrise at this time.

Venus on the 1st is in R.A. 4 h 10 m, Decl. $+21^{\circ}40'$, and on the 15th it is in R.A. 5 h 22 m, Decl. $+24^{\circ}23'$, mag. -3.4, and transits at 13 h 54 m. At sunset it is about 26° above the western horizon and sets about $2\frac{1}{2}$ hours later. On the 5th it is 6° N. of Aldebaran and on the 28th it is 1.6° N. of Jupiter.

Mars on the 15th is in R.A. 9 h 10 m, Decl. $+18^{\circ}10'$, mag. +1.2, and transits at 17 h 38 m. Moving from Cancer into Leo, it is past the meridian at sunset and sets about $5\frac{1}{2}$ hours later.

Jupiter on the 15th is in R.A. 6 h 25 m, Decl. $+23^{\circ}23'$, mag. -1.5, and transits at 14 h 53 m. In Gemini, it is about 35° above the western horizon at sunset and sets about 3 hours later. On May 28 (E.S.T.) it is 1.6° S. of Venus.

Saturn on the 15th is in R.A. 9 h 47 m, Decl. $+14^{\circ}56'$, mag. +0.7, and transits at 18 h 14 m. In Leo, it is past the meridian at sunset and sets at about midnight.

Uranus on the 15th is in R.A. 14 h 47 m, Decl. $-15^{\circ}39'$, mag. +5.7, and transits at 23 h 12 m. It is at opposition on May 5.

Neptune on the 15th is in R.A. 17 h 07 m, Decl. $-21^{\circ}22'$, mag. +7.7, and transits at 1 h 36 m.

1978				MAY E.S.T.	Min. of Algol	Configuration of Jupiter's Satellites (Date Markers are U.T.)
	d	h	m		hm	
Mon. Tues	$1 \\ 2$				19 50	W MAY E
Wed.	3				17 50	
Thur.	4	21		Mercury 2° S. of Moon		1.0
Fri.	5	01		Uranus at opposition	16 40	
		11		η Aquarid meteors		3.0 +
Sat	6	16	47	Venus 6° N. of Aldebaran		*•
Sat.	7	25	4/	Inew MOOH		5.0
Mon.	8	21		Aldebaran 0.9° S. of Moon, Occ'n. ¹	13 30	6.0
Tues.	9	06		Venus 6° N. of Moon	10 00	
		10		Mercury greatest elong. W. (26°)		
Wed.	10					
Thur.	11	00		Jupiter 5° N. of Moon	10 20	11.0
E-i	10	23		Moon at apogee (405,200 km)		12.0
гп. Sat	12					13.0 ¹¹ / ¹¹ / ¹¹ / ¹¹ / ¹¹ / ¹¹ / ¹¹
Sun.	14	10		Mars 6° N. of Moon	7 10	14.0
Mon.	15	02	39	First Quarter	, 10	15.0
		06		Saturn 5° N. of Moon		18.0-
Tues.	16					17.0 17.0
Wed.	17				4 00	18.0
Thur.	18					19.0
FII. Sat	19 20			Mercury at greatest hel. lat. S	0.50	20.0
Sat.	20			Venus at perihelion	0.50	21.0
		12		Ceres stationary		22.0-
Sun.	21	02		Uranus 3° S. of Moon		23.0
Mon.	22	08	17	😌 Full Moon	21 30	24.0-
Tues.	23	10		Neptune 3° S. of Moon		28.0
Wed.	24	00		Moon at perigee (360,950 km)	10.00	27.0
Inur. Fri	25 26				18 20	28.0
Sat.	27					29.0
Sun.	28	21		Venus 1.6° N. of Jupiter	15 10	30.0
		22	30	Last Quarter		31.0
Mon.	29	00		Occ'n: SAO 85009 by Pallas		32.0
Tues.	30				10.00	
wed.	31				12 00	

¹Visible in Central and E. Asia, N. America.

THE SKY FOR JUNE 1978

In the evening sky in June, the four bright planets Venus, Mars, Jupiter and Saturn are gathered together along the ecliptic, stretching from Gemini (low in the west) eastward to Leo. Jupiter is in Gemini, and has moved into the western twilight by month's end. Venus begins in Gemini but moves eastward into Cancer, fast enough to keep ahead of the sun; it therefore remains visible throughout the month. Mars and Saturn are together in Leo: Mars is 0.1° S. of Saturn on the 4th (E.S.T.) and is 0.8° N. of Regulus on the 12th. From June 8 to 13, the moon also joins the array, being at first quarter on the 13th.

Some fears have recently been expressed in the popular literature about the possible tidal effects of the planets when they are all on the same side of the earth. It must be remembered, though, that the combined tidal effect of the planets is thousands of times smaller than that of the much more massive sun, and the much closer moon.

The Sun—During June the sun's R.A. increases from 4 h 34 m to 6 h 38 m and its Decl. changes from $+21^{\circ}58'$ to $+23^{\circ}09'$. The equation of time changes from +2 m 17 s to -3 m 33 s, being zero on June 13. On June 21, at 13 h 10 m E.S.T., summer begins.

The Moon—On June 1.0 E.S.T., the age of the moon is 25.0 d. The sun's selenographic colongitude is 211.3° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on June 27 (7°) and minimum (east limb exposed) on June 15 (8°). The libration in latitude is maximum (north limb exposed) on June 7 (7°) and minimum (south limb exposed) on June 20 (7°).

Mercury on the 1st is in R.A. 3 h 32 m, Decl. $+17^{\circ}38'$, and on the 15th is in R.A. 5 h 34 m, Decl. $+24^{\circ}19'$. Mercury is too close to the sun to be easily visible this month; it is in superior conjunction on the 14th.

Venus on the 1st is in R.A. 6 h 52 m, Decl. $+24^{\circ}38'$, and on the 15th it is in R.A. 8 h 04 m, Decl. $+22^{\circ}21'$, mag. -3.5, and transits at 14 h 33 m. It is about 26° above the western horizon at sunset and sets about $2\frac{1}{2}$ hours later. During the month it moves south of Castor and Pollux.

Mars on the 15th is in R.A. 10 h 12 m, Decl. $+12^{\circ}26'$, mag. +1.5, and transits at 16 h 38 m. In Leo, it is well up in the south-west at sunset and sets about 4 hours later. It is 0.1° S. of Saturn on the 4th (E.S.T.) and 0.8° N. of Regulus on the 12th.

Jupiter on the 15th is in R.A. 6 h 53 m, Decl. $+22^{\circ}59'$, mag. -1.4, and transits at 13 h 19 m. In Gemini, it is very low in the west at sunset and sets about $1\frac{1}{2}$ hours later.

Saturn on the 15th is in R.A. 9 h 54 m, Decl. $+14^{\circ}18'$, mag. +0.8, and transits at 16 h 19 m. In Leo, it is high in the south-west at sunset and sets about 4 hours later. On the 4th it is 0.1° N. of Mars.

Uranus on the 15th is in R.A. 14 h 42 m, Decl. $-15^{\circ}19'$, mag. +5.8, and transits at 21 h 06 m.

Neptune on the 15th is in R.A. 17 h 03 m, Decl. $-21^{\circ}18'$, mag. +7.7, and transits at 23 h 27 m. It is at opposition on June 7 (E.S.T.).

1978				JUNE E.S.T.	Min. of Algol	Configuration of Jupiter's Satellites (Date Markers are U.T.)
Thur. Fri.	d 1 2	h 08	m	Juno stationary	hm	
Sat. Sun.	3	18		Pallas at opposition	8 50	
Mon.	5	19 14	01	Mars 0.1° S. of Saturn Mars Moon		W JUNE E
Tues. Wed.	6 7	19		Jupiter 5° N. of Moon	5 40	20
Thur.	8	21		Neptune at opposition Mercury at ascending node Moon at apogee (406,150 km)		
Fri.	9	18		Venus 7° N. of Moon	2 30	6.0
Sat. Sun.	11	19		Venus 5 S. of Poliux Venus at greatest hel. lat. N. Saturn 5° N. of Moon	23 20	8.0
Mon.	12	22 12		Mars 4° N. of Moon Mars 0.8° N. of Regulus		
Tues. Wed.	13	17	44	 Mercury at perihelion First Quarter Mercury in superior conjunction 	20 10	13.0
Thur. Fri.	15 16			,		15.0
Sat. Sun.	17 18	11		Uranus 3° S. of Moon	16 50	Typiton
Tues.	20	10 19 15	30	Neptune 3° S. of Moon Full Moon	13 40	near sun;
Wed. Thur.	21 22	07 13	10	Moon at perigee (357,650 km) Solstice. Summer begins		not given
Fri. Sat.	23 24 25	03		Mercury at greatest hel. lat. N. Mercury 1.8° N. of Jupiter	10 30	
Sun. Mon. Tues.	25 26 27	06	44	E Last Quarter	7 20	 ,
Wed. Thur. Fri.	28 29 30	05		Mercury 5° S. of Pollux	4 10	

THE SKY FOR JULY 1978

If you were successful in locating Uranus in April, perhaps you would like to try to locate an asteroid (or two, or three, or four) this month. The four asteroids Ceres, Juno, Pallas and Vesta all come to opposition in June or July this year. [Actually, these are not the four *largest* asteroids (see "Asteroids", page 88) nor are they necessarily the *brightest* (this depends on the size and also on the Earth-asteroid-sun distances at opposition) nor the most easily observed (this depends also on the R.A. and Dec. at opposition). Nevertheless, maps are provided for these four asteroids, as they have been for many years.]

Vesta is undoubtedly the best one to locate first, since it is 5^m5 at brightest: visible to the unaided eye if the sky is clear and dark. Binoculars or a small telescope would certainly help. Use the "key" map on page 89 to locate the general area of sky, then use the more detailed map on page 89 to locate the asteroid. During late June and July, the asteroid weaves in and out of a line of three bright stars. Once you have located the asteroid, you can follow its motion from night to night.

The Sun—During July the sun's R.A. increases from 6 h 38 m to 8 h 43 m and its Decl. changes from $+23^{\circ}09'$ to $+18^{\circ}10'$. The equation of time changes from -3 m 44 s to -6 m 19 s, reaching a maximum of -6 m 27 s on July 26. The earth is in aphelion on July 4 (E.S.T.) at a distance of 152,100,000 km (94,509,000 mi) from the sun.

The Moon—On July 1.0 E.S.T., the age of the moon is 25.4 d. The sun's selenographic colongitude is 217.9° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on July 25 (8°) and minimum (east limb exposed) on July 13 (8°). The libration in latitude is maximum (north limb exposed) on July 4 (7°) and July 31 (7°) and minimum (south limb exposed) on July 18 (7°).

Mercury on the 1st is in R.A. 7 h 56 m, Decl. $+22^{\circ}39'$, and on the 15th is in R.A. 9 h 22 m, Decl. $+15^{\circ}48'$. Throughout the month Mercury can be seen very low in the west after sunset. Greatest elongation east (27°) occurs on the 21st, but this is not a particularly favourable one; the planet stands about 14° above the horizon at sunset.

Venus on the 1st is in R.A. 9 h 21 m, Decl. $+17^{\circ}24'$, and on the 15th it is in R.A. 10 h 23 m, Decl. $+11^{\circ}34'$, mag. -3.6, and transits at 14 h 53 m. Although it is becoming brighter and moving further east of the sun, it is becoming less favourably placed for northern observers, and is quite low in the south-west at sunset. It passes 0.1° N. of Saturn on the 10th and 1.1° N. of Regulus the next day.

Mars on the 15th is in R.A. 11 h 16 m, Decl. $+5^{\circ}36'$, mag. +1.7, and transits at 15 h 44 m. Moving from Leo into Virgo, it is low in the south-west at sunset and sets about $2\frac{1}{2}$ hours later.

Jupiter on the 15th is in R.A. 7 h 22 m, Decl. $+22^{\circ}16'$, mag. -1.4, and transits at 11 h 49 m. It is too close to the sun for observation, being in conjunction on the 10th.

Saturn on the 15th is in R.A. 10 h 05 m, Decl. $+13^{\circ}17'$, mag. +0.9, and transits at 14 h 32 m. In Leo, it is low in the west at sunset and sets about 2 hours later. On the 10th it is 0.1° S. of Venus and on the 19th it is 1.0° N. of Regulus.

Uranus on the 15th is in R.A. 14 h 40 m, Decl. $-15^{\circ}11'$, mag. +5.8, and transits at 19 h 06 m.

Neptune on the 15th is in R.A. 17 h 00 m, Decl. $-21^{\circ}14'$, mag. +7.7, and transits at 21 h 26 m.

1978			_	JULY E.S.T.	Min. of Algol	Configuration of Jupiter's Satellites (Date Markers are U.T.)
	d	h	m		hm	
Sat.	1	11		Pluto stationary		
Sun.	2	10		Aldebaran 0.8° S. of Moon. Occ'n ¹	1 00	
Mon.	3					
Tues.	4	19		Earth at aphelion	21 50	
Wed.	5	04	50	New Moon		
Thur		19		Moon at apogee (406,600 km)		
Inur.	7	00		Margury 5° N of Maan	10 20	
Sat	8	09		Mercury 5 IN. OI MOOII	10 50	
Sun	q	00		Venus 4° Noof Moon		
bun.	1	03		Saturn 4° N of Moon		
		06		Ceres at opposition		
Mon.	10	06		Jupiter in conjunction with Sun	15 20	
		07		Venus 0.1° N. of Saturn		
		11		Mars 2° N. of Moon		
Tues.	11	03		Venus 1.1° N. of Regulus		
Wed.	12					
Thur.	13	05	49	First Quarter	12 10	Jupiter
Fri.	14	19		Uranus 3° S. of Moon		near sun;
Sat.	15					configurations
Sun.	16				9 00	not given
Mon.	17	0.5		Mercury at descending node		
Tues	10	05		Neptune 3° S. of Moon		
Wed	10	01		Vesta stationary	5 50	
wcu.	19	01		Saturn 1.0° N of Regulus	5 50	
		16		Moon at perigee (357 050 km)		
		18		Occ'n: SAO 144070 by Juno		
		22	05	③ Full Moon		
Thur.	20			č		
Fri.	21	09		Uranus stationary		
		19		Mercury greatest elong. E. (27°)		
Sat.	22				2 40	
Sun.	23					
Mon.	24	13		Juno at opposition	23 30	
Tues.	25	17	21	C. Last Original		
wea.	26	17	31	Last Quarter	20 10	
Thur.	21	21		Mercury at aphenon Mercury 2°S of Pogulus	20 10	
Fri	28	21		Mercury 5 5.01 Regulus		
Sat	29	7		δ Aquarid meteors		
Suti		15		Aldebaran 0.7° S. of Moon. Occ'n ²		
Sun.	30				17 00	
Mon.	31	17		Mercury 5° S. of Saturn		

¹Visible in N. America, N.W. Europe. ²Visible in Central and E. Asia, N. America.

THE SKY FOR AUGUST 1978

In previous editions of this HANDBOOK (e.g. 1977, page 42), we have often discussed (and explained) "favourable and unfavourable elongations of Mercury". This month we have a very unfavourable elongation of *Venus*: although it is 46° E. of the sun on the 29th, it is nevertheless very low in the south-western sky, as seen by northern observers. The explanation is similar to that for Mercury.

The explanation is the shallow angle between the ecliptic and the western horizon, as seen in the evening in the autumn by northern observers. An equivalent explanation is the low declination of Venus, relative to that of the sun, during this period. Other things being equal, objects at lower declinations are more difficult for northern observers to see.

Mars too is 40° to 50° E. of the sun during this period and, for the same reason, is very low in the sky. In fact, for several weeks in autumn, Mars is barely 10° above the south-western horizon at sunset.

The Sun—During August the sun's R.A. increases from 8 h 43 m to 10 h 39 m and its Decl. changes from $+18^{\circ}10'$ to $+8^{\circ}29'$. The equation of time changes from -6 m 16 s to -0 m 19 s.

The Moon—On Aug. 1.0 E.S.T., the age of the moon is 26.8 d. The sun's selenographic colongitude is 236.8° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Aug. 23 (7°) and minimum (east limb exposed) on Aug. 10 (7°). The libration in latitude is maximum (north limb exposed) on Aug. 27 (7°) and minimum (south limb exposed) on Aug. 14 (7°).

Mercury on the 1st is in R.A. 10 h 13 m, Decl. $+7^{\circ}51'$, and on the 15th is in R.A. 9 h 57 m, Decl. $+7^{\circ}24'$. It is too close to the sun for observation, being in inferior conjunction on the 18th.

Venus on the 1st is in R.A. 11 h 32 m, Decl. $+3^{\circ}26'$, and on the 15th it is in R.A. 12 h 26 m, Decl. $-3^{\circ}34'$, mag. -3.8, and transits at 14 h 53 m. Although it reaches greatest elongation east on the 29th, it is even less favourably placed than last month, being only about 18° above the horizon at sunset. On the night of the 7th, both Venus and Mars are occulted by the moon (see opposite page).

Mars on the 15th is in R.A. 12 h 25 m, Decl. $-2^{\circ}17'$, mag. +1.7, and transits at 14 h 51 m. In Virgo, it is very low in the south-west at sunset and sets about 2 hours later. It is 1.2° N. of Venus on the 14th.

Jupiter on the 15th is in R.A. 7 h 51 m, Decl. $+21^{\circ}13'$, mag. -1.4, and transits at 10 h 17 m. In Gemini, it is about 22° above the eastern horizon at sunrise.

Saturn on the 15th is in R.A. 10 h 20 m, Decl. $+11^{\circ}58'$, mag. +0.9, and transits at 12 h 45 m. It is too close to the sun for observation, being in conjunction on the 27th.

Uranus on the 15th is in R.A. 14 h 41 m, Decl. $-15^{\circ}16'$, mag. +5.9, and transits at 17 h 05 m.

Neptune on the 15th is in R.A. 16 h 58 m, Decl. $-21^{\circ}13'$, mag. +7.7, and transits at 19 h 22 m.

1978				AUGUST E.S.T.	Min. of Algol	Configuration of Jupiter's Satellites (Date Markers are U.T.)
	d	Ь	m		hm	
Tues	1	06	111	Occ'n SAO 119114 by Mars		
1 405.	1	22		Moon at apprese $(406, 450 \text{ km})$		
Wed	2	100		Iupiter 5° N of Moon	13 50	
mea.	2	10		Pallas stationary	15 50	W AUG. E
Thur	3	20	01	Mew Moon		
I mar.		20	01	Mercury stationary		
Fri	1	00		Mercury 5° S of Saturn		20
Sat	5	14		Mercury 2°S of Moon	10.40	3.0 (
Sat.		14		Saturn 4° N of Moon	10 40	4.0 -
Sun	6	15		Venus at descending node		5.0
Mon	7	00		Jupiter 7° S of Pollux		60
wion.	'	20		Very 0.4° S of Moon Occ'n ¹		7.0
Tues	0	01		Mars 0.004° N of Moon Oce'n ²	7 20	8.0
Wed	0	01		Mars 0.004 14. 01 Moon. Occ II	/ 50	9.0
Thur	10	17		Moroury 5° S. of Pogulus		\sim
Fri	11			Uranus 3°S of Moon	1 20	110
1.11.	11	15	06	Tirst Quarter	4 20	
Sat	12	12	00	J Thist Quarter Derseid meteors		
Sat. Sun	12	12	1	Nontune 4° S. of Moon		130
Mon	11	10		Venus 1.2°S of More	1 10	14.0
Tues	14	10		venus 1.2 S. Or Wars	1 10	15.0
Wed	16			Mercury at greatest hell lat S	21 50	16.0
Thur	17	01		Moon at perigee (359 250 km)	21 50	17.0
Fri	18	05	14	💬 Full Moon		18.0
	10	15	- •	Mercury in inferior conjunction		19.0/ '') /''''
Sat.	19			increary in interior conjunction	18 40	20.0
Sun.	20				10 10	21.0
Mon.	21					22.0
Tues.	22				15 30	23.0
Wed.	23					24.0
Thur.	24					25.0
Fri.	25	07	18	Last Quarter	12 20	28.0
		22		Aldebaran 0.5° S. of Moon. Occ'n ³		27.0
Sat.	26					28.0
Sun.	27	10		Saturn in conjunction with Sun		29.0
		16		Mercury stationary		
Mon.	28	00		Neptune stationary	9 10	310
Tues.	29	08		Moon at apogee (405,600 km)		
		15		Venus greatest elong. E. (46°)		ya,U
		16		Ceres stationary		
Wed.	30	03		Jupiter 5° N. of Moon		
Thur.	31	04		Venus 0.3° S. of Spica	6 00	

¹Visible in E. Asia, N. Pacific, Central America.

²Visible in S.E. Asia, East Indies, N.E. Australia.
³Visible in N. and W. Africa, Europe, Central Asia.

THE SKY FOR SEPTEMBER 1978

Notice that the Harvest Moon occurs on September 16. By definition the Harvest Moon is the full moon nearest the autumnal equinox. Around this time, the moon provides an extra measure of light in the early evening, light that was (and is) useful for farmers gathering the harvest.

On the average, the moon rises 50 minutes later from one night to the next, because of its eastward motion around the sky. However, at autumnal equinox, the sun is moving southward at its maximum rate, and the full moon is therefore moving northward at its maximum rate. This northward motion partly counteracts the moon's tendency to rise later from night to night: as a result, the delay in rising may be as little as 20 minutes. Check the tables of moonrise to see that this is so.

I leave it as an "exercise for the reader" to explain the astronomical and cultural significance of the Hunters' Moon on October 16.

The Sun—During September the sun's R.A. increases from 10 h 39 m to 12 h 27 m and its Decl. changes from $+8^{\circ}29'$ to $-2^{\circ}58'$. The equation of time changes from 0 m 00 s to +9 m 59 s. On Sept. 23 at 04 h 26 m E.S.T., the sun crosses the equator on its way south, and autumn begins.

The Moon—On Sept. 1.0 E.S.T., the age of the moon is 28.2 d. The sun's selenographic colongitude is 255.5° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Sept. 20 (6°) and minimum (east limb exposed) on Sept. 7 (6°). The libration in latitude is maximum (north limb exposed) on Sept. 23 (7°) and minimum (south limb exposed) on Sept. 10 (7°).

Mercury on the 1st is in R.A. 9 h 33 m, Decl. $+13^{\circ}27'$, and on the 15th is in R.A. 10 h 43 m, Decl. $+9^{\circ}55'$. On the 4th, it is at greatest elongation west (18°), at which time it can be seen about 16° above the eastern horizon at sunrise, but by the end of the month it is in superior conjunction.

Venus on the 1st is in R.A. 13 h 26 m, Decl. $-11^{\circ}40'$, and on the 15th it is in R.A. 14 h 12 m, Decl. $-17^{\circ}29'$, mag. -4.2, and transits at 14 h 37 m. At sunset, it is visible low in the south-west and sets about $1\frac{1}{2}$ hours later.

Mars on the 15th is in R.A. 13 h 39 m, Decl. $-10^{\circ}18'$, mag. +1.8, and transits at 14 h 04 m. In Virgo, it is only about 12° above the south-western horizon at sunset. It is 2° N. of Spica on the 8th.

Jupiter on the 15th is in R.A. 8 h 16 m, Decl. $+20^{\circ}01'$, mag. -1.5, and transits at 8 h 40 m. Now in Cancer, it rises about $4\frac{1}{2}$ hours before the sun and is high in the south-east at sunrise.

Saturn on the 15th is in R.A. 10 h 34 m, Decl. $+10^{\circ}35'$, mag. +1.0, and transits at 10 h 58 m. Still in Leo, it is now in the morning sky, very low in the east at sunrise. On the 13th it is 0.1° S. of Mercury.

Uranus on the 15th is in R.A. 14 h 45 m, Decl. $-15^{\circ}35'$, mag. +5.9, and transits at 15 h 07 m.

Neptune on the 15th is in R.A. 16 h 58 m, Decl. $-21^{\circ}15'$, mag. +7.8, and transits at 17 h 20 m.

1978			<u>.</u>	SEPTEMBER E.S.T.	Min. of Algol	Configuration of Jupiter's Satellites (Date Markers are U.T.)
	d	h	m		hm	
Fri.	1	00		Mercury 2° N. of Moon		W SEPT.
Sat.	2	11	09	Wew Moon		0 ^d 0
Sun.	3				2 50	10
Mon.	4			Mercury at ascending node		20
		16		Mercury greatest elong. W. (18°)		
Tues.	5	16		Mars 2° S. of Moon	23 30	40
Wed.	6	05		Venus 6° S. of Moon		
Thur.	7	09		Uranus 4° S. of Moon		
Fri.	8	16		Mars 2° N. of Spica	20 20	
Sat.	9			Mercury at perihelion		7.0
				Venus at aphelion		B.0
		03		Mercury 0.5° N. of Regulus		9.0
		19		Neptune 4° S. of Moon		10.0
	1	22	20	First Quarter		110
Sun.	10					12.0 / D
Mon.	11				17 10	13.0 <u>/1v 111 ()</u> n
Tues.	12	09	ĺ	Juno stationary		14.0
Wed.	13	10		Mercury 0.1° N. of Saturn		15.0
Thur.	14	05		Moon at perigee (363,650 km)	14 00	16.0 YR
Fri.	15					17.0
Sat.	16			Mars at descending node		180
		14	01	Full Moon, Harvest Moon,		
				Eclipse of $(, p. 64)$		
Sun.	17				10 50	
Mon.	18					21.0 -
Tues.	19			Mercury at greatest hel. lat. N.		220
Wed.	20				740	23.0
Thur.	21					24.0
Fri.	22	06		Aldebaran 0.4° S. of Moon. Occ'n ¹		25.0
Sat.	23	04	26	Equinox. Autumn begins	4 30	26.0
Sun.	24	00	07	Last Quarter		27.0
Mon.	25					28.0
Tues.	26	01		Moon at apogee (404,700 km)	1 10	29.0
*** *		21		Jupiter 5° N. of Moon		30.0
Wed.	27	19		venus 6° S. of Uranus		31.0 / ¹ / '()))"
Thur.	28	10			22 00	32.0
Fri.	29	18		Saturn 3° N. of Moon		
Sat.	30	10		Mercury in superior conjunction		

¹Visible in N. Pacific, N. America.

THE SKY FOR OCTOBER 1978

The Summer Triangle, with Vega to the west, Deneb to the east, and Altair to the south, is high overhead in the early evening—as indeed it has been for several weeks and will be for several weeks more. Although the constellations march across the sky from east to west as the seasons progress, this effect is counterbalanced in the autumn by the advance of sunset time. As a result, the sky at twilight looks much the same for many weeks. This is a great convenience for observers—both amateur and professional—who are interested in objects in this part of the sky. [Incidentally, you can see this effect on the diagram on page 12: note that the twilight curves and the sidereal time lines are almost parallel in September and October.]

Perhaps this explains why the Summer Triangle is firmly imprinted on the minds of observers but (for the opposite reason) Leo, Virgo and Boötes slip away so quickly in the spring.

The Sun—During October the sun's R.A. increases from 12 h 27 m to 14 h 23 m and its Decl. changes from $-2^{\circ}58'$ to $-14^{\circ}15'$. The equation of time changes from +10 m 18 s to +16 m 21 s.

The Moon—On Oct. 1.0 E.S.T., the age of the moon is 28.5 d. The sun's selenographic colongitude is 261.6° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Oct. 17 (5°) and minimum (east limb exposed) on Oct. 3 (5°) and Oct. 30 (5°). The libration in latitude is maximum (north limb exposed) on Oct. 21 (7°) and minimum (south limb exposed) on Oct. 7 (7°).

Mercury on the 1st is in R.A. 12 h 30 m, Decl. $-1^{\circ}54'$, and on the 15th is in R.A. 13 h 56 m, Decl. $-12^{\circ}06'$. Throughout the month, it is very poorly placed for observation.

Venus on the 1st is in R.A. 14 h 54 m, Decl. $-22^{\circ}33'$, and on the 15th it is in R.A. 15 h 13 m, Decl. $-24^{\circ}51'$, mag. -4.2, and transits at 13 h 38 m. Early in the month, it is visible very low in the south-west at sunset. It is at greatest brilliancy on the 3rd.

Mars on the 15th is in R.A. 14 h 59 m, Decl. $-17^{\circ}16'$, mag. +1.7, and transits at 13 h 25 m. In Libra, it is only about 10° above the south-western horizon at sunset.

Jupiter on the 15th is in R.A. 8 h 35 m, Decl. $+19^{\circ}01'$, mag. -1.7, and transits at 7 h 01 m. In Cancer, it rises at about midnight and is near the meridian at sunrise.

Saturn on the 15th is in R.A. 10 h 48 m, Decl. $+9^{\circ}20'$, mag. +1.1, and transits at 9 h 13 m. In Leo, it rises about $3\frac{1}{2}$ hours before the sun and is well up in the east at sunrise.

Uranus on the 15th is in R.A. 14 h 51 m, Decl. $-16^{\circ}04'$, mag. +6.0, and transits at 13 h 16 m.

Neptune on the 15th is in R.A. 17 h 00 m, Decl. $-21^{\circ}19'$, mag. +7.8, and transits at 15 h 25 m.

1978				OCTOBER E.S.T.	Min. of Algol	Configuration of Jupiter's Satellites) (Date Markers are U.T.)
Sun. Mon.	d 1 2	h 01	m 41	Venus at greatest hel. lat. S.	h m 18 50	W OCT. E
Tues. Wed.	3 4	17 09 17 23		Venus greatest brilliancy (-4 ^m 3) Mars 4° S. of Moon Uranus 4° S. of Moon Venus 10° S. of Moon	15 40	10- 20- 30 40
Thur. Fri. Sat. Sun	5 6 7 8	01		Neptune 4° S. of Moon	12 30	5.0- 6.0 7.0
Mon. Tues. Wed.	9 10 11	04 01 11	38	 First Quarter Pluto in conjunction with Sun Moon at perigee (368,800 km) 	9 20	90 - 100 110 - 110
Thur. Fri. Sat.	12 13 14	21		Mercury at descending node	6 10	120
Sun. Mon. Tues.	15 16 17	01 20	09	Full Moon, Hunters' Moon Venus stationary	3 00	16.0
Wed. Thur. Fri.	18 19 20	15 03		Aldebaran 0.5° S. of Moon. Occ'n ¹ Venus 7° S. of Mars	23 40	
Sat. Sun.	21 22 22	13		Orionid meteors	20 30	210
wion.	23	19 20	34	© Last Quarter Moon at apogee (404,300 km)	17.00	230
Tues.	24	12		Mercury 1.7° S. of Uranus	1/ 20	26.0
Thur. Fri. Sat.	26 27 28	23 23 08		Mercury 5° N. of Venus Saturn 3° N. of Moon	14 10	28.0
Sun. Mon. Tues.	29 30 31	00	06	Occ'n: SAO 122731 by Pallas	11 00	32.0
		1.5	00		1	

¹Visible in N.E. Africa, S.E. Europe, Asia.

THE SKY FOR NOVEMBER 1978

Algol, or β Persei, has fascinated observers for centuries. Every 2.9 days, this star fades in brightness by 1^m2 in a few hours, then returns to normal. The cause of this behaviour is an eclipse. Algol consists of two stars in mutual orbit: a smaller, hotter, brighter component, and a larger, cooler, fainter one. When the larger component passes in front of the smaller one, the primary eclipse occurs.

The times of mid-eclipse are given in the pages opposite. You should start watching a few hours earlier (therefore choose an eclipse which occurs in late evening, if you can). The chart on page 108 shows the star, along with some comparison stars of known constant brightness. The text above the chart gives brief instructions on how to measure the changing brightness of the star.

Amateur observers can make useful contributions to astronomy by observing the times of mid-eclipse of eclipsing stars. If you are interested, you should contact the A.A.V.S.O.; see page 108 for further information.

The Sun—During November the sun's R.A. increases from 14 h 23 m to 16 h 27 m and its Decl. changes from $-14^{\circ}15'$ to $-21^{\circ}43'$. The equation of time changes from +16 m 22 s to +11 m 19 s, reaching a maximum of +16 m 24 s on Nov. 3.

The Moon—On Nov. 1.0 E.S.T., the age of the moon is 0.4 d. The sun's selenographic colongitude is 279.3° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Nov. 13 (5°) and minimum (east limb exposed) on Nov. 27 (6°). The libration in latitude is maximum (north limb exposed) on Nov. 17 (7°) and minimum (south limb exposed) on Nov. 4 (7°).

Mercury on the 1st is in R.A. 15 h 36 m, Decl. $-21^{\circ}23'$, and on the 15th is in R.A. 16 h 52 m, Decl. $-25^{\circ}12'$. It is at greatest elongation east (23°) on the 15th, but this is an unfavourable elongation; the planet stands only 10° above the horizon at sunset.

Venus on the 1st is in R.A. 14 h 59 m, Decl. $-23^{\circ}14'$, and on the 15th it is in R.A. 14 h 30 m, Decl. $-18^{\circ}02'$, mag. -3.5, and transits at 10 h 52 m. During the month, it moves rapidly through inferior conjunction (on the 7th) into the morning sky. By the end of the month, it rises about $2\frac{1}{2}$ hours before the sun and stands about 25° above the south-eastern horizon at sunrise.

Mars on the 15th is in R.A. 16 h 30 m, Decl. $-22^{\circ}27'$, mag. +1.6, and transits at 12 h 55 m. Moving through Scorpius to Ophiuchus, it is only 7° above the southwestern horizon at sunset.

Jupiter on the 15th is in R.A. 8 h 46 m, Decl. $+18^{\circ}28'$, mag. -1.9, and transits at 5 h 09 m. In Cancer, it rises about 2 hours before midnight and is past the meridian at sunrise. On Nov. 25 (E.S.T.) it is stationary and begins retrograde motion.

Saturn on the 15th is in R.A. 10 h 58 m, Decl. $+8^{\circ}23'$, mag. +1.1, and transits at 7 h 21 m. In Leo, it rises at about midnight and is on the meridian at sunrise.

Uranus on the 15th is in R.A. 14 h 59 m, Decl. $-16^{\circ}37'$, mag. +6.0, and transits at 11 h 21 m.

Neptune on the 15th is in R.A. 17 h 04 m, Decl. $-21^{\circ}26'$, mag. +7.8, and transits at 13 h 27 m.

1978				NOVEMBER E.S.T.	Min. of Algol	Configuration of Jupiter's Satellites (Date Markers are U.T.)
	d	h	m		hm	
Wed.	1					
Thur.	2	00		Mercury 7° S. of Moon	7 50	
		04		Mars 5° S. of Moon		
Fri.	3	09		Neptune 4° S. of Moon		
Sat.	4			Taurid meteors		20 1/ /11 ()1
Sun.	5				4 40	
		03		Mercury 1.9° S. of Mars		30
		07		Moon at perigee (369,000 km)		
Mon.	6					5.0
Tues.	7	11	18	First Quarter		8.0
		16		Venus in inferior conjunction		7.0
Wed.	8			-	1 30	8.0
Thur.	9	07		Uranus in conjunction with Sun		80 — (
		10		Occ'n: SAO 187470 by Vesta		10.0
Fri.	10	01		Mercury 2° N. of Antares	22 10	11.0
Sat.	11					12.0
Sun.	12			Mercury at greatest hel. lat. S.		130
Mon.	13				19 00	140- (
Tues.	14	01		Mars 4° N. of Antares		150
		15	00	😨 Full Moon		
Wed.	15	21		Mercury greatest elong. E. (23°)		
Thur.	16	00		Aldebaran 0.6° S. of Moon. Occ'n ¹	15 50	
Fri.	17	5		Leonid meteors		
		18		Mercury 4° S. of Neptune		19.0
Sat.	18					20.0
Sun.	19				12 40	21.0
Mon.	20	17		Moon at apogee (404,750 km)		22.0
Tues.	21	00		Jupiter 4° N. of Moon		23.0
Wed.	22	16	24	Last Quarter	9 30	24.0
Thur.	23	20		Saturn 3° N. of Moon		25.0
Fri.	24					26.0
Sat.	25	19		Mercury stationary	6 20	27.0
		22		Jupiter stationary		28.0
Sun.	26	02		Mars 2° S. of Neptune		20.0
		11		Venus stationary		30.0
Mon.	27			Venus at ascending node		310
		22		Venus 3° S. of Moon		32.0-
Tues.	28	16		Uranus 4° S. of Moon	3 10	34.U-
Wed.	29	14		Mercury 0.1° N. of Mars		
Thur.	30	03	19	Mew Moon		

¹Visible in N. America, Europe, N. Africa.

THE SKY FOR DECEMBER 1978

In "The Sky for November", we discussed the brightness variations in Algol. Similar variations—clearly visible to the unaided eye—occur in several of the brightest stars [see "The Brightest Stars", p. 96]. Nevertheless, from antiquity to about A.D. 1600, Western observers regarded the stars as fixed and unchanging. The recognition of brightness variations in some stars was really the beginning of true astrophysics.

The experienced eye can measure the brightness of a star to within $0^{m}_{.1}$ or $0^{m}_{.2}$ under ideal conditions. [Use the chart on page 108 to measure the brightness of Algol *outside* eclipse and compare your result with the correct answer: $2^{m}_{.1}$.] The experienced eye can therefore measure brightness *changes* of $0^{m}_{.5}$ with relative ease.

The eye can also perceive the colours of stars; the colours, when corrected for the effects of the earth's atmosphere, are a measure of the temperature of a star. [Scan the bright stars of the constellations Cassiopeia, Orion and Ursa Major; which star in each constellation is a different colour from the rest?]

The Sun—During December the sun's R.A. increases from 16 h 27 m to 18 h 43 m and its Decl. changes from $-21^{\circ}43'$ to $-23^{\circ}04'$. The equation of time changes from +10 m 57 s to -3 m 01 s, being zero on Dec. 25. On Dec. 22, at 0 h 21 m, winter begins.

The Moon—On Dec. 1.0 E.S.T., the age of the moon is 0.9 d. The sun's selenographic colongitude is 284.4° and increases by 12.2° each day thereafter. The libration in longitude is maximum (west limb exposed) on Dec. 9 (6°) and minimum (east limb exposed) on Dec. 25 (7°). The libration in latitude is maximum (north limb exposed) on Dec. 14 (7°) and minimum (south limb exposed) on Dec. 1 (6°) and Dec. 28 (7°).

Mercury on the 1st is in R.A. 17 h 14 m, Decl. $-23^{\circ}17'$, and on the 15th is in R.A. 16 h 16 m, Decl. $-18^{\circ}24'$. Early in the month, it is too close to the sun for observation, but by the 24th it is at greatest elongation west (22°) at which time it stands about 14° above the horizon at sunrise.

Venus on the 1st is in R.A. 14 h 21 m, Decl. $-13^{\circ}18'$, and on the 15th it is in R.A. 14 h 42 m, Decl. $-12^{\circ}51'$, mag. -4.4, and transits at 9 h 08 m. At mid-month, it is at greatest brilliancy again, rising about $3\frac{1}{2}$ hours before the sun, and standing about 28° above the horizon at sunrise. On the 26th, Venus is occulted by the moon (see opposite page).

Mars on the 15th is in R.A. 18 h 08 m, Decl. $-24^{\circ}15'$, mag. +1.5, and transits at 12 h 34 m. It is too low in the sky for easy observation.

Jupiter on the 15th is in R.A. 8 h 44 m, Decl. $+18^{\circ}40'$, mag. -2.1, and transits at 3 h 10 m. In Cancer, it rises about 3 hours after sunset and is about 30° above the western horizon at sunrise.

Saturn on the 15th is in R.A. 11 h 03 m, Decl. $+8^{\circ}00'$, mag. +1.0, and transits at 5 h 28 m. In Leo, it rises before midnight and is past the meridian at sunrise. On the 25th it is stationary and commences retrograde motion with respect to the background stars.

Uranus on the 15th is in R.A. 15 h 06 m, Decl. $-17^{\circ}06'$, mag. +5.9, and transits at 9 h 31 m.

Neptune on the 15th is in R.A. 17 h 09 m, Decl. $-21^{\circ}32'$, mag. +7.8, and transits at 11 h 33 m.

1978				DECEMBER E.S.T.	Min. of Algol	Configuration of Jupiter's Satellites (Date Markers are U.T.)
Fri.	d 1	h	m	Mercury at ascending node	h m 0 00	
Sat. Sun. Mon.	2 3 4	10		Juno 0.4° N. of Moon. Occ'n	20 50	W DEC. E
Tues. Wed.	5 6	16		Mercury in inferior conjunction Mercury at perihelion	17 40	
Thur. Fri.	7	19	34	First Quarter		3.0
Sat. Sun.	9 10	06		Neptune in conjunction with Sun	14 20	5.0
Mon. Tues. Wed	11 12 13	07		Aldebaran 0.6° S of Moon Occ'n ¹	11 10	70- 80 90
Thur.	14	00 04		Venus greatest brilliancy $(-4^m, 4)$ Geminid meteors		100
Fri.	15	07 11	31	③ Full Moon Mercury stationary Moreouw of createst hele let N	8 00	120
Sun. Mon.	17 18	05		Jupiter 4° N. of Moon	4 50	
Tues.	19	11		Moon at apogee (405,650 km)		17.0
wea. Thur. Fri.	20 21 22	06 00	21	Saturn 3° N. of Moon Solstice. Winter begins	1 40	19.0
		01 12	41	Mercury 7° N. of Antares © Last Quarter		21.0
Sat. Sun	23 24	19 10		Ursid meteors	22 30	23.0
Mon.	25	16 16		Mercury greatest elong. W. (22°) Saturn stationary		26.0
Tues. Wed	26 27	05 08		Uranus 4° S. of Moon Venus 0.8° S. of Moon. Occ'n ²	19 20	28.0
Thur.	28	01 08		Mercury 3° S. of Moon Neptune 4° S. of Moon		30.0 <u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>
Fri. Sat.	29 30	14 17	36	Wew Moon Moon at perigee (358,850 km)	16 10	32.0 ***** ******************************
Sun.	31	14		venus at perihelion Mercury 0.3° S. of Neptune		

¹Visible in Asia, N. America. ²Visible in N. America, W. Europe, N.W. Africa.

Date	P	Bo	Lo	Date	Р	Bo	L_{o}
	0	0	0		0	0	0
Jan. 1 6 11 16 21 26 31 Feb. 5 10 15 20 25 Mar. 1 6 11 16 21 26 31 Apr. 5 10 15 20 25 Mar. 1 6 11 16 21 20 25 Mar. 1 5 10 15 20 25 Mar. 1 11 16 21 20 25 Mar. 1 11 16 21 20 25 Mar. 1 10 15 20 25 Mar. 10 15 20 25 Mar. 10 15 20 25 Mar. 10 15 20 25 Mar. 10 15 20 25 Mar. 10 15 15 20 25 Mar. 10 15 20 25 Mar. 10 15 11 16 21 20 25 Mar. 10 15 20 25 Mar. 10 16 11 11 11 11 11 11 11 11 11 11 11 11	$\begin{array}{c} & & \\ + & 2.19 \\ - & 0.23 \\ - & 2.64 \\ - & 5.01 \\ - & 7.31 \\ - & 9.54 \\ - & 11.66 \\ - & 13.67 \\ - & 15.57 \\ - & 17.33 \\ - & 18.95 \\ - & 20.42 \\ - & 21.48 \\ - & 22.68 \\ - & 23.71 \\ - & 24.58 \\ - & 25.27 \\ - & 25.79 \\ - & 26.14 \\ - & 26.30 \\ - & 26.14 \\ - & 26.30 \\ - & 26.14 \\ - & 26.30 \\ - & 26.14 \\ - & 26.30 \\ - & 25.72 \\ - & 25.16 \\ - & 24.41 \\ - & 23.48 \\ - & 22.38 \\ - & 21.10 \end{array}$	$\begin{array}{c} -3.03\\ -3.03\\ -4.15\\ -4.66\\ -5.13\\ -5.57\\ -5.96\\ -6.30\\ -6.59\\ -6.83\\ -7.02\\ -7.15\\ -7.22\\ -7.25\\ -7.23\\ -7.15\\ -7.22\\ -7.23\\ -7.15\\ -7.02\\ -6.83\\ -6.60\\ -6.31\\ -5.98\\ -5.61\\ -5.20\\ -4.75\\ -4.27\\ -3.76\\ -3.22\\ -2.67\end{array}$	$\begin{array}{c} \circ\\ 220.32\\ 154.47\\ 88.63\\ 22.79\\ 316.95\\ 251.12\\ 185.29\\ 119.45\\ 53.62\\ 347.79\\ 281.94\\ 216.09\\ 163.40\\ 97.53\\ 31.65\\ 325.76\\ 259.84\\ 193.91\\ 127.96\\ 61.99\\ 356.01\\ 290.00\\ 223.97\\ 157.92\\ 91.85\\ 25.76\\ 319.66\\ 253.54\\ \end{array}$	July 4 9 14 19 24 29 Aug. 3 8 13 18 23 28 Sept. 2 7 12 17 22 27 Oct. 2 7 27 Oct. 2 7 12 17 22 27 Nov. 1 6 11 16	$ \begin{smallmatrix} \circ \\ - & 1.50 \\ + & 0.77 \\ + & 3.02 \\ + & 5.23 \\ + & 7.39 \\ + & 9.47 \\ + & 11.48 \\ + & 13.40 \\ + & 15.21 \\ + & 16.91 \\ + & 18.49 \\ + & 19.94 \\ + & 21.26 \\ + & 22.44 \\ + & 23.48 \\ + & 24.37 \\ + & 25.09 \\ + & 25.66 \\ + & 26.28 \\ + & 26.32 \\ + &$	$\begin{array}{c} & & \\ +3.20 \\ +3.73 \\ +4.23 \\ +4.70 \\ +5.15 \\ +5.55 \\ +5.92 \\ +6.25 \\ +6.54 \\ +6.78 \\ +6.78 \\ +7.11 \\ +7.21 \\ +7.25 \\ +7.24 \\ +7.17 \\ +7.06 \\ +6.89 \\ +6.67 \\ +6.40 \\ +6.69 \\ +5.72 \\ +4.87 \\ +4.38 \\ +3.86 \\ +3.31 \\ +2.73 \end{array}$	311.84 245.67 179.50 113.34 47.18 341.04 274.91 208.80 142.69 76.60 10.52 304.46 238.41 172.37 106.35 40.34 3268.34 202.36 136.39 70.43 4.47 298.52 232.58 166.655 100.72 34.80 328.88
20 25 30 June 4 9 14 19 24 29	$\begin{array}{r} -19.66 \\ -18.06 \\ -16.33 \\ -14.46 \\ -12.47 \\ -10.39 \\ -8.24 \\ -6.02 \\ -3.77 \end{array}$	$\begin{array}{r} -2.09 \\ -1.51 \\ -0.91 \\ -0.31 \\ +0.30 \\ +0.90 \\ +1.49 \\ +2.08 \\ +2.64 \end{array}$	$187.41 \\ 121.26 \\ 55.10 \\ 348.93 \\ 282.76 \\ 216.58 \\ 150.39 \\ 84.20 \\ 18.02 $	$ \begin{array}{c} 21 \\ 26 \\ 11 \\ 16 \\ 21 \\ 26 \\ 31 \end{array} $	$\begin{array}{r} + 19.76 \\ + 18.09 \\ + 16.25 \\ + 14.26 \\ + 12.14 \\ + 9.92 \\ + 7.60 \\ + 5.22 \\ + 2.80 \end{array}$	$\begin{array}{r} +2.13 \\ +1.52 \\ +0.89 \\ +0.25 \\ -0.39 \\ -1.03 \\ -1.66 \\ -2.28 \\ -2.88 \end{array}$	262.97 197.07 131.17 65.28 359.40 293.52 227.65 161.78 95.93

SUN—EPHEMERIS FOR PHYSICAL OBSERVATIONS, 1978 For 0 h U.T.

P is the position angle of the axis of rotation, measured eastward from the north point on the disk. B_o is the heliographic latitude of the centre of the disk, and L_o is the heliographic longitude of the centre of the disk, from Carrington's solar meridian, measured in the direction of rotation (see diagram). The rotation period of the sun depends on latitude. The sidereal period of rotation at the equator is 25.38^d.

CARRINGTON'S ROTATION NUMBERS—GREENWICH DATE OF COMMENCEMENT OF SYNODIC ROTATIONS 1978

No.	Comm	nences	No.	Comm	iences	No.	Comm	iences
1663	Dec.	21.40	1668	May	6.95	1673	Sept.	20.06
1664	Jan.	17.73	1669	June	3.16	1674	Oct.	17.34
1665	Feb.	14.07	1670	June	30.36	1675	Nov.	13.64
1666	Mar.	13.40	1671	July	27.57	1676	Dec.	10.95
1667	Apr.	9.70	1672	Aug.	23.80			

SUN-SPOTS

The diagram shows the present sun-spot cycle (21) compared with the previous cycle (20) and with the mean of cycles 8 to 20. This diagram plots the Zurich sun-spot numbers, which are weighted means from several observatories. Sun-spot minimum occurred in March 1976, and this date has been placed on the date of the previous minimum, October 1964, in order to phase the curves.

Another measure of solar activity is the 10 cm radio flux, which has been measured since 1947 by Covington at the National Research Council of Canada. This measure has many advantages over the sun-spot numbers: it is accurate, objective and absolute. The NRC data are internationally recognized for accuracy and self-consistency over a 30-year period. The 10 cm solar radio flux correlates well with sun-spot numbers, and reached a minimum in February 1976.

The solar radio flux can be detected with amateur radio telescopes.

THE TOTAL SOLAR ECLIPSE OF 26 FEBRUARY 1979

Only one total solar eclipse is visible in North America between now and the end of this century. It occurs on 26 February 1979. The eclipse shadow will travel from the Pacific Ocean across the extreme north-western corner of the U.S.A. It will cross the Pacific coast at 16:14 UT and enter Canada south of Regina at about 16:35 UT. It will pass through Brandon and Winnipeg, Manitoba, then move northward across Hudson's Bay. At Brandon, the duration of totality will be 168 seconds, just one second short of the maximum duration for this eclipse. Further information appears in the Journal of the R.A.S.C. 70, 135 (1976).

ECLIPSES DURING 1978

In 1978, there will be four eclipses, two of the sun and two of the moon. Throughout most of North America, none of these is visible. However, a total eclipse of the sun will be visible in parts of western Canada and the U.S. in February of 1979

1. A total eclipse of the moon on the night of March 23–24, visible in the extreme north-western part of North America.

Moon enters penumbra March 24	8.28 E.S.T.
Moon enters umbra	9.33 E.S.T.
Middle of eclipse	10.37 E.S.T.
Magnitude of eclipse 1.457	

2. A partial eclipse of the sun on April 7, visible in the south Atlantic Ocean, in the extreme southern portions of South America and Africa, and in parts of Antarctica.

3. *A total eclipse of the moon* on September 16 generally visible in Australia, Asia, Africa and Europe, but not at all in North America.

4. *A partial eclipse of the sun* on October 2, visible from Scandinavia on the west to Siberia and China on the east.

PLANETARY APPULSES AND OCCULTATIONS

A planetary appulse is a close approach of a star and a planet, minor planet or satellite, as seen from the earth. At certain locations on the earth, the appulse may be seen as an *occultation*: the nearer object passes directly between the observer and the star. According to Gordon E. Taylor, of H.M. Nautical Almanac Office, the following occultations will occur during 1978. Only the second occultation by Pallas, and that by Juno are likely to be detected by visual observers. Because of uncertainty in the positions of the stars and in the ephemerides of the minor planets, improved predictions will be issued nearer the date of the events. No occultations of radio sources by planets are predicted for 1978.

[Editor's Note: Mr. Taylor's prediction of the occultation of SAO 158687 by Uranus on Mar. 10, 1977, led to the discovery of rings around Uranus (Sky and Telescope 53, 412 (1977).]

		Planet			Star		
Date E.S.T.	Name	Vis. Mag.	Phot. Mag.	S.A.O.	Vis. Mag.	Phot. Mag.	Area of Visibility
Jan. 18, 16 ^h Mar. 22, 7 ^b May 29, 0 ^h July 19, 18 ^h Aug. 1, 6 ^h Oct. 31, 0 ^h Nov. 9, 10 ^h	Vesta Vesta Pallas Juno Mars Pallas Vesta	7.7 7.0 9.2 9.3 1.7 10.4 7.9	8.5 7.7 9.8 10.1 2.4 11.0 8.6	159344 160266 85009 144070 119114 122731 187470	8.8 9.2 10.6 7.1 7.1 8.0 8.9	10.0 10.7 10.6 7.1 7.5 8.4 9.1	W. Australia Canada Bermuda, U.S. Asia, N.W. Africa S.E. Asia Siberia, N. Pacific N.E. Africa, Asia Minor

OCCULTATIONS BY THE MOON

PREPARED BY H.M. NAUTICAL ALMANAC OFFICE, ROYAL GREENWICH OBSERVATORY, HERSTMONCEUX CASTLE, ENGLAND

The moon often passes between the earth and a star; the phenomenon is called an occultation. During an occultation a star suddenly disappears as the east limb of the moon crosses the line between the star and observer. The star reappears from behind the west limb some time later. Because the moon moves through an angle about equal to its own diameter every hour, the longest time for an occultation is about an hour. The time can be shorter if the occultation is not central. Occultations are equivalent to total solar eclipses, except that they are total eclipses of stars other than the sun. The following pages give tables of predictions, and tables and maps of northern or southern limits for many cases where grazing occultations may be seen. The predictions are for the 15 standard stations identified on the map below; the coordinates of these stations are given in the table headings. The predictions are generally limited to stars brighter than 7^m.5 at the dark limb of the moon.

The first five columns in the tables give for each occultation the date, ZC number of the star (see page 73), its magnitude, the phenomenon (1 = disappearance, 2 =reappearance) and the elongation of the moon from the sun in degrees (see page 36). Under each station are given the U.T. of the event, factors *a* and *b* (see below) and the position angle *P* (from the north point, eastward around the moon's limb to the point of occurrence of the phenomenon). In certain cases, predictions have been omitted and letters showing the reasons are put in their places: *A*, below or too near the horizon; *G*, near-grazing occultation; *N*, no occultation; *S*, sunlight interferes. Certain other cases where satisfactory observations would be impossible are also omitted.

The terms a and b are for determining corrections to the times of the phenomena for stations within 300 miles of the standard stations. Thus if λ_0 , ϕ_0 , be the longitude and latitude of the standard station and λ , ϕ , the longitude and latitude of the observer, then for the observer we have U.T. of phenomenon = U.T. of phenomenon at the standard station + $a(\lambda - \lambda_0) + b(\phi - \phi_0)$ where $\lambda - \lambda_0$ and $\phi - \phi_0$ are expressed in degrees. This formula must be evaluated with due regard for the algebraic signs of the terms. Note that all predictions are given in U.T.; to convert to Standard Time or Daylight Saving Time, see page 10.

An observer located between two standard stations can often make more accurate predictions by replacing a and b of the *nearer* station by a' and b', which are found as

follows. First compute the interpolation factor $q = (\phi - \phi_{01})/2(\phi_{02} - \phi_{01})$, where ϕ_{01} and ϕ_{02} are the latitudes of the nearer and further standard station, respectively. Then $a' = a_1 + q(a_2 - a_1)$ and $b' = b_1 + q(b_2 - b_1)$, where a_1 , b_1 and a_2 , b_2 are the *a* and *b* values at the nearer and further standard station, respectively. These *a'* and *b'* factors can then be used just as *a* and *b*, to find the correction to the time given for the *nearer* standard station.

Since observing occultations is rather easy, provided the weather is good and the equipment is available, timing occultations should be part of any amateur's observing program. The method of timing is as follows: Using as large a telescope as is available with a medium power eyepiece, the observer starts a stopwatch at the time of immersion or emersion. The watch is stopped again on a time signal from the WWV or CHU station. The elapsed time is read from the stopwatch and is then subtracted from the standard time signal to obtain the time of occultation. All times should be recorded to 0.1 second and all timing errors should be held to within 0.5 second if possible. The position angle P of the point of contact on the moon's disk reckoned from the north point towards the east may also be estimated.

The following information should be recorded. (1) Description of the star (catalogue number), (2) Date, (3) Derived time of the occultation, (4) Longitude and latitude to nearest second of arc, height above sea level to the nearest 20 metres. [These data can be scaled from a 7.5- or 15-minute U.S. Geological Survey map. Observers east of the Mississippi River should write to U.S. Geological Survey, 1200 S. Eads St., Arlington, Va. 22202; west of the Mississippi the address is U.S. Geological Survey, Denver Federal Center, Bldg. 41, Denver, Colo. 80225. Topographic maps for Canada are available from Map Distribution Office, Department of Mines and Technical Surveys, 615 Booth St., Ottawa K1A 0E9], (5) Seeing conditions, (6) Stellar magnitude (7) Immersion or emersion, (8) At dark or light limb; presence or absence of earthshine, (9) Method used, (10) Estimate of accuracy, (11) Anomalous appearance: gradual disappearance, pausing on the limb. All occultation data should be sent to the world clearing house for occultation data: H.M. Nautical Almanac Office, Royal Greenwich Observatory, Herstmonceux Castle, Hailsham, Sussex, England.

						Ha HA	LIFAX,	N.S.		Ma	MAS	SACHU	SETTS		Мо	MON	TREAL	, Q.P	•	To TO	ronto,	ONT.	
Dat	e	z.c.	Mag.	Ρ.	of Moon	W. 63	。 .600,	N. 44	。 600	٧.	72.	500,1	1. 42	500	w.	. 73.	600,1	N. 45	。 .500	W. 79	, 400 ,	N. 43	.700
					HOON	U.T.	a	Ъ	Ρ	ι	J.T.	a	b	Ρ	τ	J.T.	8.	Ъ	Р	U.T.	a	Ъ	Р
Jan.	6 11 12 13 14	2361 3233 3367 3380 3520	4.8 7.2 6.4 6.2 6.0	2 1 1 1	o 321 38 51 52 65	h m 10 40. 22 25. 1 34.	2 . A 5 -0.9 A 4 -0.3	m +0.1 +0.1	218 52 44	h 23 22 1	m 35.2 15.6 30.7	m -0.1 -1.2 G -0.5	m +1.3 +0.5 +0.1	0 21 49 48	h 23 22 0 1	m 41.0 16.3 35.8 30.9	m -1.0 -1.0 -0.5	m +0.8 -3.0 +0.4	0 2 39 121 37	h m 23 37. 0 34. 1 27.	m 3 +0.3 S 4 -1.4 D -0.6	m +2.9 -3.3 +0.4	0 4 124 40
	15 19 22 26 27	215 609 1029 1468 1565a	6.7 7.5 5.1 4.9 6.3	1 1 2 2	87 124 158 203 214	21 56. 10 11. 6 21.	7 -2.4 G N 1 -0.6 2 .	-0.6	103 285 228	5 8 10	57.8 36.1 07.5	S -1.0 -0.9 -1.0 N	+0.8 +0.2 -1.4	36 46 273	6 8 10	00.8 36.4 01.9	S -1.0 N	-1.6	21 35 278	5 51. 8 29. 9 57.	S + -1.2 2 -1.1 3 -1.3 N	+0.8 -0.1 -1.2	38 52 269
Feb.	3 17 18 18 18	2448 814a 944 970 975a	6.4 5.3 5.7 6.5 6.8	2 1 1 1	302 115 125 127 127	9 13. 3 11. 0 55. 5 29. 6 07.	2 -1.3 2 . 6 -2.1 0 -0.9 3 -0.2	+1.7 +0.6 -0.4 -1.4	250 34 74 56 91	2 0 56	52.1 35.2 21.8 08.0	A -1.9 -2.1 -1.0 -0.4	+0.7 +0.7 -0.8 -1.7	53 82 72 104	2 0 5 6	53.3 35.9 18.5 02.5	A -2.0 -2.0 -1.1 -0.5	+1.6 +1.2 -0.6 -1.6	41 72 64 98	2 39. 0 22. 5 12. 6 02.	A + -2.1 + -1.9 3 -1.3 5 -0.6	+1.1 +1.3 -0.8 -1.9	52 76 75 107
Mar.	19 24 27 4 13	1091 1652 1973 2731 376	6.7 5.5 6.2 6.5 7.0	1 2 2 1	138 197 231 299 49	10 11. 3 58. 0 25.	N 9 -0.5 8 -1.2 S 7 -0.4	-1.4 +2.1 -0.9	269 252 74	5 10 3 0	47.9 09.0 42.1 22.8	-0.8 -1.3 s -0.7	-1.2 +3.9 -1.2	36 261 229 84	10 0	04.2 18.9	N -0.8 A S -0.7	-1.4 -0.9	266 74	5 34.1 10 00.1 10 33.1 0 15.1	9 -1.1 A 2 -1.3 3 -1.0	-1.1 +1.2 -1.0	44 259 263 81
	15 15 20 23 27	627 636a 1281 1599 2060	6.8 6.9 6.4 5.0 6.3	1 1 1 2	72 73 129 164 212	1 19. 5 49. 5 04. 2 15.	5 -0.7 N 1 -0.1 2 -1.8 0 0.0	-1.6 -2.2 -0.8 -1.2	95 131 87 340	1 3 5 4	16.3 10.2 52.8 49.8	-0.9 -0.7 -0.2 -1.9 A	-2.0 +0.6 -2.6 -0.9	107 36 144 103	1 3 5 4	09.9 12.5 44.9 45.3	-1.0 -0.3 -1.8 A	-1.6 -2.5 -0.7	98 22 138 97	1 06. 3 05. 5 48. 4 36.0	7 -1.2 3 -0.9 1 -0.2 0 -1.8 A	-1.9 +0.5 -2.9 -0.8	106 39 149 109
Apr.	31 10 11 11 12	2680 454 692d 692d 729	5.8 5.8 1.1 1.1 7.2	2 1 1 2 1	268 29 49 49 53		S A N A			8 , 2	53.7 04.6	-1.5 A N N -0.4	+0.4	288 55	8 0 17 17 2	53.3 37.2 00.4 35.2 03.4	-1.4 +0.1	+0.4 -2.0	293 113 140 194 46	8 44.1 0 41. 16 50.1 17 26.1 2 00.1	3 -1.3 5 0.0 3 -1.9 5 -0.6	+0.6 -2.5 -1.0 -0.4	286 123 138 196 58
Мау	15 16 19 16 20	1106d 1234 1565d 1518 1973	3.6 6.1 6.3 6.2	1 1 1 1	85 97 133 101 150	0 25. 2 43 6 27. 6 29.	4 -1.4 2 -1.0 6 -0.2 A 4 -0.6	-1.4 -1.2 -1.8 -1.2	99 82 113 83	0 2 6 5 6	15.1 36.4 29.1 01.1 24.8	-1.6 -1.2 -0.4 -0.2 -1.0	-1.7 -1.5 -1.9 -1.6 -1.2	113 96 121 102 87	0 2 6 2 6	08.6 30.9 22.9 56.1 20.2	-1.7 -1.2 -0.4 -0.3 -1.0	-1.3 -1.3 -1.9 -1.6 -1.1	106 90 116 98 82	0 01.2 2 25.4 6 23.4 4 57.4 6 15.4	2 -1.8 3 -1.4 5 -0.5 2 -0.4 3 -1.2	-1.6 -1.5 -2.0 -1.7 -1.1	115 101 122 104 86
June	25 29 10 12 23	2731 3334 1271 1478 2986	6.5 6.3 5.9 7.2 6.4	2 2 1 1 2	218 272 47 70 214	5 51. 6 48. 6 19.	1 -1.6 9 -0.8 N A 3 -1.6	-0.9 +2.5 +0.6	319 210 246	5 6 6	39.0 37.5 03.0	-1.4 -0.6 A A -1.7	-0.3 +2.7 +1.0	311 207 247	5 6 3 6	36.5 44.3 09.9 04.0	-1.2 -0.6 A 0.0 -1.6	-0.4 +2.4 -2.0 +0.9	318 214 125 253	5 30. 2 20. 3 13. 5 53.	A A 9 -0.6 3 -0.1 3 -1.5	-0.1 0.0 -2.1 +1.1	310 46 132 251
July Aug.	24 17 27 12 13	3131 2396 362 2196 2341	5.5 6.6 6.5 6.7 7.2	2 1 2 1	227 136 272 91 104	3 33. 1 33. 5 40. 1 55. 0 59.	0 -0.9 5 -2.0 4 -0.1 1 -1.0 8 -1.6	+2.8 +0.8 +2.5 -1.8 -1.0	203 53 215 115 97	1 5 1 0	13.2 35.3 48.5 46.5	A -2.1 +0.1 -1.3 -1.8	+1.0 +2.3 -1.7 -0.7	63 217 117 101	5 1 0	42.0 42.3 42.6	A S -1.3 -1.7	+2.2 -1.5 -0.6	224 111 96	1 37.0	A S A 0 -1.5 S	-1.5	114
	15 16 17 29 29	2658 2828 3015d 1106d 1106d	54-62 6.0 5.3 3.6 3.6	1 1 1 2	131 145 162 311 311	1 53. 0 15.	7 -1.4 5 -1.5 A N N	+1.3 +0.2	32 116	1	36.6	-1.8 S A N N	+1.7	34	1 7 8	40.4 37.0 04.3	s A -0.7 +0.7	-1.2 +4.2	25 153 207	1 26,3 7 45,3 8 01,3	s -0.6 A +0.8	-0.4 +4.0	31 62 206
Sept.	8 10 11 11 13	2291 2441 2596 2764 2922	5.5 6.5 7.3 6.3 7.4	1 1 1 1	73 86 100 113 127	23 31. 0 36. 2 02. 24 16. 0 55.	8 -1.4 5 -1.2 4 -1.4 9 -1.8 9 -1.8	-0.8 -0.6 -1.8 -0.2 -0.1	80 68 118 91 93	0 1 24 0	25.2 52.6 00.5 39.2	S -1.6 -1.7 -1.9 -1.9	-0.3 -1.6 +0.1 +0.3	68 115 92 92	0 1 23 0	22.9 46.6 59.2 38.4	S -1.5 -1.7 -1.7	-0.2 -1.3 +0.3 +0.4	62 108 87 87	0 13. 1 39. 0 27.0	s 7 -1.7 3 -1.7 5 -1.7 5 -1.7	0.0 -1.1 +0.6	65 108 89
	13 22 22 22 22 22	3066 635 659 667 669	6.0 3.9 6.4 5.3 4.0	1 2 2 1	140 244 246 246 246	23 23 2 51 6 00 8 02	0 -1.5 5 +0.1 2 -0.9 4 -2.2 N	-0.6 +2.0 +2.5 -0.4	137 236 227 286	5 7	47.9 43.7	S A -0.7 -2.1 N	+2.4 0.0	231 286	5 7 6	53.9 40.7 41.6	S A -0.8 -2.1	+2.1 -0.5	240 298 137	5 46.: 7 29.: 6 30.9	S A 2 -0.6 2 -2.0 2 -2.1	+2.1 -C.3 -1.0	241 298 135
	22 22 22 22 24	669 677 692a 692a 944	4.0 4.8 1.1 1.1 5.7	2 2 1 2 2	246 247 248 248 270	11 40. 12 53.	N 2 -1.3 8 -0.7 5	-0.9 -1.5	81 273	8 11 12	59.4 28.8 48.1	N -1.7 -1.7 -1.1 S	+2.5 -1.0 -1.0	222 90 262	7 9 11 12	19.8 03.7 24.6 43.4	-1.7 -1.6 -1.1 S	+1.7 -0.6 -1.3	195 233 81 270	7 09. 8 50. 11 15. 12 38. 9 36.	7 -1.6 5 -1.9 2 -1.4 3 -2.2	+2.1 -0.6 -0.9 -1.7	196 231 87 262 315
Oct.	6 6 10 10 12	2396 2399 2889 3015a 3188	6.6 5.0 7.1 5.3 5.4	1 1 1 1	55 55 96 108 124	22 16. 22 35. 23 13.	1 -1.5 4 -0.9 A 9 . N	-1.5 +0.5	116 38 12	2 22	27.0 58.5	s -0.8 N	-0.3	59 9	2 4	25.5 17.1	S -0.7 N -2.0	-0.1 -3.3	50 129	2 20. 4 10.	s 5 9 -0.9 6 5 -2.2	+0.1 -3.0	49 126
Nov.	13 20 21 22 7	3334 741 878 1029 2986	6.3 5.7 5.5 5.1 6.4	1 2 2 1	137 226 237 249 79	4 52. 6 12. 4 57. 7 21. 0 48.	4 -0.8 8 -2.0 0 -1.2 9 -1.9 4 -1.1	-0.4 +0.1 +1.2 +0.1 -1.2	63 281 272 285 90	4 5 4 7 0	44.7 54.9 44.8 05.1 39.5	-1.1 -1.9 -0.9 -1.7 -1.4	-0.1 +0.4 +1.2 +0.6 -0.8	60 282 274 282 85	4 5 4 7 0	43.7 53.5 47.1 04.6 35.8	-0.9 -1.8 -0.9 -1.6 -1.2	+0.1 0.0 +1.0 +0.2 -0.6	50 293 283 292 77	4 37. 5 42. 4 40. 6 55. 0 29.	5 -1.1 9 -1.7 3 -0.8 1 -1.4 0 -1.4	+0.4 +0.2 +1.0 +0.5 -0.4	49 293 283 290 75

				177	Ha. 1	ALIFAX	, N.S.		Ma	MAS	SACHU	SETTS		Мо	MON	TREAL	, Q.P		То	TOR	ONTO,	ONT.	
Dat	e Z.O	. Mag	. P	. of	w. e	3.600,	N. 44	.600	W	. 72.	500,	N. 42	.500	W	. 73.	600,	N. 45	.500	٧.	79.	400,	N. 43	.700
				110011	υ.1	. a	ъ	Ρ	1	U.T.	a	Ъ	Ρ	1	J.T.	8	ъ	P	U	.т.	a	ъ	P
Nov.	7 3131 9 3280 10 3431 10 4 16 692	5.5 7.4 6.6 6.3 d 1.1	1 1 1 1 1	92 105 120 130 194	h 23 43 0 41 4 11 23 05 4 00	m m .1 -1. .8 -0. .5 -0. .7 . .9 -2.	m 3 -0.6 9 +1.2 1 +2.1 1 -0.4	0 90 30 11 5 112	h 23 0 4 22 3	m 27.2 30.4 05.5 57.1 42.9	m -1.9 -0.9 -0.2 -2.0	m 0.0 +1.8 +2.3 +0.1	0 23 11 354 110	h 23 0 3	m 25.4 35.7 42.1	m -1.7 -0.5 N N -1.7	m +0.2 +2.4 +0.6	99	h 23 0 3	m 14.6 28.1 31.6	-1.8 G N -1.5	+0.5 +0.8	76 7 99
	16 692 17 806 18 944 18 970 20 1197	d 1.1 5.1 5.7 6.5 6.0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	194 205 216 217 239	5 12 2 23 1 41 5 43 2 41	.0 -1. .0 -0. .9 -0. .0 -1. .9 -0.	7 +2.1 2 +3.7 5 +1.0 7 +3.1 1 +1.9	225 207 286 224 251	4 2 1 5	52.7 14.9 36.3 22.4	-1.5 0.0 -0.3 -1.3 A	+2.5 +3.2 +0.9 +3.7	224 212 289 219	4 2 1 5	57.4 23.6 38.4 30.2	-1.6 -0.2 -0.3 -1.4 A	+1.8 +2.7 +0.7 +2.6	235 223 298 232	4 2 1 5	45.2 18.0 35.6 18.0	-1.4 -0.1 -0.2 -1.1 A	+2.1 +2.6 +0.6 +2.8	234 224 299 229
Dec.	26 1850 2 2787 4 3083 9 109 9 237	6.5 6.4 7.3 6.5 7.1	2 1 1 1	308 34 61 115 126	8 48 22 31 3 38 23 30	A .5 -1. .5 -0. .4 -1.	3 -1.0 1 0.0 5 +1.6 2 +2.0	334 57 21 42	8 22 22 3 23	47.1 50.8 23.6 29.3 16.0	-0.3 -1.2 -1.3 -0.8 -1.0	-0.3 -2.0 +0.4 +1.6 +2.4	319 116 52 24 35	8 22 22 3 23	45.4 44.2 23.7 35.1 22.6	-0.2 -1.1 -1.1 -0.4 -0.7	-0.7 -1.6 +0.6 +3.0 +2.6	330 107 44 8 26	22 22 3 23	40.1 15.6 27.0 13.8	A -1.3 -1.2 -0.6 -0.6	-1.5 +0.9 +2.8 +2.9	105 41 11 23
	10 269 10 362 25 2033 26 4002 26 4002	d 7.3 6.5 4.3 -4.4 -4.4	1 2 1 2	129 138 300 315 315	22 56 8 10 11 32 12 56	A .2 -1. .3 -0. .6 -1. .2 -1.	2 +1.6 7 +0.9 5 +0.3 3 -0.5	69 284 106 294	6 22 11 12	42.6 43.1 19.9 40.1	-0.3 -0.9 A -1.1 -1.9	-1.0 +1.8 +0.1 +0.2	79 64 122 281	6 22 11 12	39.5 47.9 19.4 38.8	-0.3 -0.8 A -1.1 -1.7	-0.8 +2.0 +0.4 +0.2	70 57 115 286	6 22 11 12	38.7 40.3 13.3 28.2	-0.5 -0.6 A -0.8 -1.7	-0.9 +2.0 +0.1 +0.7	76 55 126 276
					Wa WA	SHINGT	ON, D.	c.	AG	ALA	BAMA-	GEORG	IA	Il	I	LLINO	IS		Te		TEXA	5	
Dat	e Z.O	. Mag	. P	El. of	w. 1	7.000,	N. 38	。 •900	W.	. 85.	, 000	N. 33	.000	W.	91,	000,	N. 40	.000	٧.	。 98.		N. 31	。 .000
	Nc	•		Moon	U.1	. a	Ъ	Ρ	τ	J.T.	a	ъ	Ρ	lı	J.T.	a	ъ	Р	U	.т.	a	ъ	P
Jan.	1 1708 11 3233 12 3247 13 3380	6.2 7.2 7.0 6.2	2 1 1 1	0 256 38 39 52	h 8 50 23 30	m m .3 . .3 -0. A N	m + +0.9	o 354 30	h 8 23	m 55.0 21.0	m -1.4 -0.8 A N	m -1.3 +0.8	0 318 42	h 8 23 0	m 38.1 29.6 26.3	-0.8 -0.8 N -2.3	-1.7 -3.7	336 2 126	h 8 1	m 37.8 53.1	m -1.4 5 -0.2 N	-0,1 +1.0	0 296 34
	14 3520	6.0	1	65	1 28	.0 -0.	7 -0.1	59	1	21.8	-1.2	-0.4	73	1	15.8	-1.0	+0.6	45	1	02.8	-1.7	+0.2	67
	16 226 16 247 19 609 22 1029 26 1468	d 6.6 6.7 7.5 5.1 4.9	1 1 1 2	89 90 124 158 203	5 52 8 33 10 06	G N .3 -1.0 .1 -0.1	0 0.0 3 -0.5 4 -0.9	55 64 261	0 5 8 9	58.0 46.3 31.4 46.8	-1.3 A -1.2 -0.9	+3.2	21 81 90 222	5 8 9	35.4 18.0 38.2	N -1.4 -1.2 -2.7	0.0 -0.8 +0.5	60 77 242	0 5 8	37.0 20.8 29.2 21.0	-0.7 -1.8 -1.2 N	+0.8 -1.2 -1.8	5 43 95 111
Feb.	17 814 18 944 18 970 18 975 19 1091	d 5.3 5.7 6.5 d 6.8 6.7	1 1 1 1	115 125 127 127 138	2 41 0 23 5 20 6 13 5 36	.5 -2. .4 -2.: .5 -1. .1 -0.	1 +0.1 2 +0.4 1 -1.1 3 -2.0 3 +0.1	69 93 87 117 60	2 0 5 6 5	24.6 04.4 20.0 26.0 24.1	-2.5 -2.3 -1.2 -0.1 -1.9	-0.6 -0.2 -1.9 -3.3 -0.9	93 110 112 146 90	2 5 6 5	10.5 00.2 03.2 07.9	-2.3 s -1.6 -0.7 -2.2	+0.8 -1.3 -2.6 -0.1	69 96 129 74	1 5 14	50.4 06.7 59.3	-2.8 S -1.6 N -2.3	-0.4 -3.0 -1.5	100 133 110
Mar.	19 1106 20 1197 24 1652 1 2271 4 2731	d 3.6 6.0 5.5 4.3 6.5	1 2 1 2	139 148 197 260 299	10 08 10 30	A N .0 -1.1 S .6 -1.1	2 -0.7	250 254	1	52.5 08.4	A N S -1.5	+2.2	42 232	8 9 11 10	55.3 43.4 39.6 14.1	-0.2 N -2.1 -1.1	-1.3 0.0 +1.7	90 235 83 247	9 1 11	07.8 21.1 25.4	-0.1 -1.3 N -2.2 A	-1.8 +3.3 -0.5	119 50 108
	12 258 13 376 15 627 15 636 15 650	6.6 7.0 6.8 d 6.9 5.7	1 1 1 1	37 49 72 73 74	0 21 1 20 3 06	A .1 -0.9 .3 -1.0 .5 -0.1 N	9 -1.6 0 -2.7 7 -0.1	97 123 55	1 0 3	28.7 28.5 03.9	-0.3 -1.2 N -0.8 N	-0.8 -3.0 -0.8	80 123 81	1 0 2	22.7 58.4 54.1	-0.5 S -1.7 -1.1 N	-0.2 -2.8 -0.3	57 124 63	1 2 5	23.6 53.1 05.3	-0.8 S N -1.3 -0.9	-1.1 -1.3 +1.4	90 97 34
	20 1271 20 1281 21 1381 23 1599 31 2680	5.9 6.4 5.0 5.8	1 1 1 1 2	128 129 139 164 268	603 1,1,5 81,5	N N N .4 -1.1	1 -3.4 3 -1.3 5 +0.7	160 117 278	1 1 4 8	43.4 32.1 41.7 27.5	-3.0 N -2.7 -1.5 -1.5	+1.8 +2.1 -2.3 +1.3	67 68 145 258	4 8	19.8 28.3	G G -1.6 -1.0	-1.3 +1.1	132 271	4 8	34.9 07.7	s N 5 -1.1	+2.0	180 239
Apr.	31 2686 2 2995 3 3146 11 692 11 692	d 5.2 6.2 6.5 d 1.1 d 1.1	22	268 295 308 49 49		N S N N			9 10	58.3 17.0	N -1.3 -0.8 N N	+1.6 +0.2	245 298	10 16 17	02.3 35.2 12.2	N -1.0 A -1.2 +0.2	+1.4 -0.4 +3.9	259 134 200	8	37.7	-0.4 A A N N	-0.8	319
	12 729 14 1003 14 1011 15 1106 16 1234	7.2 d 7.2 7.4 d 3.6 6.1	1 1 1 1 1	53 75 76 85 97	2 04 0 14 2 36	.7 -0. N .9 -1. .8 -1.	+ -0.7 7 -2.4 2 -1.8	70 129 110	2 3 0 2	07.2 02.6 24.6 40.0	-0.4 N -1.1	-1.3	95 32 166 136	1 2	55.6 15.0	-0.8 N N S -1.6	-1.0 -2.0	79 123	224	02.5 34.1 53.9 34.2	-0.8 -2.1 N	-2.0 +0.2	113 66 36 167
May	19 1565 27 2640 28 2826 11 944 16 1518	d 6.3 d 6.1 4.0 5.7 6.3	1 2 1 1	133 238 253 44 101	6 34 2 06 5 06	.6 -0.1 N S .4 -0.1	+ -2.1 7 +0.6 2 -1.7	130 40 111	6 2 5	45.1 02.9 14.6	-0.4 N S -0.5 -0.3	-2.7 -0.5 -2.0	150 71 128	6 1 4	24.2 56.1 57.9	-0.7 N S -0.9 -0.6	-2.4 -0.2 -1.9	139 56 118	6 8 10 1 5	47.8 30.5 41.4 56.6 13.5	0.0 -2.4 -0.8 -0.5	-4.3 0.0 -1.1 -2.6	174 344 100 91 144
June	20 1973 25 2731 28 3208 10 1271 11 1381	6.2 6.5 6.5 5.9 6.3	1 2 2 1 1	150 218 261 47 58	6 24 5 33	.3 -1.2 .3 -1.5 S A A	2 -1.2 + 0.0	95 300	6 5 2 3	21.3 20.7 03.5 24.9 15.4	-1.5 -1.3 -1.8 -0.3 -0.3	-1.4 +0.6 +1.1 -0.9 -0.8	109 281 258 82 77	6 5 9 2 3	03.0 18.0 00.2 15.8 07.6	-1.7 -0.9 -1.5 -0.7 -0.7	-1.1 +0.5 +0.9 -0.8 -0.6	99 293 276 71 63	6 5 8 2 3	01.9 04.7 40.4 21.4 11.3	-1.9 -0.9 -1.3 -0.6 -0.6	-1.6 +1.1 +1.3 -1.4 -1.2	123 265 258 100 93

			-				W	e WA	SHING	FON,	D.C.	A	C Al	ABAM	A-GEC	RGIA	11		ILLIN	DIS		Te		TEX	 _S	
Da	te		z.c.	Mag	. P	E1.		w. 7	°,000	, N.	.900	1	v. 8	。 .000	, N.	。 33.00) v	1. 91	。 .000,	N. 40	0.000	w.	98.	000,	N. 31	。 .000
		_	No.			Moor	1	U.T		a	b P		U.T.		1	b P		U.T.	a	ъ	Ρ	τ	л.т.	a	ъ	Ρ
Jun	e .	12	1478 1692a 2826 2986 667	7.2 6.8 4.0 6.4	1 1 2 2	70 92 199 211		13 23 5 51	.8 +0 N N .4 -1	m 1 .1 -2 .7 +1	n (2 140 .3 242		3 39. 3 39. 3 17. 5 28.	8 +0 N 3 -0 7 -1	n 2 -3 6 -0	m 16		m 3 20.	m 2 -0.: N A 8 -1.:	≖ 2 -2.0 3 +1.5	0 5 147 5 245	h 3 5	m 17.8 05.2	m N -2.6 A -1.3	m +0.3	0 3 65 5 219
Aug	1 1 2 . 1	14 18 25 12 12	1997 2578 109 2196 2208	6.8 6.4 6.5 6.7 7.4	1 1 2 1 1	98 153 250 91 92		1 48	A N S -1 A	.5 -1	.8 123	1	22 30 34 46	8 -0. 1 -1. 6 -1. A	.8 -0 .5 +2 .8 -2	.8 71 . 19 .0 229 .3 13	3 4 9 8	13. 37.	5 1 -1.; 2 -1.; S N	-0.3 5 +1.1	3 59 253	4 8 4	09.1 12.9 13.0	A -1.5 N -1.2 S -1.0	-0.8 +1.8 +0.7	84 241 48
	1 1 1 1	13 15 15 16	2341 2658 2680 2685 2826	7.2 54-6-2 5.8 7.0 4.0	1 1 1 1	104 131 133 133 145) 40 22 5 57	5 -2 0 -2 8 -0 A	0 -0 1 +1 6 -0	.8 109 .6 45 .4 64 .22	C P	55. 53. 29.	S 9 -2. 9 -1. 4 -1. S	2 +1 0 -0 4 -2	.4 6: .4 7 .0 120	5	47.8 11.9	S S 8 -0.8 5 -1.2 S	+0.2 -1.1	9 46 93	5 6	38.0 12.5	S -1.5 -1.8 S	+0.1 -1.5	63 110
Sept.	1 1 1 1	7 0 1 1 3	3015d 2441 2596 2764 2922	5.3 6.5 7.3 6.3 7.4	1 1 1 1	162 86 100 113 127	2:	49 18 50 51 29	6 -0 4 -1 3 -1 2 -2 6 -1	8 -0. 9 -0. 9 -1. 9 +0. 9 +0.	7 78 2 75 7 120 2 99 3 98	1	46. 43.	1 -1. 5 5 -2. S	2 -0 5 -2	.8 86 .1 131	1	36.9 20.1	5 -1.0 S 7 -2.0 S S	-0.1 -0.8	59 111	7	28.2 15.0	-1.6 S -2.4 S S	-0.1 -1.7	74 133
	2 2 2 2 2	222222	659 667 669 669 677	6.4 5.3 4.0 4.8	2 2 1 2 2	246 246 246 246 247	i i	36 33	6 -0. 4 -2. N 3 -1.	4 +2. 0 +0. 4 +3.	5 226 5 279 6 211	57	19. 14. 06.	90. 2-1. N N 9.	0 +2 7 +0	.6 219 .9 271 .193	5 7 6 8	34.1 07.5 12.7 52.9 25.3	1 -0.2 5 -1.7 7 -1.4 9 0.0 3 -1.3	+1.9 -0.1 -0.3 +3.9 +2.4	244 301 130 200 231	5 6 7	16.5 54.1 52.4	+0.2 -1.2 N N -().5	+2.0 +0.7 +3.5	228 282 209
	2 2 2 2 2	2 2 2 3 3	685 692a 692a 806 814a	6.5 1.1 1.1 5.1 5.3	2 1 2 2 2	247 248 248 259 259	11 12	24. 44.	8 -2. 4 -1. S N	0 -1. 5 -0.	4 103 2 247	11 12	19. 25.	N 2 -2. 3 -2. N S	6 -3 2 +2	.0 127 1 220	10 10 12 9	29.9 53.2 20.0 55.8	-1.8 -2.3 -2.0 -2.0 -1.6 N	+2.6 -0.5 +0.3 +2.7	220 97 247 228	10 11 9 11	46.3 49.0 11.4 26.3	N .	•	129 209 193 330
Oct.	2 2 2	4 8 9 2	944 1197 1409 2731 2889	5.7 6.0 5.1 6.5 7.1	2 2 2 1 1	270 292 314 83 96	2	47. 23.	2 -2. S G A 6 -1.	3 -0. 1 -0.	6 294 2 64	9 9 2 2	29. 42. 52. 13.	2 -2. S 1 -0. 5 -1. 8 -1.	1 +0 8 -1 4 -1 6 -0	5 278 2 326 7 112 1 70	9 2 2	16.7 35.7 07.1	-2.0 S N -1.3 -1.3	-0.8 -0.9 +0.6	309 86 45	9 (10 2 1	04.7 50.7 33.8 49.7	-1.5 -1.4 A -1.9 -2.0	+0.5 +1.6 -1.2 +0.7	283 257 102 61
	12 12 12 12 12	2 2 2 2 3 3	3188 3205 3208 3322a 3324	5.4 6.8 6.5 6.4 6.3	1 1 1 1	124 125 126 136 137	4	39.	N A A N 6 -1.	3 -0.	1 66	4	26.	N A A N 9 -1.	9 +0.	1 72	3 1 4	51.6 11.7 21.1	-2.6 A A -1.3	-2.0	119 137 45	7 2 7 1 4 (29.7 47.5	N -1.0 -0.4 N -2.0	-1.9 -0.3 +1.0	110 68 59
Nov.	20		741 878 1029 2680 2685	5.7 5.5 5.1 5.8 7.0	2 2 1 1	226 237 249 52 53	5 4 6	44. 36. 55.	5 -1. 5 -0. 0 -1. A	7 +0. 7 +1. 5 +1.	8 275 3 268 0 273	5 4 6 1	26.: 24.: 37. 00.:	2 -1. + -0. 1 -1. 2 -0. A	3 +1. 3 +1. 1 +1. 7 -0.	2 266 4 260 5 261 2 62	5 4 6 0 1	23.6 30.1 38.4 58.6 16.4	-1.4 -0.4 -1.0 -0.3 -0.9	+0.4 +0.9 +0.7 +0.8 -1.0	295 285 287 32 84	5 0 6 2 0 1 1 1	09.9 24.1 +8.4 17.8	-0.9 A -0.5 -1.1 -1.5	+0.9 +1.2 +0.4 -1.2	276 267 53 101
	1 8 8 10	7 2 3 3 3 3 3 3 3 3 3	986 131 155 280 431	6.4 5.5 6.8 7.4 6.6	1 1 1 1	79 92 94 105 120	0 23 24 3	35. 17. 18. 56.	5 -1. 8 -2. A 8 -1. 6 -0.	7 -0. 1 +0. 2 +2. 6 +1.	8 89 1 88 0 27 7 21	0 22 23 3	24. 58. 55. 40.	N 5 -1. 5 -1.	3 -0. 4 +0. 5 +2. 1 +1.	7 95 3 93 3 32 6 32	0 3 24	10.6 55.9 11.5	-1.8 s -1.4 N	+0.2 -2.1	71 112 356	3 2	23.0	s s N s -0.9	+2.9	16
	10 16 16 17	0.000	4 692a 692a 806 814a	6.3 1.1 1.1 5.1 5.3	1 1 2 2 2	130 194 194 205 205	22 34 23	41. 34. 36. 03. 37.	1 . 0 -2. 0 -1. 4 +0. 3 .	1 -0.: 3 +3.: 4 +3.:	2 2 117 3 214 5 204 334	3 4 1 3	20.0 06.5 45.1 31.6	s -2.: -0.1	2 -1. 4 +4. 9 -1.	0 128 4 201 188 2 314	3 4 2	13.0 22.3 09.9	N -1.1 -1.1 +0.2 N	+1.1 +2.2 +2.3	96 234 226	2 5 3 5 3 0	59.4 53.4 19.3	S -1.1 -0.4 A	+0.2 +3.0	114 215 336
Dec.	18 18 23 2 5	1 2 3	944 970 549 787 109	5.7 6.5 5.2 6.4 6.5	2 2 1 1	216 217 275 34 63	1 5 22	32. 02. 52.	3 -0. 5 -1. A	1 +0.9 5 -2.1	284 204 2122			A N S A			հ 11	57.4 42.1	A -0.6 -1.9 S A	+2.9 -0.9	226 300	42 112 24	2.1 6.1 8.3	A -2.8 S -0.8	+1.1	191 262 76
	5 5 8 9 9	3	112 238 4 109 237	6.2 7.0 6.3 6.5 7.1	1 1 1 1	63 75 104 115 126	3 23	20. 03.0	A N A 1 -1. 0 -0.9	+1.: +2.1	3 35 38	3	02.6	A N A -1.6 S	5 + 1.	2 47	23 5 3	42.7 59.0 08.8	A -0.3 -0.7 S	-0.2 +3.1	134 56 12	32 60 23	19.1 10.0 18.5	-1.1 N -0.7 -1.5 S	-2.5 -0.9 +2.2	121 85 35
	10 10 19 26 26	11 40 40	269a 362 409 002 - 002 -	7.3 6.5 5.1 4.4 4.4	1 2 1 2	129 138 233 315 315	6 22 11 12	45.3 32.8 16.2 29.2	s -0.1 s -0.1 s -0.1 s -0.1	-1.3 +1.8 -0.5 +0.8	92 67 137 267	6 11 11	52.0 22.8 57.6	-0.6 s :	; -2. :	5 117 176 229	6 11 11 12	34.9 48.3 08.8 02.8	-0.9 S -2.2 -0.1 -1.8	-1.2 -0.3 -1.0 +2.1	89 255 153 249	64	5.4	-1.4 S N N N	-3.6	127

							T												
					El.	De DENVER, COLO.	N	MN.	MEX	ARIZ.	0	Ca	CALIFC 0	RNIA	0	Or	OREG o	ON . /	0
Dat	e	Z.C. No.	Mag.	Ρ.	. of Moon	W.105.000, N. 39.800	1	1.109.	.000,	N. 34	.000	W.12	0.000,	N. 36	.000	W.121	,000,	N. 42	• 500
						U.T. a b P	1	U.T.	a	Ъ	P	U.T	. а	ъ	Р	U.T.	£	ъ	P
Jan.	1	1708	6.2	2	0 256	h m m m o 8 27.2 -0.7 -0.7 321		n m B 25.1	m -0.9	m +0.1	0 298	h : 8 18	m m .8 -0.5	m +0.2	0 300	h m 8 17.	6 -0.3	m -0.5	0 323
	12 14	3247 3520	7.0 6.0	1	39 65	N 1 00.7 -1.1 +1.7 29		1 57.9	9 +0.3 S	+3.3	4		N S				N N		
	16 16	238 247	6.7 6.7	1	89 90	N N		5 15.0	N -1.0	+1.5	31	5 07	.8 -1.1	+3.0	17	1 43.	6-3.0 N	-1.7	119
	19	609	7.5	1	124	5 11.6 -1.9 +0.3 65		5 03.6	5 -2.3	-0.5	86	4 37	.0 -2.4	+0.6	75	4 41.	8 -2.0	+1.6	52
Feb.	22	1029 2826	5.1 4.0	1	158 333	7 57.7 -1.7 -1.1 92 S	2	7 59.1	+ -1.7 S	-1.9	114	734	.4 -2.1	-1.8	117 84	7 24.	6 -2.1 S	-0.6	96
	17 18	814a 970	5.3 6.5	1	115	1 39.1 -2.1 +1.6 66		1 22.9	-2.2 3 -2.2	+1.0	83 131	4 06	s .4 -2.5	-1.9	126	3 57.	s 6 -2.2	-0.3	102
	18	975a	6.8	1	127	5 52.1 -1.0 -3.8 146			N				N			5 20.	4.		148
	19 19	1091 1106a	6.7 3.6	1 1	138 139	4 35.9 -2.4 0.0 87 8 50.6 -0.5 -1.7 104		+ 28.8 3 59.5	3 -2.5 5 -0.4	-0.9 -2.1	108 123	4 00 8 48	.7 -2.3	-0.2	104 130	4 01. 8 33.	5 -2.0 6 -1.0	+1.0 -2.0	82 113
Mar.	20 1	1234 2271	6.1 4.3	1 1	151 260	10 35.7 -0.3 -1.2 86	1	0 42.1 1 02.3	3 -0.2 3 -1.8	-1.4	103 113	10 35 10 45	.1 -0.5 .9 -1.2	-1.7	109 121	10 24. 10 46.	1 -0.7 7 -1.2	-1.5 +0.6	95 105
	1	2271	4.3	2	260	12 31.5 -1.9 -0.7 294	1	2 26.1	-2.3	-0.2	279	12 02	.3 -2.0	+0.4	273	12 02.	2 -1.6	+0.2	287
	3 15	2578 636a	6.4 6.9	2 1	287 73	N 2 35.3 -1.6 -0.3 71		2 32.2	s -1.9	-1.0	92	13 30	.0 -1.3 . S	-1.4	325		N S		
	15 18	650 1073	5.7 6.0	t	74 109	N A	1	\$ 58.0	A -1.2	+1.4	35	4 45	.4 -1.6 A	+1.4	38	9 21.	7 +0.2	-1.8	119
	20	1309	5.7	1	131	A			A				A			10 40.	7 +0.3	-2.5	149
	23	1410a 1599	5.3	1	143	A 4 01.0 -1.1 -1.7 150			G				N			3 41.	5 -0.8	-1.4	153
Apr.	11	692a 692a	1.1	2	49	17 13.4 +0.1 +2.6 219	16	58.5	+0.4	+3.1	205	17 08	.4 +0.4	+2.1	224	17 21.	4 +0.2	+1.8	241
	12	741 878	5.7	1	54	A 5 15 8 -0 1 -1 0 78			A	_1 2	07	5 29	3 +0.2	-1.8	116	5 18.	5 -0.1	-1.5	99 86
	14	1003d	7.2 7.1	1	75	2 27.8 35		, ho F	S 1 -1 7	-1.3	91	1, 21	S -0.4	+0.6	sh	5 01.	S N	-1.5	00
	17	1364	6.5	1	111	8 11.2 -0.3 -0.7 66	1	3 15.1	-0.3	-1.0	84	8 07	.9 -0.6	-1.2	68	8 00.	0.8	-1.0	74
	18 18	1465 1468	6.3	1	122	8 07.6 -0.5 -1.3 89	1	3 13.8	-0.5	-1.5	104	8 03	2 -0.9	-1.7	109 122	7 51.	9 -1.0 8 -0.4	-1.5	97 111
	19 27	1565a 2640a	6.3	1	133	6 14.2 -0.7 -2.9 156 N		5 36.2 3 15.5	•	÷	187 342	8 10	N 2 -0.1	-1.4	332	5 56.	о. м	•	176
	27	2658	54-62	2	239	S			S		-	11 43	1 -2.2	-0.4	289	11 37.	7 -1.9	-0.6	303
	28 28	2826 2826	4.0 4.0	1 2	253 253	10 30.6 -1.8 +0.8 80 S	10) 18.9 40.7	-1.9	+0.6 +0.7	93 253	10 02. 11 19	5 -1.4	+0.9 +0.9	92 259	10 08.	3 -1.3 7 -1.7	+1.3 +0.7	79 271
May	10 11	814a 970	5.3 6.5	1	34 46	N A			A A			3 32.	.3 -1.0 A	+0.7	42	5 18.	N -0.3	-0.3	52
	12	1091	6.7	1	57	N			A			5 50.	.4 -0.6	+0.6	44		N		
	14	1212	6.8	1	68 79	6 01.7 178		e0	A N				N			6 36.	N 1 +0.1	-1.0	100
	17	1635	5.4	1	101	4 47.1 -0.9 -2.2 131 A		0.00	N 7	-2.9	150	8 48	2	-3.5	185	8 24.	5 -0.2	-2.9	160
	20	1073	6.0		130	5 53.9 -0.5 -1.5 99		, 00.4	-0.1	-1.0	100	0 41. E 16	0 1 5	-1.0	109	5 08 I	9 _1 E	-0.6	102
	25	2764	6.3	2	221	S 10 5 -1 0 +1 0 278	10) 36.4	-2.0	+0.3	251	10 14	2 -2.1	+0.5	260	10 14.	5 -1.8	+0.2	272
June	11	1381	6.3	1	58	S 17.9 -0.1 -3 4 164	2	57.8	-1.1 N	-1.4	98		SN				s		
	18	2193	6.1	1	145	8 43.9 -1.1 -2.9 150			G			8 35.	.1 -1.5	-3.2	155	8 17.0	- 5 -1.4	-2.0	137
	23 23	2986 3015a	6.4 5.3	2	214 216	5 16.0 -0.9 +1.8 239 S	11	05.0	Ă -1.9	-0.2	261	10 40.	A 9 -2.3	-0.3	278	10 35.	A 2 -2.2	-0.8	295
July	2	692a 692a	1.1	1	329 329	N N			N N				N N			13 01.0) -1.1) +0.3	-0.2 +3.8	134 200
	14	1997	6.8	1	98	3 52.5 -1.9 -0.2 66	3	47.0	-2.1	-0.6	83		s				S		
	16 24	2271 4	4.3 6.3	1 2	125 238	A S	1	45.0	-1.2 S	-2.7	142	7 25.	6 -1.5	-2.0 +2.3	129 209	7 12.7	r -1.3 S	-1.6	114
	25 29	109 692d	6.5 1.1	2	250 302	8 17.6 -1.2 +1.3 267 21 26.7 +0.3 -1.9 118	21	42.1	-1.0 +0.7	+1.4 -3.0	258 144	7 59. 21 42.	5 -0.6 8 +0.7	+1.2 -4.0	270 151	8 06.2 21 23.6	2 -0.6 5 0.0	+1.1 -2.4	284 124
	29	692d	1.1	2	302	A	1		A			22 12.	1 -0.7	+1.6	208	22 14.2	e -0.3	-0.3	234
Aug.	10	1962 2088	5.2	1	68 81	3 47.4 -0.7 -1.7 108 A		54.4	-0.9 A	-1.9	120	3 38. 5 40.	7 -1.3 8 -0.7	-1.8	118 79	3 26. 5 35.0	-1.3	-1.5	106 63
	12 15	2208 2680	7.4 5.8	1	92 133	5 34.4 -1.1 +1.3 31	1 5	05.2	-1.7	+1.0	28 45	5 05.	N 6 -1.9	+2.1	32		N N		
	15	2685	7.0	1	133	5 52.7 -1.5 -0.5 81	;	48.9	-1.9	-0.6	91	5 26.	3 -2.1	+0.1	81	5 25.6	5 -1.8	+0.3	67 116
	17	3015d	5.3	1	162	7 21.1 -1.2 +0.8 42	1	11.2	-1.6	+0.8	53	6 56	5 -1.5	+1.7	35	7 08.5		•	12
	24	464	6.4	2	256	S	11	01.9	-1.8	+1.9	236	10 46.	2 -1.6	+1.4	255	10 51.9	-1.7	+0.9	274
Sept.	8 14	2180	7.0	1	62 144	A 8 10.7 114			A N			400. 744	3 -0.7	+0.6	45 126	7 31.4	N -1.8	-1.1	101
	22 22	659 667	6.4	2 2	246 246	5 32.4 0.0 +1.5 255 6 42.8 220	4	42.0	A -1.1	-0.3	307		AN				AN		
	22	669	4.0	1	246	6 00.3 -0.5 +0.7 113		56.3	-0.5	-0.1	126		A				A		
															•				
					E1.	De DENVER, COLO.	NM N. MEXARIZ.	Ca CALIFORNIA	Or OREGON										
------	----------------------	------------------------------	--------------------------	-------------	--------------------------	---	---	--	--										
Da	te	Z.C. No.	Mag.	Ρ.	. of Moon	W.105.000, N. 39.800	0 W.109.000, N. 34.000	W.120.000, N. 36.000	W.121.000, N. 42.500										
						U.T. a b P	U.T. a b P	U.T. a b P	U.T. a b P										
Sept	· 22	669 671	4.0 3.6	2 1	246 246	6 51.2 -0.1 +2.6 219 6 16.4	9 6 35.4 +0.4 +3.1 206 N	6 43.4 +0.2 +2.2 225 A	6 56.4 0.0 +1.9 242										
	22 22 22	671 677 685	3.6 4.8 6.5	2 2 2	246 247 247	6 33.8 182 8 09.2 -0.9 +1.9 245 10 05.3 -1.6 +2.3 232	2 N 5 7 54.0 -0.6 +2.2 234 2 9 43.7 -1.2 +3.3 216	6 31.7 +0.8 +3.7 194 7 51.8 -0.5 +1.7 251 9 36.4 -1.1 +2.2 236	6 50.8 +0.3 +2.4 218 8 01.3 -0.6 +1.4 268 9 47.5 -1.2 +1.6 255										
	22 22	692a 692a	1.1	1	248 248	10 21.5 -2.1 +0.6 88	8 10 10.3 -2.5 0.0 103	9 49.7 -1.6 +1.2 84	9 58.5 -1.2 +1.9 65										
	23 24	806 944	5.1	2	259 270	9 35.3 -1.2 +2.2 240 8 50.9	0 9 16.8 -0.8 +2.8 226 8 8 50.3 -1.2 -0.3 307	9 13.5 -0.6 +2.0 245 8 32.9	9 24.1 -0.8 +1.5 263 N										
Oct.	20	2573	7.3	2	292	A	N N 10 41.9 -0.9 +1.0 274	10 35.3 -0.6 +0.6 288	10 36.8 -0.7 0.0 311										
	9 9	2731 2745a	6.5 6.9	1 1	83 84	2 15.5 -1.6 -0.3 74 A	4 2 09.8 -2.1 -0.3 84 4 50.9 144	s 4 24.4 -1.9 -1.8 116	s 4 13.3 -1.5 -1.2 98										
	10 12	2889 3188	7.1 5.4	1 1	96 124	1 47.7 -1.5 +1.7 31 3 18.0 -2.2 -0.2 98	1 1 31.2 -2.0 +1.6 44 8 3 10.0 -2.7 -0.5 108	s 2 44.6 -2.0 +0.6 92	s 2 48.2 -1.6 +1.0 78										
	12 12	3205 3208	6.8 6.5	1 1	125 126	7 13.8 -0.8 -0.6 71 7 47.0 -0.2 +0.8 30	1 7 14.2 -1.1 -0.9 85 0 7 42.5 -0.5 +0.4 47	6 59.9 -1.3 -0.1 66 7 38.6 -0.4 +1.4 26	6 59.7 -0.9 +0.4 46 N										
	13 20 22	3334 741 1029	6.3 5.7 5.1	1 2 2	137 226 249	4 03.4 -1.1 +2.1 25 5 06.6 -1.1 -0.4 314 6 26.9 -0.6 +0.4 300	5 3 46.3 -1.5 +2.0 36 4 5 03.3 -0.7 +0.2 299 6 21.9 -0.3 +0.6 286	3 38.1 -0.9 +3.2 14 A A	N N A										
Nov.	5	2685 2687	7.0	1	53 53	1 01.1 -1.3 -0.4 71	1 0 57.9 -1.7 -0.5 81	S	S										
	77	3008 3015a	6.9 5.3	1	81 81	4 40.9 -0.6 -0.8 76 A	6 4 43.1 -0.9 -1.0 90 A	4 30.3 -1.1 -0.4 70 5 33.1 -0.6 -0.3 64	4 28.2 -0.8 0.0 51 5 32.1 -0.3 +0.2 43										
	8	3155 6024	6.8	1	94 104	3 34.2 -1.7 -1.0 93	3 3 32.9 -2.3 -1.4 105	3 07.1 -2.1 -0.1 83	3 06.2 -1.7 +0.3 67										
	16 18	692d 970	1.1	22	194 194 217	4 09.1 -0.8 +1.8 249 4 51.0 -0.3 +2.2 240	9 3 55.6 -0.5 +2.0 238 9 4 37.3 +0.1 +2.5 226	2 55.4 +0.1 +1.3 70 3 54.9 -0.3 +1.5 255 4 42.8 +0.2 +1.8 244	4 03.8 -0.4 +1.3 271 4 53.4 0.0 +1.5 262										
	23 24	1549 1660a	5.2 6.2	2	275 287	11 16.1 -1.7 +0.2 287 N	7 11 04.1 -1.9 +1.4 263 S	10 49.5 -1.3 +1.5 265 S	10 55.1 -1.1 +0.7 288 13 38.5 7										
Dec.	5 5	3109 3112	6.5 6.2	1	63 63	2 43.0 -0.5 +0.4 40 3 09.9 -0.8 -0.8 79	2 38.3 -0.9 +0.3 54 3 11.6 -1.2 -1.1 93	2 30.0 -0.8 +1.2 32 2 56.3 -1.3 -0.3 72	2 42.1 2 2 54.3 -1.0 +0.1 54										
	568	3119 3270	6.7	1	64 77	A A 5 51 0 -0 7 10 0 50	A 5 02.3 -0.3 +0.3 48	4 07.3 -0.8 -0.4 67 4 59.8 -0.3 +1.2 28	4 05.7 -0.5 +0.1 46										
	9	109	6.5	1	115	N N	2 37.1 0	N N	N N										
	10 13 13 19	269d 692d 692d 1409	7.3 1.1 1.1 5.1	1 2 2	129 167 167 233	6 18.3 -1.5 -0.9 85 A A 11 05.5	5 6 18.8 -2.0 -1.7 104 A A N	5 53.2 -2.2 -0.4 86 13 16.0 +0.4 -2.2 126 A N	5 51.4 -1.7 +0.4 65 13 03.9 +0.1 -1.7 107 13 57.9 +0.1 -0.7 250 N										
	22	1716	6.4	2	267	12 43.4 -3.3 +1.6 246	5 N	N	Ģ										
	26	4002 -	-4.4	2	315	11 36.3	D N	N N	NN										
				_		WI WINNIPEC MAN	Ed EDMONTION ALTEA	Ve VANCOUVER B C	-										
Dat	e	z.c.	Mag.	Р.	El. of	0 W. 97.200, N. 49.900	W.113.400, N. 53.600	0 W.123.100, N. 49.200											
		No.		1	Moon	U.T. a b P	U.T. a b P	U.T. a b P	_										
Jan.	12	3380	6.2	1	0 52	h m m m o 23 59.9 -1.3 -0.7 81	hmmmo S	h m m m o S	-										
	16 16	235a 238	6.9 6.7	1	89 89	N 2 25.6 -1.8 -2.6 118	1 31.2 -2.2 -1.7 123 1 52.3 -1.6 -0.3 91	s 1 35.3 -1.9 +0.2 93											
	16 17	258 376	6.6 7.0	1	91 103	A A	7 40.2 144	7 25.1 -0.3 -2.2 108 N											
	19 19	609 627	7.5 6.8	1 1	124 126	5 37.1 18 A	N 10 07.3 +0.6 -3.4 147	454.9 22 N											
	20 21 22	729 878	7.2	1	133 146 158	0 21.0 -1.4 +0.4 118 N 8 0h 8 -1 6 +0 1 53	S 4 54.1 160 7 39 1 -1 7 +0 7 55	S N 7 19 5 -1 9 +0 3 75											
	26	1468	4.9	2	203	9 23.6 -1.8 -0.4 262	8 54.0 -1.8 +0.8 255	8 22.9 222											
Feb.	27 14	1565d 454	6.3 5.8	2	214 83	N A	5 19.8	7 05.6 +0.3 -4.4 145											
	17	129 814a	1.2 5.3	1	115	2 19.0 26	A N	9 20.3 -0.2 -0.7 59 G											
	18 18	970 975a	6.5 6.8	1 1	127 127	4 42.4 -1.7 -0.1 71 5 35.9 -1.1 -1.7 106	4 16.1 -1.7 +0.9 65 5 09.2 -1.4 -1.1 104	3 55.6 -1.8 +0.8 80 4 59.5 -1.7 -1.5 121											
	19 19 20	1091 1106a 1234	6.7 3.6 6.1	1 1 1	138 139 151	5 02.7 . 40 8 40.5 -0.5 -1.2 75 10 27.5 -0.3 -0.8 57	4 38.7 34 8 23.8 -0.9 -1.2 81 10 15.4 -0.7 -1.1 65	4 08.5 -1.7 +2.3 58 8 19.8 -1.1 -1.5 99 10 13.0 -0.9 -1.3 83											
	21	1341a	4.3	1	162	9 47.9 0.0 -2.9 158	9 36.4 0.0 -3.6 169	N											
Mar.	24	1652 2271 2271	5.5 4.3 4.3	2	197 260 260	9 29.4 -1.7 -0.5 254 11 30.6 -1.8 +0.6 68 12 34.3 -1.4 -1.2 316	0 58.0 -2.1 +1.0 241 11 07.4 -1.4 +1.1 75 12 11.0 -1.1 -0.4 313	N 10 49.9 -1.1 +1.1 92 12 00.1 -1.2 +0.1 298											
	12	258	6.6	ī	37	1 23.8 -0.6 +1.7 17	N N	S											

						Wi	WIN	VIPEG	, MAN		Ed	EDMO	NTON,	ALTA		Va	VANC	OUVER	. В.С	
Dat	e	z.c.	Mag.	Р,	El. of	٧.	97.2	200,1	N. 49	900	w	o 113.	400,1	N. 53	。 .600	w.	0 123.	100,1	N. 49	200
_		No.			Moon	υ.	т.	8.	ъ	Ρ	1	U.T.	8.	ъ	Р	ι	J.T.	a	ъ	Ρ
M					0	h	m	m	m	0	h	m	m	m	0	h	m	m	m	٥
Mar.	15 15 17 18 20	636d 667 938d 1073 1281	6.9 5.3 7.2 6.0 6.4	1 1 1 1	73 75 97 109 129	2 9 5 2	21.6	-1.4 A A -0.6	+1.8	27 154	268 94	37.6 48.3 25.3 02.1 58.7	+0.1 +0.2 +0.1 -0.7	-1.6 -1.7 -1.6 -3.4	12 96 103 93 161	6 8 9	57.1 34.9 09.7	s +0.1 +0.1 0.0 N	-2.0 -2.0 -1.8	113 119 107
Apr.	20 21 23 11 11	1309 1410a 1599 692a 692a	5.7 5.3 5.0 1.1 1.1	1 1 1 2	131 143 164 49 49	4 0 16 3 17 3	14.3 18.2 18.9	A -1.4 -0.4 -0.4	0.0 +1.3 +2.2	111 100 237	10 10 3 16 17	15.5 19.1 46.2 41.7 41.6	+0.1 0.0 -1.0 +0.1 -0.2	-2.0 -2.3 +0.6 +1.6 +1.8	124 144 111 82 256	10 10 3 16 17	25.4 30.4 36.3 36.9 33.3	+0.1 +0.1 -0.8 +0.3 +0.1	-2.2 -2.8 +0.1 +1.4 +1.7	136 159 129 83 255
	12 13 17 18 18	741 878 1364 1465 1468	5.7 5.5 6.5 6.3 4.9	1 1 1 1	54 65 111 122 122	5 1 7 5	0.7 19.1	A -0.3 N -0.4 A	-0.3 -1.1	44 64	5 5 7 8	05.3 01.5 01.1 44.3 51.7	-0.2 -0.6 -0.9 -0.3	-1.1 -0.5 -1.2 -1.6	67 49 33 69 89	5 4 7 7 8	08.5 58.2 51.9 40.2 55.2	-0.3 -0.8 -1.0 -1.1 -0.5	-1.3 -1.0 -0.8 -1.3 -1.7	84 70 61 86 101
Мау	19 27 28 28 9	1565d 2658 2826 2826 692d	6.3 54-62 4.0 4.0 1.1	1 2 1 2 1	133 239 253 253 253 22	5 5 2 5	7.9 4.0	-0.9 s s s +0.6	-1.9 -2.3	126 135	5 10 2	35.0 33.2 51.9	-1.0 S -1.2 S +0.3	-1.6 +1.3 -2.9	134 59 138	5 11 10 11	33.7 29.9 15.2 23.6	-0.9 -1.5 -1.1 -1.4 N	-2.3 -0.7 +1.5 +0.6	156 317 68 282
	9 11 11 13 14	692d 961 970 1212 1320	1.1 6.2 6.5 7.1 6.8	2 1 1 1	22 45 46 68 79	5 2	9.5	A A N A +0.2	-2.3	141	3 4 6 5	29.6 04.8 18.8 21.2	-0.2 +0.5 N 0.0 -0.1	-0.2 -3.5 -1.5 -2.6	219 158 85 147	5 6 5	17.5 25.1 34.9	N N -0.1 +0.3	-1.6 -3.8	30 97 170
	16 17 17 19 20	1518 1624 1635 1865 1973	6.3 6.8 5.4 7.2 6.2	1 1 1 1	101 113 114 138 150	43 62 54	4.9 7.3 4.7	-0.9 -0.3 A A -1.6	-1.7 -2.5 -0.6	106 151 86	4 7 8 5	12.1 11.8 59.6 29.2 18.4	-1.1 -0.5 -0.2 -0.8 -1.5	-1.5 -2.5 -2.2 -1.3 0.0	114 157 137 78 93	6 8 5	22.0 06.6 25.7 04.2	S -0.4 -1.1 -1.4	-2.4 -1.2 0.0	180 147 88 111
June	25 18	2764 2193	6.3 6.1	2 1	221 145			S A			8	07.0	s -1.0	-1.6	120	10 8	12.2 03.1	-1.5 -1.2	+0.2	283 125
July	23 23 2	2986 3015a 692a	6.4 5.3 1.1	2 2 1	214 216 329	53 133	19.0 15.4	-0.9 s	+1.4	260 143	13	14.4	s s -0.8	+1.1	111	10 13	23.9 03.2	s -0.5	+1.0	316 112
July	2 16 25 29 29	692d 2271 109 692d 692d	1.1 4.3 6.5 1.1 1.1	2 1 2 1 2	329 125 250 302 302	14 0 8 3 21 0	17.1 19.4 19.2	A -1.4 +0.2 A	+1.0 -1.3	192 279 86	14 8 21 22	12.5 23.5 03.6 03.8	-0.5 A -1.0 -0.2 +0.1	+2.6 +0.9 -1.5 -1.4	225 301 88 268	13 7 8 21 22	57.4 00.7 11.4 08.7 09.1	-0.2 -1.2 -0.7 -0.3 -0.2	+2.6 -1.3 +0.9 -1.9 -1.0	223 103 300 105 251
Aug.	15 15 17 22 24	2685 2687 3015d 219 464	7.0 65-73 5.3 5.1 6.4	1 1 2 2	133 133 162 232 256	5 5 6 1 7 3	16.7 4.4 15.1	-1.0 -1.3 -0.5 S S	-0.6 -1.7 +0.8	67 118 24	5	38.6 48.8	-1.1 -1.3 N S S	0.0 -0.8	52 101	5 5 12 10	24.9 37.3 07.9 52.0	-1.5 -1.6 N -1.1 -1.8	+0.5 -0.4 +1.7 +0.2	55 104 213 295
Sept.	14 14 20 22 22	3109 3112 401 659 661	6.5 6.2 6.3 6.4 4.6	1 1 2 2 2	144 144 222 246 246	75 54	3.1 8.9	-1.0 N N -0.3 N	-1.9 +1.5	108 269	7 8 5 5 5	31.8 15.9 38.0 50.9 49.7	-1.0 -1.4 -0.1 +0.7	-0.8 -2.6 +1.3 +3.2	82 126 181 287 193	7 8 5	23.1 10.8 27.2	-1.4 -2.0 A A	-0.5 -2.6	82 128 179
	22 22 22 22 22 22 22	669 669 671 671 677	4.0 4.0 3.6 3.6 4.8	1 2 1 2 2	246 246 246 246 247	6 1 7 1 6 2 7 1 8 3	5.0 8.2 2.6 0.0 4.7	-0.5 -0.6 -0.9 -0.2 -1.3	+1.4 +2.2 +0.7 +3.0 +1.3	97 237 122 212 263	6 7 6 7 8	16.7 18.1 19.1 15.8 21.5	0.0 -0.3 -0.2 -0.2 -0.9	+1.7 +1.8 +1.4 +2.2 +1.1	79 257 100 235 286	7 7 8	08.3 06.0 08.6	A -0.1 A +0.1 -0.7	+1.7 +2.1 +1.2	256 234 285
	22 22 23 23	685 692a 692a 806 820	6.5 1.1 1.1 5.1 6.0	2 1 2 2 2	247 248 248 259 260	10 3 10 4 12 0 10 0	3.2 5.4 4.6 2.9	-1.7 -1.6 -1.7 -1.5 S	+0.7 +1.2 -1.0 +1.1	257 62 280 264	10 10 11 9 11	11.0 31.4 33.2 45.7 49.1	-1.4 -1.0 -1.7 -1.1 -1.2	+0.7 +2.6 -0.9 +0.9 +2.4	278 40 298 285 225	9 10 11 9 11	54.0 11.4 17.8 31.3 25.6	-1.2 -0.8 -1.8 -0.9 -0.9	+1.1 +2.6 -0.1 +1.2 +3.4	274 45 290 281 215
Oct.	26 8 9 9 10	1197 2573 2731 2745a 2889	6.0 7.3 6.5 6.9 7.1	2 1 1 1	292 71 83 84 96	10 5 2 2 2 1	9.1 2.5 4.4	-1.3 A -1.0 A	-1.1 -0.4	325 60 6	2	04.9	N A -1.1 A N	+0.3	43	10 3 4	29.1 27.9 04.0	-1.3 s -1.2 N	-1.4 -0.8	346 108 83
	12 12 13 13 19	3188 3205 3322a 3334 608a	5.4 6.8 6.4 6.3 6.0	1 1 1 2	124 125 136 137 215	33 10 43	1.0 1.9 1.2	-1.6 A -1.3 N	-0.2 +0.9	85 106 5	3 7 6	09.3 09.7 34.7	-1.3 -0.2 S N -0.1	+0.8 +0.8 +3.3	66 20 202	2 7 6	52.4 02.6 20.0	-1.3 -0.4 S N +0.1	+1.2 +1.0 +3.3	67 23 200
Nov.	21 22 24 5 5	878 1029 1271 2685 2687	5.5 5.1 5.9 7.0 65-73	2 2 1 1	237 249 273 53 53	43 63 110 10	2.7 2.5 5.6 4.2	-0.6 -1.3 -0.7 A	0.0 -1.2 -0.5	320 330 226 56	10 0 0	54.9 50.7 53.7	N -1.0 -0.9 -1.2	+2.6 +0.2 -0.8	242 36 90	10	33.4	N -0.6 S S	+3.6	226

						Wi	WIN	NIPEG.	MAN.		Ed	EDMO	NTON,	ALTA	•	Va	VANC	DUVER	B.C	•
Dat	e	z.c.	Mag.	P	El. of	w.	97.	200,1	1. 49	.900	W	0 113.	400,	N. 53	.600	W.	123.	100,1	1. 49	200
		No.			Moon	τ	I.T.	a	ъ	Р	ę	Ј.Т.	a	ъ	Ρ	ι	J.T.	a	ъ	Ρ
					0	h	m	m	m	0	h	E	в	н	0	h	н	m	m	٥
Nov.	7 7 8 16 16	2986 3008 3155 692a 692a	6.4 6.9 6.8 1.1 1.1	1 1 1 2	79 81 94 194 194	0 3 3 4	05.5 35.9 23.7 32.6	-1.3 A -1.0 -0.5 -1.1	+0.7 -0.8 +1.9 +1.3	48 75 68 266	3 3 4	18.5 27.6 22.2	S A -1.0 0.0 -0.8	+0.1 +2.3 +1.1	52 47 288	4 3 3 4	28.5 06.2 19.0 10.9	S -0.4 -1.3 +0.2 -0.5	+0.5 +0.6 +2.1 +1.1	30 51 48 288
Dec.	17 17 18 23 2	806 820 970 1549 2794	5.1 6.0 6.5 5.2 6.7	2 2 2 2 1	205 206 217 275 34	2 5 11 23	29.7 14.7 22.0 18.9	0.0 N -0.7 -1.1	+1.7 +1.7 -1.3	254 261 325 154	3 5 11	58.6 11.0 02.3	A +0.5 -0.4 -0.8 S	+3.4 +1.3 -0.8	201 281 328	3 5 10	49.8 02.4 55.6	A +0.8 -0.2 -0.8 S	+3.4 +1.3 +0.1	198 279 310
	5 5 8 10	3112 3119 3238 4 2694	6.2 6.7 7.0 6.3 7.3	1 1 1 1	63 64 75 104 129	23 6 6	18.8 02.1 22.3	A -1.7 -0.2 -0.9	0.0 +1.7 -0.2	96 13 55	3 6	00.5	-0.4 A S N -0.9	+0.2	32 35	2 4 5	54.4 07.8 53.4	-0.6 -0.1 S N -1.2	+0.5 +0.9 +1.1	33 21 42
	13 13 17 19 22	692a 692a 1197 1409 1716	1.1 1.1 6.0 5.1 6.4	1 2 2 2 2 2	167 167 212 233 267	12 11 13	23.3 29.6 01.4	A -1.3 -1.7 -1.6	-0.4 -0.9 -0.8	236 274 284	12 13 11 11 12	48.4 43.0 57.3 00.6 34.0	-0.1 +0.3 -1.9 -1.7 -1.6	-1.2 -1.5 +0.9 +0.2 +0.3	74 281 227 269 276	12 13 10 12	53.3 51.5 38.4 12.9	-0.1 +0.1 N -2.0 -1.9	-1.5 -1.2 +1.9 +1.8	90 265 247 252
	26 I 26 I	4002 4002	-4.4 -4.4	1 2	315 315	11 12	05.6 10.4	-0.3 -1.0	+0.5 +1.3	127 272			A A					A A		

NAMES OF OCCULTED STARS

The stars which are occulted by the moon are stars which lie along the zodiac; hence they are known by their number in the "Zodiacal Catalogue" (ZC) compiled by James Robertson and published in the Astronomical Papers Prepared for the Use of the American Ephemeris and Nautical Almanac, Vol. 10, pt. 2 (U.S. Govt. Printing Office; Washington, 1940). The ZC numbers are used in all occultation predictions, and should be used routinely by observers. The symbol "d" means "a double star". The brighter ZC stars have Greek letter names or Flamsteed numbers; these are

given in the following table.

Z.C. No.	Name	Z.C. No.	Name	Z.C. No.	Name	Z.C. No.	Name
50 215 219 362 401 635 636 650 659 661 667 669 671 692	44 Psc 96 Psc 98 μ Psc 25 Ari 85 Cet 54 γ Tau 55 Tau 63 Tau 70 Tau 71 Tau 75 Tau 75 Tau 71 Tau 75 Tau 87 α Tau 87 α Tau	806 814 820 878 1003 1029 1106 1197 1271 1341 1409 1410 1468 1518	111 Tau 115 Tau 117 Tau 130 Tau 26 Gem 26 Gem 54 λ Gem 1 Cnc 29 Cnc 65 α Cnc 5 ξ Leo 6 Leo 29 π Leo 43 Leo	1549 1565 1599 1635 1652 2033 2060 2193 2196 2271 2291 2361	48 Leo 35 Sex 58 Leo 75 Leo 79 Leo 83 Leo 82 Vir 98 κ Vir 2 Lib 29 o ¹ Lib 30 o ² Lib 46 θ Lib 49 Lib 7 χ Oph	2399 2448 2826 2828 3008 3015 3131 3188 3247 3334 4002	24 Sco 29 Oph 44 ρ ¹ Sgr τ ¹ Cap τ ² Cap 18 Aqr 48 λ Cap 36 Aqr 67 Aqr Venus

OCCULTATION LIMITS FOR 1978

The maps show the tracks of stars brighter than 7.5 which will graze the limb of the Moon when it is at a favourable elongation from the Sun and at least 10° above the observer's horizon (5° in the case of stars brighter than 5.5 and 2° for those brighter than 3.5). Each track starts in the West at the time given in the tables and ends beyond the area of interest, except where the letters A, B or S are given. A denotes that the Moon is at a low altitude, B that the bright limb interferes, and S that daylight interferes. The tick marks along the tracks denote 10 minute intervals which, when added to the time at the beginning of the track, give the time of the graze at places along the tracks.

In the case of a near-grazing occultation, where no **a** or **b** factors are given in the table of predictions but the limit line is shown on the map, the time of central occultation can be estimated as the time on the limit line closest to the observer's location. To see a near-graze disappearance, the observer should start watching about a half hour earlier. After timing the disappearance, he can predict the time of reappearance approximately by adding the difference *central occultation time* minus *the observed time of disappearance* to the central time.

Observers positioned on or very near one of these tracks will probably see the star disappear and reappear several times at the edge of features on the limb of the Moon. The recorded times of these events (to a precision of a second, if possible) are very valuable in the study of the shape and motion of the Moon currently being investigated at the Royal Greenwich Observatory and the U.S. Naval Observatory. Interested observers situated near to any of these tracks should write to Dr. David W. Dunham, IOTA, 4032 N. Ashland Ave., Chicago, Ill. 60613, U.S.A., at least two months before the event, giving their latitude and longitude, and details of the event will be supplied (for a nominal fee).

The following table gives, for each track, the date, Zodiacal Catalogue number, magnitude of the star, the time (U.T.) at the beginning of the track in the West, the percent of the Moon sunlit and whether the track is the northern (N) or southern (S) limit of the occultation. An asterisk after the track number refers the reader to the notes following the table; a dagger indicates that the star is a spectroscopic binary.

No.	Date	Z.C.	Mag.	U.T.	%	L	No.	Date	Z.C.	Mag.	U.T.	%	L
1 2 3 4 5	Jan. 1 2 6 11 12	1708 1814 2390 3233 3247	6.2 7.0 6.7 7.2 7.0	h m 7 59 7 56 14 40 23 41 2 05	62 51 9 11 12	ZZZZZ	30 31 33* 35 36	Mar. 31 31 Apr. 2 11 12	2685 2687 3015 692 729	7.0 6.5 5.3 1.1 7.2	h m 8 17 9 03 13 08 16 36 2 10	51 51 27 18 20	S S S S N
5a* 5b 6 7 8	12 12 13 13 14	3362 3367 3380 3385 3520	5.9 6.4 6.2 6.6 6.0	21 34 22 32 0 28 1 11 1 36	18 19 19 20 29	N N N S S N	36a 37* 38 39 40	13 14 14 17 May 9	878 1003 1011 1364 692	5.5 7.2 7.4 6.5 1.1	5 20 2 32 4 31 8 06 3 14	29 37 38 68 4	ZZZZS
9* 10* 11 12 14	16 16 16 17	226 235 238 247 355	6.6 6.9 6.7 6.7 7.5	1 34 1 30 1 55 5 23 3 25	49 50 50 51 60	ZNNZZ	41 42 42a* 43* 44	10 11 11 11 11	806 934 938 944 961	5.1 6.4 7.2 5.7 6.2	2 23 0 39 0 49 2 07 4 21	8 14 14 14 15	5 Z S Z S
16 18* 19 20 20a	31 Feb. 4 10 14 15	2036 2649 3459 437 667	6.9 6.6 6.6 7.4 5.3	10 27 14 13 0 26 3 19 21 36	55 12 8 43 61	SZZZS	45 47 48 51 52*	12 17 17 June 12 14	1091 1624 1635 1478 1692	6.7 6.8 5.4 7.2 6.8	5 58 7 02 8 55 4 01 3 13	23 70 71 33 52	ZNNNZ
20b 21* 22 24* 25	17 17 Mar. 3 4 4	806 814 2573 2745 2755	5.1 5.3 7.3 6.9 6.6	0 30 2 05 11 13 11 26 12 56	71 71 35 25 24	8 2 888	56 57 58 60 60a	July 2 2 14 16 27	677 692 1996 2271 360	4.8 1.1 6.9 4.3 6.8	10 44 13 08 3 45 8 08 5 11	8 7 57 79 47	S S N S N S N
25a 26 27* 28† 29	12 14 15 15 20	258 504 636 650 1271	6.6 7.3 6.9 5.7 5.9	1 33 2 57 2 40 4 58 1 38	11 27 36 36 81	スズズズ	61 62 63* 64 65	29 29 29 29 29 31	618 627 636 692 896	7.2 6.8 6.9 1.1 7.4	7 10 9 54 11 26 21 58 9 13	27 26 26 23 12	ZZZSS

No.	Date	Z.C.	Mag.	U.T.	%	L	No.	Date	Z.C.	Mag.	U.T.	%	L
67 68 69 70* 71	Aug. 23 24 26 28 28	327 454 729 1003 1011	4.5 5.8 7.2 7.2 7.4	h m 6 23 8 00 8 38 9 33 11 34	73 63 42 24 24	SZZZZ	94 94a 94b 95 96	Oct. 24 25 Nov. 4 5 5	1271 1381 2658 2687 2699	5.9 6.3 5.4 6.5 7.2	h m 10 58 11 42 21 20 1 36 3 02	47 38 19 20 21	S S N S S
72 73 73a 74 75	31 Sept. 11 12 22 22	1344 2596 2787 667 692	6.8 7.3 6.4 5.3 1.1	9 47 2 12 3 27 6 22 10 45	5 59 71 70 68	N S S N S	97 100 101 102 103	5 8 16 21 21	2846 3155 692 1328 1344	$\begin{array}{c} 6.9 \\ 6.8 \\ 1.1 \\ 7.0 \\ 6.8 \end{array}$	23 42 3 57 3 23 6 12 10 19	29 54 98 66 64	SSSZS
76* 78* 79* 80 81†	23 24 26 26 28	814 944 1190 1197 1409	5.3 5.7 7.1 6.0 5.1	10 17 8 23 8 34 10 20 9 20	59 50 31 31 15	ス ス ス ス ス	105 106* 107 107a 108	26 26 26 28 Dec. 5	1850 1855 1874 2097 3112	6.5 7.1 7.5 7.1 6.2	8 28 10 05 13 44 10 45 3 47	19 18 17 5 28	ZSZZS
84 85 86 87* 88*	Oct. 6 8 9 9 10	2399 2573 2731 2745 3015	5.0 7.3 6.5 6.9 5.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22 34 45 46 66	N S S S N	109 109a 110 112† 113	5 7 8 19 22	3238 3505 4 1409 1716	7.0 5.6 6.3 5.1 6.4	$\begin{array}{cccc} 23 & 43 \\ 20 & 19 \\ 6 & 03 \\ 10 & 25 \\ 11 & 40 \end{array}$	37 58 62 80 52	SSZSS
89 90 91 92 93	Oct. 12 20 21 22 22	3188 741 878 1011 1029	5.4 5.7 5.5 7.4 5.1	3 34 4 47 4 18 3 06 6 07	78 85 77 69 68	Sヱヱヱヱ	114 115* 116 117 118	23 23 24 24 26	1808 1830 1920 1947 2180	7.0 6.8 6.7 7.1 7.0	8 43 14 38 7 31 13 41 11 01	43 41 34 32 15	

NOTES ON DOUBLE STARS 1978

- Track 5a: ZC 3362 is the mean of the double star Aitken 16365. The components are 6^m1 and 8^m1; separation 0'/3 in p.a. 309°.
- *Track 9:* ZC 226 is the brighter component of the double star Aitken 1214. The companion is $10\pi7$; separation 4...1 in p.a. 77°.
- Track 10: ZC 235 is the mean of the double star Aitken 1254. The components are both 7^m7; separation 1.'6 in p.a. 50°.
- Track 18: ZC 2649 is the brighter component of the double star Aitken 11232. The companion is $9\pi6$; separation 54.'.3 in p.a. 12°.
- Tracks 21, 76: ZC 814 is the brightest component of the triple star Aitken 4038. The brighter companion is 10th magnitude; separation 10'' in p.a. 306°.
- Tracks 24, 87: ZC 2745 is the brighter component of the double star Aitken 11776. The companion is 11^m8; separation 18':5 in p.a. 40°.
- Tracks 27, 63: ZC 636 is the mean of the double star Aitken 3135. The components are 7n0 and 8n9; separation 0.46 in p.a. 75°.
- Tracks 33, 88: ZC 3015 is the mean of the double star Aitken 14099. The components are 5^m8 and 6^m3 separation 0'.'2 in p.a. 115°.
- Tracks 37, 70: ZC 1003 is the brighter component of the double star Aitken 5166. The companion is 8^m1; separation 20:0 in p.a. 210°.
- Track 42a: ZC 938 is the brighter component of the double star Aitken 4789. The companion is 8^{m7}; separation 2'.'1 in p.a. 155°.
- Tracks 43, 78: ZC 944 is the mean of a double star not listed by Aitken. The components are both 6^m2; separation 0.'3 in p.a. 137°.
- Track 52: ZC 1692 is the brighter component of the double star Aitken 8261. The companion is 11 π 5; separation 0'.9 in p.a. 140°.
- Track 79: ZC 1190 is the brighter component of the double star Aitken 6440. The companion is 11 π 1; separation 15'.'9 in p.a. 20°.
- Track 106: ZC 1855 is the brighter component of the double star Aitken 8707. The companion is $8\pi6$; separation 5:77 in p.a. 148°.
- Track 115: ZC 1830 is the brighter component of the double star Aitken 8657. The companion is 8^{m3}; separation 15''9 in p.a. 349°.

MAP OF THE MOON

South appears at the top.

Date (0 h E.T.)	Mercury	Venus	Earth	Mars	Jupiter	Saturn	
	0	0	0	0	0	0	
Jan. 1	149	268	100	112	92	145	
Feb. 1	255	317	132	126	94	147	
Mar. 1	346	2	160	139	97	148	
Apr. 1	159	51	191	152	99	149	
May 1	258	100	220	165	102	150	
June 1	5	150	250	179	105	151	
July 1	173	199	279	192	107	152	
Aug. 1	269	248	308	207	110	153	
Sept. 1	26	297	338	222	112	154	
Oct. 1	188	345	7	237	115	155	
Nov. 1	281	34	38	253	117	156	
Dec. 1	43	82	68	270	120	157	
Jan. 1	203	133	100	288	122	158	

PLANETARY HELIOCENTRIC LONGITUDES 1978

The heliocentric longitude of Uranus increases from 223° to 228° during the year; that of Neptune increases from 256° to 258°, and that of Pluto increases from 195° to 197°.

MARS—EPHEMERIS FOR PHYSICAL OBSERVATIONS

For the first day of each month and for other dates near opposition, the table gives the distance from the earth r, the magnitude m, apparent diameter d, fraction f of the disc illuminated, position angle P of the rotation axis (measured from the north through the east), inclination i of the rotation axis to the plane of the sky (positive if the north pole is tipped toward the earth) and two quantities L(1) and Δ which can be used to calculate the longitude L of the central meridian of the geometric disc. To calculate L, note the date and time of the observation, and then convert them to U.T. (see section on *Time*). Take L(1) for the first day of the month, and from it *subtract* Δ times the number of full days elapsed since the first day of the month. To the result, add 14.6° for each hour elapsed since 0 h U.T. If the result is less than 0°, add 360°; if the result is greater than 360°, *subtract* 360°. For example, on July 10 at 21 h E.S.T. = July 11 at 2 h U.T., L is 315.5° – (10 × 9.78°) + (2 × 14.6°) = 246.9°. This formula replaces the tables given in past years; it is accurate to better than 1°. The value of L can then be compared with the map below.

Date U.T.	r	m	d	f	Р	i	L(1)	Δ
Jan. 1.0 11.0 21.0 Feb. 1.0 Mar. 1.0 May 1.0 June 1.0 June 1.0 June 1.0 June 1.0 Sept. 1.0 Nov. 1.0 Nov. 1.0 Dec. 1.0	A.U. 0.68 0.66 0.65 0.67 0.71 0.83 1.09 1.37 1.64 1.87 2.21 2.31 2.38 2.40	$\begin{array}{c} -0.8\\ -1.0\\ -1.1\\ -1.0\\ +0.5\\ +1.0\\ +1.4\\ +1.6\\ +1.7\\ +1.8\\ +1.7\\ +1.5\end{array}$	13.6 14.2 14.3 13.9 13.2 11.4 8.6 6.9 5.7 5.0 5.0 5.0 4.2 4.0 3.9 3.9	$\begin{array}{c} 0.98\\ 0.99\\ 1.00\\ 0.99\\ 0.98\\ 0.95\\ 0.91\\ 0.90\\ 0.91\\ 0.92\\ 0.94\\ 0.96\\ 0.97\\ 0.99\\ 0.99\\ 0.99\\ 0.99\\ \end{array}$	° 357 355 353 350 348 347 349 356 6 16 26 34 38 37 30	$^{\circ} + 15 + 14 + 112 + 111 + 10 + 92 + 126 + 226 + 248 + 111 + 11 + 11 + 11 + 11 + 11 + 11 +$	° 197.4 285.7 35.8 108.9 184.7 246.8 315.5 12.4 68.3 134.1 190.7 257.4	°/d 8.76 9.25 9.48 9.61 9.71 9.78 9.81 9.79 9.78 9.80 9.78

MAP OF MARS

Latitude is plotted on the vertical axis (south at the top); longitude is plotted on the horizontal axis

JUPITER-EPHEMERIS FOR PHYSICAL OBSERVATIONS

The table gives the magnitude and the apparent equatorial diameter of Jupiter, along with two quantities L(1) and Δ which can be used to calculate the longitude of the central meridian of the illuminated disc of the planet. System I applies to regions between the middle of the North Equatorial Belt and the middle of the South Equatorial Belt; System II applies to the rest of the planet. For a given date and time (U.T.) of observation, the central longitude is equal to L(1) for the month in question plus Δ times the number of complete days elapsed since 0 h U.T. on the first of the month plus either 36.58° (for system I) or 36.26° (for system II) times the number of hours elapsed since 0 h U.T. The result will usually exceed 360°; if so, divide the result by 360° and then multiply the decimal portion of the quotient by 360°. This procedure, which is accurate to 1°, replaces the tables given in previous editions of this HANDBOOK.

			Sys	stem I	Syst	tem II
0 h U.T.	Mag.	Equat. Diam.	L(1)	Δ	L(1)	Δ
		"	0	0	0	0
Jan. 1	-2.3	47.2	329.0	157.90	56.3	150.35
Feb. 1	-2.2	44.7	185.7	157.85	36.4	150.20
Mar. 1	-2.0	41.1	285.1	157.75	282.3	150.10
Apr. 1	-1.7	37.2	135.1	157.70	255.8	150.05
May 1	-1.6	34.4	185.6	157.65	77.4	150.05
June 1	-1.4	32.5	33.0	157.65	48.2	150.05
July 1	-1.4	31.7	82.7	157.70	229.1	150.05
Aug. 1	-1.4	31.9	290.9	157.70	200.7	150.10
Sept. 1	-1.5	33.0	140.5	157.85	173.8	150.20
Oct. 1	-1.6	35.1	194.3	157.90	358.6	150.25
Nov.1	-1.8	38.2	48.0	157.95	335.8	150.30
Dec. 1	-2.0	41.9	106.2	158.00	165.1	150.40

Viewed through a telescope of 6-inch aperture or greater, Jupiter exhibits a variety of changing detail and colour in its cloudy atmosphere. Some features are of long duration, others are short-lived. The standard nomenclature of the belts and zones is given in the figure.

JUPITER—PHENOMENA OF THE BRIGHTEST SATELLITES 1978

Times and dates given are E.S.T. The phenomena are given for latitude 44° N., for

Times and dates given are E.S.1. The phenomena are given for latitude 44⁻N, for Jupiter at least one hour above the horizon, and the sun at least one hour below the horizon, as seen from Central North America. See also pgs. 36–37. The symbols are as follows: E—eclipse, O—occultation, T—transit, S—shadow, D—disappearance, R—reappearance, I—ingress, e—egress. Satellites move from east to west across the face of the planet, and from west to east behind it. Before opposition, shadows fall to the west, and after opposition to the east. Thus eclipse phenomena occur on the east side until July 10, and on the west thereafter.

	JANU	JARY	t l												
d	h m	Sat.	Phen.	d	h m	Sat.	Phen.	d	h m	Sat.	Phen.	d	h m	Sat.	Phen.
1	4 50	1	OD	17	4 27	щ	Se	3	4 50		OD	21	21 28		SI
2	1 59	Ť			23 55	Ť			19 13	1	ണ്	22	17 58	ΠÎ	ŤĬ
-	2 15	Ĩ	ŜÎ	18	0 33	Ĩ	ŜÎ		19 44	ШĪ	ÕD		20 23	ĪĪ	SI
	4 12	I	Te		2 07	I	Te		22 26	Ι	ER		20 37	11	Te
	4 28	I	Se		2 46	I	Se		22 41	III	OR	24	23 02	- 11	Se
	17 29	- 11	UD ST		2 28		11	4	23 37		ED	24	3 25	1	
	19 16	Π	Te		21 12	Ť	op	-	17 20	Ĩ	ŝì	25	0 44	Î	oĎ
	20 27	ÎÎÎ	Se	19	0 07	ĩ	ĔŔ		18 35	Ī	Te		4 12	Ī	ER
	23 16	I	OD		18 21	I	TI		19 33	I	Se		21 53	I	TI
3	1 48	I	ER		19 01	ļ	SI	-	23 51	II	TI	26	23 05	1	SI
	20 25	T T			20 34	Ť	Ie Se	2	2 31	H		20	1 19	Ĩ	Se
	22 38	î	Te	20	0 11	ा गै	OD		4 30	ÎÎ	Se		19 12	ī	OD
	22 57	Î	Se		4 î î	ÎÎ	ĔŔ	6	18 01	II	OD		22 41	I	ER
4	1 24	п	TI		18 36	1	ER		22 41	п	ER	27	18 33	I	Te
	2 02	II	SI		18 39	Щ	ER	8	5 16	ļ		20	19 48	1	Se
	4 04	- #		21	20 36	- 11	51		17 49	п	Se	20	19 16	īv	ER
	17 42	Î	OD		21 48	- ir	Te	9	2 35	Î	OD		20 28	п	ŤÌ
	20 17	Ī	ĔŔ		23 16	Π	Se		5 53	I	ER		23 27	ш	Te
5	17 04	I	Te	23	07 14	I	TI		23 44	I	TI				
	17 25	1	Se	24	17 29	11	ER	10	0 46	1	SI	đ	MA	RCH	Dhan
	23 00	- #	FR	24	4 32	11			2 59	Ť	Se	1	1 29	JII	SI
6	6 08	тî	ŐĎ		5 17	Ш	Te		21 02	i	OD		4 33	- îlî	Se
7	17 12	ĨĨ	Te		5 27	III	SI		23 18	Ш	ÓD		20 29	II	TI
	18 02	11	Se	25	1 41	Ī	TI	11	0 21	.1	ER		23 00	II	SI
8	6 34	ļ			2 27	ļ	SI		2 16	- 111		2	23 08	11	Ie Se
9	3 43 4 09	Ť	SI		3 33 4 41	i	Se		18 11	Ť	TI	3	19 51	11	ER
	5 56	Î	Te		22 58	Î	OD		19 15	Î	ŝî	4	2 36	Î	ÕD
	6 23	Ī	Se	26	2 02	Ī	ER		20 24	I	Te		18 45	ш	ER
	19 39	III	TI		20 07	Ī	TI		21 28	I.	Se		23 45	ļ	TI
	21 28	111	SI		20 56	1	SI	12	23 49		ED	3	1 58	I	51
10	0 27	- 111	Se		23 09	1 I	Se	12	2 16	Ξ.	TI		3 14	Î	Se
10	1 00	Î	OD	27	2 29	п	OD		4 27	ÎÌ	ŝî		21 05	Î	OD
	3 43	I	ER		6 47	II	ER		4 55	П	Te	6	0 36	I	ER
	22 09	Ī	TI		17 25	I	OD	1	18 50	1	ER		18 14	ļ	TI
	22 38	1	SI		19 11	- 111	OR	13	20 25	- 11			19 29	I I	
11	0 51	Ť	Se		20 31	T T	ED	14	17 28	тĤ	SI		21 43	î	Se
	3 40	пî	ŤĨ		22 39	пi	ĒR		20 31	ÎÎÎ	Se	7	3 53	II	OD
	4 40	П	SI	28	17 38	I	Se	15	17 46	II	SI		19 05		ER
	6 20	II	Te		21 28	- 11	TI		18 09	- H	Te	8	2 10		
	10 27	11		20	23 13	11	51	16	20 20 4 25	1	00		23 02		ŤĬ
	$\frac{19}{22}$ $\frac{27}{12}$	Ť	ER	2)	1 53	Π	Se	17	1 34	Î	ŤĨ	9	1 36	îî	ŜÎ
12	17 07	Ī	SI	30	20 05	ĪĪ	ER		2 41	I	SI		1 41	п	Te
	18 48	I	Te	31	5 49	Ш	TI		3 46	Ī	Te		4 16	II	Se
	19 20	I I	Se		6 19	I	OD	ļ	4 55	Ļ	Se	10	4 19	10	
13	21 35	11	ER		FFBR	TIAR	v	18	22 52	I I	FR		19 39	-111	ED
14	16 49	Π	TÎ	d	h m	Sat.	Phen.	10	2 57	пî	ŐD	11	22 47	Ш	ER
	17 59	ĪĪ	SI	1	3 28	I	TI	1	20 01	I	TI	12	1 39	1	TI
	19 29	ÎĨ	Te		4 22	Ĩ	SI	1	21 10	Î	SI		2 56	Į	SI
16	20 39	Ĩ	Se		5 40	Į	Te		22 14	Į	Te		3 52	ł	
10	5 28	I		2	0 36	I		19	23 23	- 1	Se TI	13	2 39	Ť	ER
	7 41	Ť	Te	-	3 57	Î	ĔŔ		20 46	ï	ER	1.2	20 08	î	ŤÌ
	22 58	пî	TI		21 55	Î	ΤI	20	17 52	Í	Se	1	21 25	I	SI
17	1 27	III	SI		22 51	Ĩ	SI		22 52	II	ÕĎ		22 21	Ĩ	Te
	1 54	Ш		3	0 07	Į	1e Sc	21	3 35	- 11	ER	14	23 38	I T	5e EP
	4 4 J	1	UD	1	1 04	1	36	1	12 39	111	10	1 1 7	~I 00	1	LA

d h 15 17 16 17 17 18 18 19 20 20 20 20 22	1 m Si 8 07 1 37 0 04 1 0 0 16 1 3 4 5 1 05 3 24 1 1 1 26 1 3 3 39 1 2 3 34 0 10 0 54 2 03 3 20 3 20
20 20 21 21 22 21 22 22 22 22 25 22 26 21 22 25 22 26 21 22 27 27 27 27 27 27 27 27 27	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
26 2 22 27 2 28 2 29 0 14 15 20 20 29 0 14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} 29 & 0 \\ 18 \\ 19 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
d h 1 2 20 20 21 20 22 3 1 4 1 20 22 22 3 1 4 1 20 22 22 3 1 4 1 20 22 22 22 3 1 5 22 5 22	m Sat. 1 02 11 2 31 111) 13 IV) 13 11 2 44 11 2 51 11 2 51 11 1 23 11 1 56 1 9 39 11 3 16 1 2 46 1
5 2 19 20 21 21 22 23 6 0 9 22	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 54 11 20 11 32 11 42 IV 17 11 14 1 23 1 35 I 35 I 38 I
$ \begin{array}{r} 23 \\ 23 \\ 3 \\ 0 \\ 1 \\ 19 \\ 23 \\ 4 \\ 19 \\ 23 \\ 24 \\ 25 \\ $	33 1 44 111 38 1 31 111 50 1 44 1 10 1 07 1

_															
d 22	h m 0 15	Sat. I	Phen. ED	d 13	h m 4 30	Sat. I	Phen. TI	d	DECE	MBEI Sat.	R Phen.	d 18	h m 8 56	Sat.	Phen SI
	3 49 23 52	I	OR Se	14	5 32 6 46	I	Se Te ED	1	20 32 23 02 2 34	щ	ED FR	19	22 00 2 26 5 36		Se TI
23 24	7 21	ц	ED	14	1 05	пţ	SI	2	3 25	iii	ÕD	20	20 55	ÎĤ	ŠĪ
26	1 30 4 03	П	SI TI		3 57 4 34	ш	Se		4 03 7 01	III	OR	20	0 27	iII	Se
	4 18	II	Se		6 04	щ	TI	4	8 24	IV	Se SI		3 45	111	Te ED
27	3 10	ш	ED		22 58	Î	TÎ	-	5 53	ÎÎ	ŤÎ		7 11	Ţ	SI
	6 40 7 40	ш	ER ED	15	0 00	I	Se Te		635 845		Se Te		7 58 8 15	п	OR
•••	8 20	пî	ÕĎ		22 25	Ĵ	OR		8 56	I	SI	21	9 27	I	Se FD
28	1 59 5 02	I	SI	16	23 37	III	OR	3	20 44	щ	Te	21	7 27	Î	ÖR
	6 17	I	TI	18	4 20	II	ED	6	22 44	П	ED SI		22 14 23 48	П	SI TI
	8 33	i	Te	19	22 34	n n	SI		3 35	ų	OR	22	1 06	- II	Se
29	2 08	I	ED OR	20	0 59		Se		4 25 5 40	I	Se		2 25	i	TI
••	23 30	Î	SI		3 50	ų	Te	-	6 41	I	Te		2 41	п	Te
30	0 46	I	Se		6 21	Î		'	3 53	i	ÖR		4 41	ĵ	Te
	3 01	I	Te		7 25	I	Se		21 53	I II	SI Te	23	22 49 1 54	I	OR
	8 28	iv	Te	21	2 17	Î	ED		22 52	Î	ŤĬ	20	20 08	I	SI
31	0 12	ш	OR		5 03	Ш		8	1 08	I	Te		20 51 23	п	OR
	NOVE	 N (D T	 n		22 47	ų	OR	0	22 20	I	OR		22 23	I	Se Te
d	h m	Sat.	Phen.	22	23 38 0 48	i	ŤÎ	, ,	6 33	iii	ĒR	24	20 20	<u>î</u>	OR
2	4 05	II	SI		1 54	I	Se	10	7 00		OD OD	27	0 53	Ш	TI
	6 53	Î	Se	23	0 15	İ	OR	11	1 39	ÎÙ	ŎŔ		4 25	III	Se
3	7 09	ш	ED		21 31		Te ER		6 21 8 17	11	TI		5 50 6 25	1	ED
4	4 33	Î	ÕR	24	4 56	ÎV	ÕĎ	1.0	9 11	II	Se		7 09	щ	Te
	655 810	I	SI TI		22 36 23 46	III	OD	12	20 29	щ	Se	28	6 15	i	ED
5	4 02	Ĩ	ED	25	3 22	III	ÔR	13	20 43	III	TI	20	9 12	I II	OR SI
	22 47	II II	Te	27	0 54	II	SI	15	1 18	'n	ED	29	2 07	ii	ŤÌ
6	1 24	I	SI		3 27	II	TI		5 18 5 56	п	SI		3 33	- 1	SI Se
	3 39	i	Se		6 19	Î	Te		6 12	Ĩ	ŤÌ		4 10	Ĩ	TI
	4 54	I	Te	ł	7 03	I	SI TI		7 33	I	Se Te		5 00	Ĩ	Se
_	23 50	IV	ËD	28	4 11	Î	ED	14	2 27	Ī	ED	20	6 26	I	Te
7	0 36	ш	OR	[7 38	ш			5 41 19 38	п	SI	30	3 39	i	ÖR
	2 13	Щ	ŤÎ	29	1 12	II	OR		21 27	II	TI		19 42	II	ED
	4 05 5 46		ER Te		2 37	Í	TI		23 46	Ï	SI		22 01	Ĩ	SI
0	22 07	I	Se	Į –	3 47	I	Se	15	0 20	II	Te		22 36	I II	
11	1 46	II	ED	ļ	22 39	i	ED		2 02	Ì	Se	31	0 17	Ĵ	Se
	7 04	II	OR	30	2 05	I	OR		2 55	I	Te ED		0 52	Î	ED
12	5 55	Ì	ED		22 15	Ī	Se	16	0 07	Ĵ	ÕŘ		22 05	Î	ŌR
	22 29	II			23 20	I	Te		6 58 20 30	Ш I	ED Se				
13	1 20	ij	Te						21 21	Î	Te				
	3 17	1	SI												

SATURN AND ITS SATELLITES

By TERENCE DICKINSON

Saturn, with its system of rings, is a unique sight through a telescope. There are three rings. The outer ring A has an outer diameter 169,000 miles. It is separated from the middle ring B by Cassini's gap, which has an outer diameter 149,000 miles, and an inner diameter 145,000 miles. The inner ring C, also known as the dusky or crape ring, has an outer diameter 112,000 miles and an inner diameter 93,000 miles. Evidence for a fourth, innermost ring has been found; this ring is very faint.

Saturn exhibits a system of belts and zones with names and appearances similar to those of Jupiter (see diagram pg. 83).

Titan, the largest and brightest of Saturn's moons is seen easily in a 2-inch or larger telescope. At elongation Titan appears about 5 ring-diameters from Saturn. The satellite orbits Saturn in about 16 days and at magnitude 8.4^* dominates the field around the ringed planet.

Rhea is considerably fainter than Titan at magnitude 9.8 and a good quality 3-inch telescope may be required to detect it. At elongation Rhea is about 2 ring-diameters from the centre of Saturn.

lapetus is unique among the satellites of the solar system in that it is five times brighter at western elongation (mag. 10.1) than at eastern elongation (mag. 11.9). When brightest, lapetus is located about 12 ring-diameters west of its parent planet.

Of the remaining moons only Dione and Tethys are seen in "amateur"-sized telescopes.

*Magnitudes given are at mean opposition.

JAN h 16.0 23.7 12.1 08.1 00.4	UAR Sat. Ti Rh Rh Ti Rh	Elong. E E E W E E	d 25 27 31	h 04.2 05.7 18.1	Sat. Ti Rh Rh PRIL	Elong. E E	d 4 7 12 12 16 20	h 16.0 12.8 01.4 22.9 13.9 15.9	Sat. Ti Rh Rh Ti Rh Ti	Elong. W E E E E W	d 19 21 25 26 30	h 02.3 05.6 18.2 19.8 06.7	Sat. Ti Rh Rh Ti Rh	Elong E E W E
12.8 13.8 01.1 13.4 05.8 04.5	Rh Ti Rh Rh Ti Ia	E E E W E	1 5 9 10 14 17	20.2 06.5 18.9 02.3 07.3 11.3	Ti Rh Rh Ti Rh Ia	Elong. W E E E E E E	21 25 28 30	02.4 15.0 23.1 03.5	Rh Rh Ti Rh	EEEE	d 3 4 4 8	NOV h 19.2 02.3 10.6 07 7	EMB Sat. Rh Ti Ia Rh	ER Elong. E E W F
FEB h 01.8 11.4 14.1 02.4	RUAH Sat. Rh Ti Rh Rh	Elong. E E E E E E	17 18 23 26 27	18.5 19.7 08.1 00.8 20.5	Ti Rh Rh Ti Rh	W E E E E	d 4 6 9 13	h 16.1 16.1 16.8 04.6 17.2	Sat. Rh Ti Ia Rh Rh	Elong. E W E E E	11 12 17 20 21 26	19.7 20.2 08.7 02.1 21.2 09.7	Ti Rh Rh Ti Rh Rh	W E E E E E E E E
03.3 14.7 03.0 08.9 15.4 03.7	Ti Rh Rh Ti Rh Rh	W E E E E E E	d 2 3 6 11	h 09.0 17.2 21.4 09.9	1AY Sat. Rh Ti Rh Rh	Elong. E W E E	14 18 22 22 E	23.3 05.7 16.6 18.3 longati	Rh Ti Rh Ons a	E W E re not	27 30 d	DECI h 10.6	Rh EMBJ Sat. Rh	E E Elong. E
MA h	RCH	Elong.	15 19	23.7 22.4 16.4	Rh Ti	E E W	and	l Octob eing ne	per 3, ar the	Saturn sun.	6 9 13	01.5 23.1 18.6	Ti Rh Ti	E E W
00.8 16.0 03.3 04.3 06.4 16.7 22.3 05.0 17.4	Ti Rh Ia Rh Ti Rh Ti Rh Rh	W E W E E E E E E E E	20 24 26 27 29 d 3	10.8 23.3 06.0 23.1 11.8 JU h 00.3	Rh Ia Ti Rh UNE Sat. Rh	E E E E Elong. E	d 3 7 10 12 16	OCT h 02.0 03.5 16.0 19.5 04.6 17.1	TOBE Sat. Ti Rh Rh Ti Rh Rh	R Elong. E E W E E E E	14 15 18 22 23 28 29	11.5 20.7 23.9 00.5 12.4 00.8 17.4	Rh Ia Rh Ti Rh Rh Ti	* EEEEE EE
	JAN h 16.0 23.7 12.1 108.1 008.1 13.4 12.8 13.8 13.8 13.4 12.8 13.4 12.8 13.4 12.8 13.4 12.8 13.4 105.8 04.5 FEBB h h 11.4 14.7 02.4 03.3 14.7 00.8 3.7 15.4 00.8 1 02.4 h 00.8 1 10.4 10.4	JANUAR h Sat. 16.0 Ti 23.7 Rh 12.1 Rh 08.1 Ti 00.4 Rh 13.8 Ti 01.1 Rh 05.8 Ti 04.5 Ia FEBRUAI h Sat. 01.8 Rh 11.4 Ti 14.1 Rh 02.4 Rh 03.3 Ti 14.7 Rh 03.3 Ti 15.4 Rh 03.3 Ia 04.3 Ia 55.4 Rh 03.3 Ia 04.3 Rh 05.0 Rh 16.7 Rh 22.3 Ti 16.7 Rh 23.3 Ti 17.4 Rh	$\begin{array}{c} \textbf{JANUARY} \\ \textbf{h} Sat. Elong. \\ 16.0 Ti E \\ 23.7 Rh E \\ 12.1 Rh E \\ 12.1 Rh E \\ 13.8 Ti E \\ 01.1 Rh E \\ 13.8 Ti E \\ 01.1 Rh E \\ 13.8 Ti E \\ 01.1 Rh E \\ 13.4 Rh E \\ 13.4 Rh E \\ 13.4 Rh E \\ 13.4 Rh E \\ 03.3 Ti W \\ 04.5 Ia E \\ 03.3 Ti W \\ 14.7 Rh E \\ 03.3 Ti W \\ 14.7 Rh E \\ 03.7 Rh E \\ 03.3 Ti W \\ 16.0 Rh E \\ 03.3 Ti W \\ 16.0 Rh E \\ 03.3 Ti W \\ 16.0 Rh E \\ 03.3 Rh E \\ 05.0 Rh E \\ 16.7 Rh E \\ 05.0 Rh E \\ 17.4 Rh E \\ 05.0 Rh E \\ 17.4 Rh E \\ 05.0 Rh Rh E \\ 05.0 Rh Rh E \\ 05.0 Rh Rh Rh Rh Rh Rh Rh R$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	JANUARY hdhSat. Elong. 25dhSat. Elong. EdhSat. F16.0TiE2705.7RhE712.8Rh12.1RhE2705.7RhE712.8Rh12.1RhE3118.1RhE1221.4Rh12.1RhE120.2TiW2222.9Ti00.4RhEdhSat.Elong.2102.4Rh12.8RhE120.2TiW2515.0Rh13.8TiE506.5RhE2823.1Ti13.4RhE1002.3TiE3003.5Rh13.4RhE1711.3IaEJULYFEBRUARY1819.7RhE416.1Rh11.4TiE2705.7RhE3003.5Rh14.7RhE2600.8TiE616.1Rh14.7RhE20.90RhE2216.6Ti2216.6Ti03.3TiWMAY1123.7TiW2216.6Ti2216.6Ti2216.6Ti2216.6Ti2216.6Ti <t< td=""><td>JANUARY h Sat. Elong. 16.0 Tidh Sat. Elong. 25 04.2 Tidh Sat. Elong. 4 16.0 Ti16.0 TiE27 05.7 RhE12.0 TiE23.7 RhE31 18.1 RhE12 01.4 RhE12.1 RhE12 20.9 TiE22.9 TiE00.4 RhEdh Sat. Elong.12 22.9 TiE00.4 RhEdh Sat. Elong.20 15.9 TiW12.8 RhE1 20.2 TiW20 15.9 TiW13.8 TiE5 06.5 RhE28 23.1 TiE13.4 RhE10 02.3 TiE20 30.5 RhE13.4 RhE10 02.3 TiE00.3.5 RhE4.1 ShE17 11.3 TaEJULYFEBRUARY18 19.7 RhE4 16.1 RhEh Sat. Elong.23 08.1 RhE6 16.1 TiW01.8 RhE26 00.8 TiE9 04.6 RhE11.4 TiE27 20.5 RhE9 04.6 RhE13.3 TiWMAY11 23.7 TiE14 23.3 TiE15.4 RhE01.0 RhE22 16.6 TiW03.3 TiWMARCH19 0.9 RhE22 18.3 RhE15.4 RhE20 10.8 RhE3 03.5 RhE16.0 RhE29 11.8 RhE3 02.0 TiE16.7 RhE29 11.8 RhE3 02.0 TiE16.0 RhE29 11.8 Rh</td></t<> <td></td> <td>JANUARY hdhSat.Elong. 25dhSat.Elong. 27dhSat.Elong. 27dhSat.Elong. 25dhhSat.Elong. 25dhhSat.Elong. 25dhhNOV16.0TiE2705.7RhE712.8RhE2105.62518.212.1RhE1118.1RhE1222.9TiE2619.812.1RhE120.2TiW2015.9TiW06.712.8RhE120.2TiW2015.9TiW06.712.8RhE120.2TiW2515.0RhE319.213.8TiE1002.3TiE3003.5RhE410.604.5IaE1711.3IaEJULY807.711.91110.604.5IaE1711.3IaEJULY807.71220.210.6807.71220.210.6807.710.6807.710.6807.710.610.61119.710.610.610.610.610.610.610.610.610.610.610.610.6<td>JANUARY h Sat. Elong. 16.0 Ti E 23.7 Rh E 21.1 Rh E 23.7 Rh E 23.7 Rh Edh Sat. Elong. 25 04.2 Ti E 27 05.7 Rh E 21 05.7 Rh E 21 05.6 Rh 22 01.4 Rh E 22 01.4 Rh E 22 01.4 Rh E 22 01.4 Rh E 22 01.4 Rh E 20 12.9 Ti W 20 15.9 Ti W 20 06.7 Rh 20 15.9 Rh E 20 06.7 Rh 20 06.7 Rh 20 06.7 Rh 20 15.9 Rh E 20 06.7 Rh 20 07.3 Rh 20 07.7 Rh<br< td=""></br<></td></td>	JANUARY h Sat. Elong. 16.0 Tidh Sat. Elong. 25 04.2 Tidh Sat. Elong. 4 16.0 Ti16.0 TiE27 05.7 RhE12.0 TiE23.7 RhE31 18.1 RhE12 01.4 RhE12.1 RhE12 20.9 TiE22.9 TiE00.4 RhEdh Sat. Elong.12 22.9 TiE00.4 RhEdh Sat. Elong.20 15.9 TiW12.8 RhE1 20.2 TiW20 15.9 TiW13.8 TiE5 06.5 RhE28 23.1 TiE13.4 RhE10 02.3 TiE20 30.5 RhE13.4 RhE10 02.3 TiE00.3.5 RhE4.1 ShE17 11.3 TaEJULYFEBRUARY18 19.7 RhE4 16.1 RhEh Sat. Elong.23 08.1 RhE6 16.1 TiW01.8 RhE26 00.8 TiE9 04.6 RhE11.4 TiE27 20.5 RhE9 04.6 RhE13.3 TiWMAY11 23.7 TiE14 23.3 TiE15.4 RhE01.0 RhE22 16.6 TiW03.3 TiWMARCH19 0.9 RhE22 18.3 RhE15.4 RhE20 10.8 RhE3 03.5 RhE16.0 RhE29 11.8 RhE3 02.0 TiE16.7 RhE29 11.8 RhE3 02.0 TiE16.0 RhE29 11.8 Rh		JANUARY hdhSat.Elong. 25dhSat.Elong. 27dhSat.Elong. 27dhSat.Elong. 25dhhSat.Elong. 25dhhSat.Elong. 25dhhNOV16.0TiE2705.7RhE712.8RhE2105.62518.212.1RhE1118.1RhE1222.9TiE2619.812.1RhE120.2TiW2015.9TiW06.712.8RhE120.2TiW2015.9TiW06.712.8RhE120.2TiW2515.0RhE319.213.8TiE1002.3TiE3003.5RhE410.604.5IaE1711.3IaEJULY807.711.91110.604.5IaE1711.3IaEJULY807.71220.210.6807.71220.210.6807.710.6807.710.6807.710.610.61119.710.610.610.610.610.610.610.610.610.610.610.610.6 <td>JANUARY h Sat. Elong. 16.0 Ti E 23.7 Rh E 21.1 Rh E 23.7 Rh E 23.7 Rh Edh Sat. Elong. 25 04.2 Ti E 27 05.7 Rh E 21 05.7 Rh E 21 05.6 Rh 22 01.4 Rh E 22 01.4 Rh E 22 01.4 Rh E 22 01.4 Rh E 22 01.4 Rh E 20 12.9 Ti W 20 15.9 Ti W 20 06.7 Rh 20 15.9 Rh E 20 06.7 Rh 20 06.7 Rh 20 06.7 Rh 20 15.9 Rh E 20 06.7 Rh 20 07.3 Rh 20 07.7 Rh<br< td=""></br<></td>	JANUARY h Sat. Elong. 16.0 Ti E 23.7 Rh E 21.1 Rh E 23.7 Rh E 23.7 Rh Edh Sat. Elong. 25 04.2 Ti E 27 05.7 Rh E 21 05.7 Rh E 21 05.6 Rh 22 01.4 Rh E 22 01.4 Rh E 22 01.4 Rh E 22 01.4 Rh E 22 01.4 Rh E 20 12.9 Ti W 20 15.9 Ti W 20 06.7 Rh 20 15.9 Rh E 20 06.7 Rh 20 06.7 Rh 20 06.7 Rh 20 15.9 Rh E 20 06.7 Rh 20 07.3 Rh 20 07.7 Rh <br< td=""></br<>

ELONGATIONS OF SATURN'S SATELLITES, 1978 (E.S.T.)

North

APPARENT ORBITS OF SATELLITES I-VII, AT DATE OF OPPOSITION, FEBRUARY 16

NAME	MEAN ST	NODIC PERIOD		NAME	Mean Syn	odic Perio	D
	đ	h			d	ь	
Janus	0	18.0	v	Rhea	4	12.5	
Mimas	0	22.6	VI	Titan	15	23.3	
Enceladus	1	08.9	VII	Hyperion	21	07.6	
Tethys	1	21.3	VIII	Iapetus	79	22.1	
Dione	2	17.7	IX	Phæbe	523	15.6	
	NAME Janus Mimas Enceladus Tethys Dione	NAME MEAN Stands Janus 0 Mimas 0 Enceladus 1 Tethys 1 Dione 2	NAME MEAN STNODIC PERIOD Janus d h Mimas 0 18.0 Mimas 0.22.6 Enceladus Tethys 1 21.3 Dione 2 17.7	NAME MEAN STNODIC PERIOD Janus 0 18.0 V Mimas 0 22.6 VI Enceladus 1 08.9 VIII Tethys 1 21.3 VIII Dione 2 17.7 IX	NAME MEAN STNODIC PERIOD NAME Janus 0 18.0 V Mimas 0 22.6 VI Titan Enceladus 1 08.9 VII Hyperion Tethys 1 21.3 VIII Inpetion Dione 2 17.7 IX Pheobe	NAME MEAN SYNODIC PERIOD NAME MEAN SYN Janus 0 18.0 V Rhea 4 Mimas 0 26.6 VI Tita 15 Enceladus 1 08.9 VII Hyperion 21 Tethys 1 21.3 VIII Ispectus 79 Dione 2 17.7 IX Phoebe 523	NAME MEAN STNODIC PERIOD NAME MEAN STNODIC PERIOD Janus 0 18.0 V Rhea 4 12.5 Minnas 0 22.6 VI Titan 15 23.3 Enceladus 1 08.9 VII Hyperion 21 07.6 Tethys 1 21.3 VIII lapctus 79 22.1 Dione 2 17.7 IX Pheebe 523 15.6

The diagram above, which is taken from *The Astronomical Ephemeris*, shows the apparent orbits of satellites I-VII of Saturn, at the date of opposition. At other dates, the inclination of the orbits is slightly different (see page 33). On the orbits of satellites IV-VII, there are markers which show the days elapsed since greatest elongation east. The dates of greatest elongation east are given for V (Rhea) and VI (Titan) in the table on page 87. The dates of the first greatest elongation east in 1978 are Jan. 3, 0°3 E.S.T. for Dione and Jan. 5, 10°9 E.S.T. for Hyperion. The greatest elongation east then recurs at intervals of the mean synodic period.

Iapetus is most conspicuous at greatest elongation west, at which time it is about 12 ring-diameters west of the planet.

ASTEROIDS—EPHEMERIDES AT OPPOSITION, 1978

The asteroids Ceres, Pallas, Juno and Vesta all come to opposition in 1978 within an interval of less than two months! The following table gives the radiometric diameter, rotation period, orbital period, eccentricity and inclination for each asteroid, together with the date (U.T.), constellation, visual magnitude, right ascension and declination (astrometric, 1950 co-ordinates) and distance from earth, at opposition.

		Dee						At Op	position		
Asteroid	Diam.	Rot.	Orb.	e	i	Date	Const.	Vis. Mag.	R.A. 1950	Dec. 1950	Dist.
1 Ceres 2 Pallas 3 Juno 4 Vesta	km 1000 530 240 530	hr. 9.1 10.0 7.2 10.7	yr. 4.6 4.6 4.4 3.6	0.08 0.24 0.26 0.09	° 11 35 13 7	U.T. July 9 June 4 July 24 June 5	Sgr Her Aql Oph	7.0 8.8 9.2 5.5	h m 19 16 17 13 20 00 16 52	$\begin{array}{r} & \circ & \cdot \\ -29 & 38 \\ +25 & 48 \\ -04 & 53 \\ -15 & 44 \end{array}$	A.U. 1.89 2.35 1.83 1.14

The following table lists the 1950 co-ordinates (for convenience in plotting on the Atlas Coeli) and the visual magnitudes of the four asteroids on selected dates (at 0 h U.T.) near opposition. The maps, which are suitable for binocular or telescopic observers, show the positions of the four asteroids.

Note that, although Ceres, Pallas, Juno and Vesta were the first four asteroids to be discovered, they are not the four largest: at least half a dozen asteroids are probably larger than Juno.

Dete		CERES		PALLAS JUNC						JUNO	
0 h U.T.	R.A.	Dec.	Mag.		R.A.	Dec.	Mag.		R.A.	Dec.	Mag.
May 1 11 21 31	h m 19 40.0 19 43.7 19 44.9 19 43.5	° ' -24 21 -24 49 -25 26 -26 11	7.5 7.4 7.3 7.2		h m 17 35.5 17 30.7 17 24.1 17 16.1		8.8 8.8 8.8 8.8		h m 20 18.1 20 23.3 20 26.7 20 28.1	-06 27 -05 38 -04 55 -04 18	10.2 10.0 9.9 9.7
June 10 20 30	19 39.4 19 32.9 19 24.6	$-27 ext{ 03} \\ -27 ext{ 59} \\ -28 ext{ 53}$	7.2 7.1 7.1		17 07.6 16 59.2 16 51.8	$^{+25}_{+25}$ $^{57}_{46}_{+25}$ $^{46}_{05}$	8.9 8.9 9.0		20 27.3 20 24.3 20 19.2	$\begin{array}{c} -03 & 52 \\ -03 & 38 \\ -03 & 40 \end{array}$	9.6 9.5 9.4
July 10 20 30	19 15.1 19 05.5 18 56.9	$\begin{array}{r} -29 \ 43 \\ -30 \ 23 \\ -30 \ 52 \end{array}$	7.0 7.1 7.2		16 46.0 16 42.1 16 40.2	$^{+23}_{+22} {}^{58}_{31}_{+20} {}^{50}_{50}$	9.0 9.1 9.2		20 12.2 20 03.9 19 55.2	$\begin{array}{r} -03 & 58 \\ -04 & 34 \\ -05 & 25 \end{array}$	9.3 9.2 9.1
Aug. 9 19 29	$\begin{array}{c} 18 & 50.2 \\ 18 & 45.9 \\ 18 & 44.3 \end{array}$	$\begin{array}{r} -31 & 09 \\ -31 & 17 \\ -31 & 18 \end{array}$	7.3 7.4 7.5		$\begin{array}{c} 16 \ 40.5 \\ 16 \ 42.8 \\ 16 \ 46.9 \end{array}$	$^{+18}_{+17} {\begin{array}{}_{05}\\ 59\\ +17 \\ +15 \\ 11 \end{array}}$	9.3 9.4 9.5		19 46.8 19 39.8 19 34.7	$\begin{array}{r} -06 \ 28 \\ -07 \ 39 \\ -08 \ 52 \end{array}$	9.2 9.2 9.2
Date		VESTA			7			a		•_ •,	
0 h U.T.	R.A.	Dec.	Mag.			• • •	• • #		1	•	
May 1 11 21 31	h m 17 17.8 17 13.7 17 06.6 16 57.3	-15 08-15 11-15 19-15 34	5.7 5.7 5.6 5.6		 		, 	HE	se (1)	PALLA	7
June 10 20 30	16 47.1 16 37.6 16 29.9	-15 56 -16 25 -17 02	5.5 5.6 5.7			•' • •		[●a	- <u>_</u>	
July 10 20 30	$\begin{array}{c} 16 & 25.2 \\ 16 & 23.7 \\ 16 & 25.6 \end{array}$	-17 45 -18 32 -19 24	5.8 5.9 6.0			•, AU		23	•,	* ; 	s
Aug. 9 19 29	16 30.7 16 38.6 16 49.0	$\begin{array}{r} -20 \ 18 \\ -21 \ 12 \\ -22 \ 04 \end{array}$	6.1 6.3 6.5		•	JNO	•	S	R	ОРН	•••

The key map at right shows the areas covered by the four other maps.

SCT

•,

VEST

SCO

ē,

SGR

CERES

COMETS IN 1978

By Brian G. Marsden

The following periodic comets are expected at perihelion during 1978:

	Perih	elion			Perih	Perihelion		
Comet	Date	Dist.	Period	Comet	Date	Dist.	Period	
Tempel 1 Arend-Rigaux Tempel 2 Wolf-Harrington Whipple Tsuchinshan 1 Kojima Daniel	Jan. 11 Feb. 2 Feb. 20 Mar. 15 Mar. 27 May 7 May 24 July 8	A.U. 1.50 1.44 1.37 1.61 2.47 1.50 2.40 1.66	yr. 5.5 6.8 5.3 6.5 7.4 6.7 7.9 7.1	Ashbrook-Jackson Tsuchinshan 2 Comas Solá Clark Van Biesbroeck Jackson-Neujmin Tuttle-Giacobini-Kresák	Aug. 19 Sept. 20 Sept. 24 Nov. 26 Dec. 3 Dec. 25 Dec. 25	A.U. 2.28 1.78 1.87 1.56 2.40 1.43 1.12	yr. 7.4 6.8 8.9 5.5 12.4 8.4 5.6	

Comets Tempel 1, Tempel 2, Wolf-Harrington, Whipple and Ashbrook-Jackson were recovered early in 1977, but neither these nor any of the other comets listed above is expected to become a bright object. Comet Tuttle-Giacobini-Kresák experienced two outbursts in 1973, one of them bringing the comet to naked-eye brightness, but the 1978 return is not a particularly favourable one, and a recurrence is highly unlikely. As in 1971, the return of P/Daniel this year is highly unfavourable, and this comet will certainly escape detection entirely.

Comets Kojima and Clark are of interest because they are making their first predicted returns this year. The orbit of the former comet has been changed rather substantially as the result of a close approach to Jupiter, and with its increased perihelion distance this comet will always be very faint in the future.

METEORS, FIREBALLS AND METEORITES

By Peter M. Millman

Meteoroids are small solid particles moving in orbits about the sun. On entering the earth's atmosphere they become luminous and appear as meteors or fireballs and in rare cases, if large enough to avoid complete fragmentation and vaporization, they may fall to the earth as meteorites.

Meteors are visible on any night of the year. At certain times of the year the earth encounters large numbers of meteoroids all moving together along the same orbit. Such a group is known as a meteor stream and the visible phenomenon is called a meteor shower. The orbits followed by these meteor streams are very similar to those of short-period comets, and in many cases can be identified with the orbits of specific comets.

The radiant is the position among the stars from which the meteors of a given shower seem to radiate. This is an effect of perspective commonly observed for any group of parallel lines. Some showers, notably the Quadrantids, Perseids and Geminids, are very regular in their return each year and do not vary greatly in the numbers of meteors seen at the time of maximum. Other showers, like the Leonids, are very unpredictable and may arrive in great numbers or fail to appear at all in any given year. The δ Aquarids and the Taurids are spread out over a fairly extended period of time without a sharp maximum.

An observer located away from city lights and with perfect sky conditions will see an overall average of seven sporadic meteors per hour apart from the shower meteors. These have been included in the hourly rates listed in the table. Slight haze or nearby lighting will greatly reduce the number of meteors seen. More meteors appear in the early morning hours than in the evening, and more during the last half of the year than during the first half.

When a meteor has a luminosity greater than the brightest stars and planets it is generally termed a fireball. The appearance of any very bright fireball should be reported immediately to the nearest astronomical group or other organization concerned with the collection of such information. Where no local organization exists, reports should be sent to Meteor Centre, Herzberg Institute of Astrophysics, National Research Council of Canada, Ottawa, Ontario, K1A 0R6. If sounds are heard accompanying a bright fireball there is a possibility that a meteorite may have fallen. Astronomers must rely on observations made by the general public to track down such an object.

					Ra	diant		C'ante		Normal	
	Shower Maximum		Position at Max		Daily Motion		Observer		to 1/4		
Shower	Date	E.S.T.	Moon	R.A.	Dec.	R.A.	Dec.	Rate	Velocity	of Max.	
Quadrantids Lyrids η Aquarids S. δ Aquarids Perseids Orionids S. Taurids Leonids Geminids Ursids Quadrantids	Jan. 3 Apr. 22 May 5 July 29 Aug. 12 Oct. 21 Nov. 4 Nov. 17 Dec. 14 Dec. 22 Jan. 3 (1979)	$ \begin{array}{r} h \\ 14 \\ 10 \\ 11 \\ $	LQ: F.M. LQ: F.Q. F.Q. F.Q. F.Q. F.Q. F.Q.	h m 15 28 18 16 22 24 22 36 03 04 06 20 03 32 10 08 07 32 14 28 15 28	$^{\circ}$ +50 +34 00 -17 +58 +15 +14 +22 +32 +76 +50	$ \frac{m}{+4.4} \\ +3.6 \\ +3.4 \\ +5.4 \\ +4.9 \\ +2.7 \\ +2.8 \\ +4.2 \\ $	$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ +0.4 \\ +0.12 \\ +0.13 \\ +0.13 \\ +0.42 \\ -0.07 \\ \\ & \\ \end{array}$	40 15 20 20 50 25 15 15 50 15 40	km/sec 41 48 64 40 60 66 28 72 35 34 41	days 1.1 2 3 4.6 2 2.6 2 1.1	

MAJOR VISUAL METEOR SHOWERS FOR 1978

A SELECTION OF MINOR VISUAL METEOR SHOWERS

Shower	Dates	Date of Max.	Velocity
δ Leonids σ Leonids τ Herculids χ Scorpiids N. δ Aquarids α Capricornids S. t Aquarids κ Cygnids κ Cygnids S. Piscids N. Piscids N. Piscids N. Piscids Annual Andromedids Coma Berenicids	Feb. 5-Mar. 19 Mar. 21-May 13 May 19-June 14 May 27-June 20 July 14-Aug. 25 July 15-Aug. 10 July 15-Aug. 25 July 15-Sept. 20 Aug. 9-Oct. 6 Aug. 31-Nov. 2 Sept. 25-Oct. 19 Sept. 19-Dec. 1 Sept. 25-Nov. 12 Dec. 12-Jan. 23	Feb. 26 Apr. 17 June 3 June 5 Aug. 12 July 30 Aug. 20 Aug. 18 Sept. 20 Oct. 12 Nov. 13 Oct. 3	km/sec 23 20 15 21 42 23 34 31 25 26 29 29 18–23 65

For more information concerning meteor showers, see the paper by A. F. Cook in "Evolutionary and Physical Properties of Meteoroids", NASA SP-319, pp. 183–191, 1973.

NORTH AMERICAN METEORITE IMPACT SITES

BY P. BLYTH ROBERTSON

The search for ancient terrestrial meteorite craters, and investigations in the related fields of shock metamorphism and cratering mechanics, have been carried out on a continuing basis since approximately 1950, although a few structures were investigated earlier. In Canada, this research is undertaken largely at the Earth Physics Branch, Dept. Energy, Mines and Resources, and in the United States at the facilities of NASA and the U.S. Geological Survey. Particular aspects of these studies are also carried out at various universities in both countries, and the information in the following table is a compilation from all these sources.

Of the thirty-six confirmed North American impact structures, which account for almost half of the world's recognized total, meteorite fragments are preserved at only three. In large impacts, where craters greater than approximately 1.5 km in diameter are created, extreme shock pressures and temperatures vapourize or melt the meteorite which subsequently becomes thoroughly mixed with the melted target rocks and is no longer recognizable in its original form. These larger hypervelocity impact craters are therefore identified by the presence of shock metamorphic effects, the characteristic suite of deformation in the target rocks produced by shock pressures sures exceeding approximately 7 GPa (1 GPa = 10 kilobars).

In addition to the sites whose impact origin is confirmed by identification of diagnostic shock features, there are approximately twenty structures in Canada and the United States for which an impact origin seems highly probable, but where distinctive evidence of shock metamorphism has not been found.

In the table, sites accessible by road or boat are marked "A" or "B" respectively and those sites where data have been obtained through diamond-drilling or geophysical surveys are signified by "D" and "G", respectively.

Name	Lat.	Long.	Diam.	Age			
			(km)	(×10° yr)	Surface Expression	Visible Geologic Fea	tures
Barringer, Meteor Crater, Ariz.	35 02	10 111	1.2	.05	rimmed polygonal crater	fragments of "Canyon Diablo" meteorite, highl shocked sandstone	×
Brent, Ont. Carswell, Sask. Charlevoix, Que.	46 05 58 27 47 32	078 29 109 30 070 18	30 30	450 ± 30 485 ± 50 360 ± 25	sediment-filled shallow depression discontinuous circular ridge semi-circular trough, central elevation	disturbed rocks fracturing shatter cones, breccia breccia, shatter cones,	999 A D A A A A A A A A A A A A A A A A A A
Clearwater Lake East, Que. Clearwater Lake West, Que. Crooked Creek, Missouri	56 05 56 13 37 50	074 07 074 30 091 23	23 35 5	290 ± 20 290 ± 20 320 ± 80	circular lake island ring in circular lake oval area of disturbed rocks, shallow	impact melt sedimentary float impact melt	A D D D D D D D D D D D D D D D D D D
Decaturville, Missouri Deep Bay, Sask. Flynn Creek, Tenn.	37 54 56 24 36 16	092 43 102 59 085 37	6 12 3.6	< 300 100±50 360±20	marginal depression slight oval depression circular bay sediment-filled shallow depression with	breccia, shatter cones breccia, shatter cones sedimentary float breccia, shatter cones,	A D G
Gow Lake, Sask. Haviland, Kansas	56 27 37 37	104 29 099 05	5 0.0011	200 < 0.001	slight central elevation lake and central island excavated depression	disturbed rocks breccia fragments of "Brenham"	A D G
Haughton Dome, NWT Holleford, Ont. Ile Rouleau, Que.	75 22 44 28 50 41	089 40 076 38 073 53	804	<20 550±100 < 300	shallow circular depression sediment-filed shallow depression island is central uplift of submerged	meteorite shatter cones, breccia sedimentary fill shatter cones, breccia	A D G
Kentland, Ind.	40 45	087 24	9	300	structure central uplift exposed in quarries, rest huried	dikes breccia, shatter cones, disturbed rocks	•
Lac Couture, Que. Lac La Moinerie, Que. Lake St Marrin Man	60 08 57 26 51 47	075 18 066 36 098 33	10 8 40	420 400 775+40	circular lake lake-filled, partly circular none buried and ecoded	breccia float breccia float inreact melt	9 D D U V
Lake Wanapitei, Ont. Manicouagan, Que.	51 23 51 23	080 44 068 42	75.5	37 ± 2 210 ± 4	lake-filled, partly circular circumferal lake, central elevation	breccia float impact melt, breccia	
Manson, Iowa Middlesboro, Ky. Mistastin Lake, Lahr	36 37 36 37	094 31 083 44 063 18	90 2 / 30	< 70 300 38+4	none, central elevation buried to 30 m circular depression ellintical lake and central island	none disturbed rocks hreccia imnact melt	A D G
New Quebec Crater, Que. Nicholson Lake, NWT Odessa, Tex.	61 17 62 40 31 48	073 40 102 41 102 30	3.2 12.5 0.17	< 450 < 450 0.03	rimmed, circular lake irregular lake with islands sediment-filled shallow depression with	raised rim breccia fragments of "Odessa"	00 1
Pilot Lake, NWT Redwing Creek, N. Dak.	60 17 47 40	111 01 102 30	νo.	300200	very slight rim, 4 others buried and smaller circular lake none, buried	meteorite fracturing, breccia float none	A D G
Serpent Mound, Ohio	39 02	083 24	6.4	300	circular area of disturbed rock, slight central elevation and surrounding depression	breccia, shatter cones	0 V
Sierra Madera, Tex.	30 36	102 55	13	100	central hills, annular depression, outer ring of hills	breccia, shatter cones	A D G
Slate Islands, Ont.	48 40	087 00	30	350	islands are central uplift of submerged	shatter cones, breccia	с и
Steen River, Alta. Sudbury, Ont.	59 31 46 36	117 38 081 11	25 100+	95 ± 7 1840 \pm 150	none, buried to 200 metres elliptical basin	none breccia, impact melt,	
Wells Creek, Tenn.	36 23	087 40	14	200 ± 100	basin with central hill, inner and	breccia, shatter cones	A D G
West Hawk Lake, Man.	49 46	11 260	2.7	100 ± 50	outer annular, vancys anu nuges circular lake	none	ADG

TABLE OF PRECESSION FOR 50 YEARS If Declination is positive, use inner R.A. scale; if declination is negative, use outer R.A. scale, and reverse the sign of the precession in declination

Ŗ.A.	tor Dec. –	24 m 23 30 23 00	22 30 22 00 21 30	21 00 20 30 20 00	02 61 00 61 18 00 18 00	12 00 11 30 11 00	05 01 00 00 00 30	9 8 8 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 30 6 90 90 90
Ŗ.A.	Dec.+	11 30 m 11 30 m	10 30 10 00 9 30	6 8 8 00 00 00 00	7 30 6 30 6 00	23 30 23 30 23 00	22 30 21 30 21 30	20 30 20 30 20 00	19 30 19 00 18 30 18 00
Prec.	Dec.	, -16.7 -16.6 -16.1	-15.4 -14.5 -13.2	-11.8 -10.2 -8.3	 0.022	$^{+16.7}_{+16.6}$	+15 + 115 + 114.5 + 113.2	$^{+11.8}_{+8.3}$	+++ 0.02 0.02
	0°	+2.56 2.56 2.56	2.56 2.56 2.56	2.56 2.56 2.56	2.56 2.56 2.56	2.56 2.56 2.56	2.56 2.56 2.56	2.56 2.56 2.56	2.56 2.56 2.56
	10°	+2.56 2.59 2.61	2.64 2.66 2.68	2.73 2.73 2.73	2.74 2.75 2.75 2.76	2.55 2.53 2.51	2.49 2.46 2.44	2.42 2.39 2.39	2.38 2.37 2.37 2.36
	20°	+2.56 2.61 2.67	2.72 2.76 2.81	2.85 2.91 2.91	2.93 2.95 2.97 2.97	2.56 2.51 2.45	2.40 2.36 2.31	2.27 2.24 2.21	2.19 2.17 2.16 2.16
	30°	+2.56 2.64 2.73	2.81 2.95	3.02 3.12	3.16 3.20 3.20	2.56 2.39 2.39	2.31 2.24 2.17	2.05 2.05 2.00	1.97 1.94 1.92 1.92
cension	40°	+2.56 2.68 2.80	3.03 3.13	3.22 3.37 3.37	3.42 3.46 3.50	2.32 2.32	2.20 2.09 1.99	$1.90 \\ 1.81 \\ 1.75 \\ 1.75$	$1.70 \\ 1.66 \\ 1.63 \\ 1.62 \\ 1.62$
in right as	50°	+2.56 2.73 2.90	3.07 3.37 3.37	3.50 3.61 3.71	3.79 3.84 3.88 3.88	2.25 2.22 2.22	2.05 1.90 1.75	1.62 1.51 1.41	$1.33 \\ 1.28 \\ 1.25 \\ 1.23 \\ $
Precession	60°	+2.56 +2.81 3.06	3.30 3.73 3.73	3.92 4.23 4.23	4.44 4.42 4.47 49	2.56 2.31 2.06	1.82 1.60 1.39	$1.20 \\ 1.03 \\ 0.89 \\ 0.89$	0.78 0.70 0.65 0.63
	~0 <i>L</i>	+2.56 2.96 3.36	3.73 4.09 4.42	4.73 4.99 5.21	5.39 5.60 5.62 5.62	2.56 2.16 1.77	$1.39 \\ 1.03 \\ 0.70$	$^{+0.40}_{-0.09}$	$\begin{array}{c} -0.27\\ -0.40\\ -0.47\\ -0.50\end{array}$
	75°	$^{+2.56}_{3.10}$	4.15 5.09	5.50 5.86 6.16	6.40 6.58 6.72 6.72	2.56 2.02 1.48	$0.97 \\ 0.46 \\ +0.03$	-0.38 -0.74 -1.04	$^{-1.28}_{-1.45}$ $^{-1.56}_{-1.60}$
	80°	$^{ m m}_{ m 3.38}$ 4.19	4.98 5.72 6.40	7.02 7.57 8.03	8.40 8.82 8.82 8.83 8.83	$2.56 \\ 1.82 \\ 0.93$	$^{+0.14}_{-0.60}$	-1.90 -2.45 -2.91	-3.27 -3.54 -3.70 -3.75
	δ=85°	+ 2.56 5.85 5.85	7.43 8.92 10.31	11.56 12.66 13.58	14.32 14.85 15.18 15.29	$^+$ $^{2.56}_{-0.73}$	- 2.31 - 3.80 - 5.19	- 6.44 - 7.54 - 8.46	$\begin{array}{c} - & 9.20 \\ - & 9.73 \\ -10.06 \\ -10.17 \end{array}$
Prec.	Dec.	$^{+16.7}_{+16.6}$	+15.4 +14.5 +13.2	$^{+11.8}_{+10.2}$	+++ 6.450 4.000 4.000	-16.7 -16.6 -16.1	-15.4 -14.5 -13 2	$-11 & 8 \\ -10.2 & -8.3 & -$	6.4 6.4 0.0
R.A.	Dec.+	1 00 00 m	22 <u>30</u> 22 30	6 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	4 30 6 5 30 6 00 0 00 0 00	12 00 13 00	13 30 14 00 14 30	15 00 15 30 16 00	16 30 17 00 17 30 18 00
R.A.	Dec	h m 12 00 13 00 13 00	13 30 14 00 14 30	15 00 15 30 16 00	16 30 17 00 18 00	00 00 00 00 00 00	1 30 2 00 30	ы 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 5 30 6 00 00 00 00 00 00

FINDING LIST OF NAMED STARS

					+
Name	Con.	R.A.	Name	Con.	R.A.
Acamar, ā'ka-mär Achernar, ā'kēr-när Acrux, ā'krŭks Adhara, a-dā'ra Al Na'ir, ăl-nâr'	 θ Eri α Eri α Cru ε CMa α Gru 	02 01 12 06 22	Gienah, jē'n <i>a</i> Hadar, hād'är Hamal, hăm'ăl Kaus Australis, kôs ôs-trā'lĭs	γ Crv β Cen α Ari ε Sgr	12 14 02 18
Albireo, ăl-bĭr'ē-ō Alcyone, ăl-sī'ō-nē Aldebaran, ăl-dēb'a-ran Alderamin, ăl-dēr'a-mĭn Algenib, ăl-jē'nĭb	β Cyg η Tau α Tau α Cep γ Peg	19 03 04 21 00	Kochab, kõ'kăb Markab, mär'kăb Megrez, mē'grěz Menkar, měn'kär Menkent, měn'kěnt	$ \begin{array}{c} \beta \ \text{UMi} \\ \alpha \ \text{Peg} \\ \delta \ \text{UMa} \\ \alpha \ \text{Cet} \\ \theta \ \text{Cen} \end{array} $	14 23 12 03 14
Algol, ăl'gŏl Alioth, ăl'i-ŏth Alkaid, ăl-kād' Almach, ăl'măk Alnilam, ăl-nī'lăm	β Per ε UMa η UMa γ And ε Ori	03 12 13 02 05	Merak, mē'răk Miaplacidus, mī' <i>a</i> -plăs'ī-dus Mira, mī'ra Mirach, mī'rāk	β UMa β Car ο Cet β And	10 09 02 01
Alphard, ăl'färd Alphecca, ăl-fĕk'a Alpheratz, ăl-fê'răts Altair, ăl-târ' Ankaa	α Hya α CrB α And α Aql α Phe	09 15 00 19 00	Mirfak, mĭr'făk Mizar, mĭ'zär Nunki, nŭn'kē Peacock Phecda, fĕk'da	α Per ζ UMa σ Sgr α Pav γ UMa	03 13 18 20 11
Antares, ăn-tā'rēs Arcturus, ärk-tū'r <i>ū</i> s Atria, ā'trī-a Avior, ă-vī-ôr' Bellatrix, bē-lā'trĭks	α Sco α Boo α TrA ε Car γ Ori	16 14 16 08 05	Polaris Pollux, pŏl'ŭks Procyon, prō'sĭ-ŏn Ras-Algethi, ràs'ăl-jē'the Rasalhague, rås'ăl-hā'gwē	α UMi β Gem α CMi α Her α Oph	01 07 07 17 17
Betelgeuse, bět'el-juz Canopus, ka-nō'pūs Capella, ka-pěl'a Caph, kăf Castor, kás'těr	α Ori α Car α Aur β Cas α Gem	05 06 05 00 07	Regulus, rěg'u-l <i>ŭ</i> s Rigel, rī'jel Rigil Kentaurus rī'jĭl kěn-tô'r <i>ŭ</i> s Sabik, sā'bīk	α Leo β Ori α Cen η Oph	10 05 14 17
Deneb, děn'ěb Denebola, dě-něb'ō-la Diphda, dĭf'da Dubhe, dŭb'ẽ Elnath, ĕl'năth	$\begin{array}{c} \alpha \ Cyg \\ \beta \ Leo \\ \beta \ Cet \\ \alpha \ UMa \\ \beta \ Tau \end{array}$	20 11 00 11 05	Scheat, shē'ăt Schedar, shēd'ar Shaula, shô'la Sirius, sĭr'ī-ŭs Spica, spī'ka	$\beta \operatorname{Peg}_{\alpha} \operatorname{Cas}_{\lambda} \operatorname{Sco}_{\alpha} \operatorname{CMa}_{\alpha} \operatorname{Vir}$	23 00 17 06 13
Eltanin, ĕl-tā'nĭn Enif, ĕn'īf Fomalhaut, fō'm <i>ă</i> l-ôt Gacrux, gä'krŭks	γ Dra ε Peg α PsA γ Cru	17 21 22 12	Suhail, sŭ-hāl' Vega, vē'g <i>a</i> Zubenelgenubi, zōō-bĕn'ĕl-jĕ-nū'bē	λ Vel α Lyr α Lib	09 18 14

Pronunciations are generally as given by G. A. Davis, *Popular Astronomy*, **52**, 8 (1944). Key to pronunciation on p. 5.

THE BRIGHTEST STARS

BY DONALD A. MACRAE

The 286 stars brighter than apparent magnitude 3.55.

Star. If the star is a visual double the letter A indicates that the data are for the brighter component. The brightness and separation of the second component B are given in the last column. Sometimes the double is too close to be conveniently resolved and the data refer to the combined light, AB; in interpreting such data the magnitudes of the two components must be considered.

Visual Magnitude (V). These magnitudes are based on photoelectric observations, with a few exceptions, which have been adjusted to match the yellow coloursensitivity of the eye. The photometric system is that of Johnson and Morgan in Ap. J., vol. 117, p. 313, 1953. It is as likely as not that the true magnitude is within 0.03 mag. of the quoted figure, on the average. Variable stars are indicated with a 'v''. The type of variability, range, R, in magnitudes, and period in days are given.

Colour index (B-V). The blue magnitude, B, is the brightness of a star as observed photoelectrically through a blue filter. The difference B-V is therefore a measure of the colour of a star. The table reveals a close relation between B-V and spectral type. Some of the stars are slightly reddened by interstellar dust. The probable error of a value of B-V is only 0.01 or 0.02 mag.

Type. The customary spectral (temperature) classification is given first. The Roman numerals are indicators of *luminosity class*. They are to be interpreted as follows: Ia—most luminous supergiants; Ib—less luminous supergiants; II—bright giants; III—normal giants; IV—subgiants; V—main sequence stars. Intermediate classes are sometimes used, e.g. Iab. Approximate absolute magnitudes can be assigned to the various spectral and luminosity class combinations. Other symbols used in this column are: p—a peculiarity; e—emission lines; v—the spectrum is variable; m—lines due to metallic elements are abnormally strong; f—the O-type spectrum has several broad emission lines; n or nn—unusually wide or diffuse lines. A composite spectrum, e.g. M1 Ib+B, shows up when a star is composed of two nearly equal but unresolved components. The table now includes accurate spectral and luminosity classes for most stars in the southern sky. These were provided by Dr. Robert Garrison of the Dunlap Observatory. A few types in italics and parentheses remain poorly defined. Types in parentheses a less accurately defined (g—giant, d—dwarf, c—exceptionally high luminosity). All other types were very kindly provided especially for this table by Dr. W. W. Morgan, Yerkes Observatory.

Parallax (π). From "General Catalogue of Trigonometric Stellar Parallaxes" by Louise F. Jenkins, Yale Univ. Obs., 1952.

Absolute visual magnitude (M_V) , and distance in light-years (D). If π is greater than 0.030'' the distance corresponds to this trigonometric parallax and the absolute magnitude was computed from the formula $M_V = V + 5 + 5 \log \pi$. Otherwise a generally more accurate absolute magnitude was obtained from the luminosity class. In this case the formula was used to *compute* π and the distance corresponds to this "spectroscopic" parallax. The formula is an expression of the inverse square law for decrease in light intensity with increasing distance. The effect of absorption of light by interstellar dust was neglected, except for three stars, ζ Per, σ Sco and ζ Oph, which are significantly reddened and would therefore be about a magnitude brighter if they were in the clear.

Annual proper motion (μ), and radial velocity (R). From "General Catalogue of Stellar Radial Velocities" by R. E. Wilson, Carnegie Inst. Pub. 601, 1953. The information on radial velocities was brought up-to-date in 1975 by Dr. C. T. Bolton of the Dunlap Observatory. Italics indicate an average value of a variable radial velocity.

The star names are given for all the officially designated navigation stars and a few others. Throughout the table, a *colon* (:) indicates an uncertainty.

		Sun	Alpheratz Caph S3-2.85, 0.15 ^d Ankaa Ankaa Schedar Diphda Ruchbah Achernar
			Manganese star Var. R 0°008, 0.10 ^d β CMa type, R in V.2. B 12 ^m 28'' Var. 28 Var. B 8.18 ^m 2'' A 4. 1 ^m B 4. 1 ^m 1'' Ecl. ? R 0.08: ^m 759 ^d
Radial Velocity	R	km/sec	$\begin{array}{c} -11.7 \\ +111.8 \\ +204.1 \\ +222.8 \\ +222.8 \\ +222.8 \\ -03.3 \\ -03.3 \\ -03.3 \\ -03.3 \\ -00.1 \\ +111.5 \\ -00.1 \\ +111.5 \\ +111.5 \\ -16.2 \\$
Proper Motion	'n	:	0.209 0.555 0.010 2.255 0.161 0.161 0.058 0.058 0.058 0.058 0.025 0.025 0.025 0.035 0.025 0.035 0.230 1.021 0.230 1.025 0.035 0.250 0.250 0.250 0.250 0.250 0.161 0.255 0.160 0.255 0.160 0.255 0.160 0.255 0.160 0.255 0.160 0.255 0.160 0.255 0.160 0.055 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.000000
Distance light-years	D	1.y.	96 27 21 21 150 150 150 150 150 1300 1300 1300 130
Absolute Magnitude	M_{F}	+4.84	$\begin{array}{c} -0.1 \\ -0.1 \\ -3.4 \\ -3.4 \\ -3.4 \\ -3.4 \\ -1.1 \\ -0.2 \\ -1.1 \\ -0.3 \\ -1.4 \\ -1.1 \\ -0.3 \\ -1.4 \\ -1.1 \\ -1$
Parallax	μ		$\begin{array}{c} 0.024\\ 0.072\\ 0.035\\ 0.035\\ 0.035\\ 0.037\\ 0.037\\ 0.032\\ 0.033\\ 0.033\\ 0.033\\ 0.033\\ 0.033\\ 0.023\\ 0.$
Spectral Classification	Type	>	VI V
		G2	BRKSMKS BOKKSSGBEB
Colour Index	B-V	+0.63	-0.08 +0.23 +0.23 +0.23 +0.62 +0.62 +0.62 +1.108 +1.108 +1.108 +1.108 +1.108 +1.108 +1.108 +1.108 +1.108 +1.108 +1.108 +1.008
Visual Magnitude	V	-26.73	85.50 85
Declination	80 Dec.	•	$\begin{array}{c} + + 28 & 58 \\ - + 155 & 024 \\ - + 155 & 044 \\ - + 56 & 255 \\ - + 56 & 255 \\ - 57 & 422 \\ - 57 & 208 \\ 46 & 50 \\ 57 & 208 \\$
Right Ascension	R.A. 19	н Ч	00 07.3 08.1 12.2 224.6 339.4 55.5 01 05.1 07.6 07.6 837.0 837.0 837.0 837.0
	Star	Sun	a And β Cand β Cand β Hyi β Hyi δ And β Cet β Cet β Phe AB β And β And β And β Cas β Cas γ Cas γ Phe AB β Cas β Cet i Cas Λ Λ Λ Λ Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α

	Sheratan).5'' = Almach Hamal	Polaris Mira Acamar	Menkar	Algol Mirfak	Alcyone			Aldebaran
		$B5.4^{\rm m} C6.2^{\rm m} A-BC 10^{\prime\prime} B-C(\gamma A) = \gamma A = 0$	Cep., R0.11 ^m 4.0 ^d , B ⁸ .9 ^m 18'' LP, R 2.0–10.1, 332 ^d , B 10 ^m 1'' A 3.57 ^m B 6.23 ^m 3'' A 3.25 ^m B 4.36 ^m 8''		Irr. R 3.2–3.8 Ecl. R 2.06–3.28, 2.87 ^d	in Pleiades	B 9.36m 13'' B 7.99m 9''	B 12 ^m 49′′	Silicon star Irr.? R0.78–0.93, B13 ^m 31''
R	$\begin{array}{c} {\rm km/sec} \\ -12.6 \\ -08.1 \\ -04.0 \\ +07 \end{array}$	-11.7	+15.2 -17.4 +63.8 +05.1 +11.9	-25.9	+28.2 +28.2 -05.6	+102.8	+20.6 -01 +61.7	+35.6 +38.6	+24.3 + 25.6 + 54.1 + 24.3 + 17.5
ц	" 0.230 0.038 0.147 0.265	0.068	$\begin{array}{c} 0.156\\ 0.046\\ 0.232\\ 0.203\\ 0.061\end{array}$	0.075	0.072 0.006 0.035 0.035	0.046 0.050	0.015 0.036 0.126	0.064 0.118	$\begin{array}{c} 0.108\\ 0.051\\ 0.202\\ 0.468\\ 0.021\\ 0.021 \end{array}$
D	1.y. 65 520 31	260 76	$6580 \\ $	130	260 260 570	590 541 300	1000 680 160	390 160	140 260 68 26 330
M_{F}	$^{+2.0}_{-2.7}$	-2.4 + 0.2	+1.0.1	-0.5	-1.0	 	-6.1 -3.7 -0.5	$^{+0.1}_{-2.1}$	+0.2 -1.2 +3.65 -2.4
μ	,, 0.050 0.007 0.063	0.005	0.012 0.003 0.013 0.048 0.028	0.003	0.008 0.031 0.029	0.007	$\begin{array}{c} 0.007\\001\\ 0.003\end{array}$	0.008	$\begin{array}{c} 0.025\\ 0.011\\ 0.048\\ 0.125\\ 0.015\end{array}$
Type	VI VI V	Ш	III Je-M9e V III	III	dI III-III V IIb		5 III < Ib		Шрица
	F6 B3 A5 F0	K3 K2	A2 A2	M2 M2	£88₹6	B7 M3	M0.	KG KG	K3 K3 K3
B^-V	+0.50 -0.15 +0.14 +0.14 +0.28	+1.16: +1.15	+0.13 +0.60 +0.11 +0.13	+1.63	+0.72 -0.07 +0.48	-0.14 -0.09	+0.13 -0.17 +1.58	+0.91 +1.02	+0.1/ -0.08 +1.52 +0.45 +1.49
И	3.42 3.37 2.65 2.84	2.14: 2.00	$ \frac{3.00}{2.92} $	2.54	3.5v 2.06v 1.80	3.03	2.88	3.33	3.28 3.28 0.86v 3.17 2.68:
80 Dec.	。 +29 29 +63 34 +20 43 -61 40	+42 14 +23 22	+34 54 +89 11 +03 04 -40 23	+04 00	+33 + 53 + 53 + 53 + 53 + 53 + 53 + 54 + 49 + 52 + 49 + 75 + 49 + 75 + 49 + 75 + 49 + 75 + 49 + 75 + 49 + 75 + 49 + 75 + 49 + 75 + 49 + 75 + 49 + 75 + 49 + 75 + 49 + 75 + 49 + 75 + 75 + 75 + 75 + 75 + 75 + 75 + 7	+ 47 44 + 24 03 - 74 18	+3150 +3957 -1334	-62 32 +19 08	+15 + 15 + 15 + 15 + 15 + 16 + 16 + 28 + 16 56 + 133 08
R.A. 19	h m 01 52.0 52.9 53.6 58.1	02 02.7 06.1	08.4 12.5 18.3 42.2 57.5	03 01.2	03.7 06.6 22.9	41.5 46.3 47.5	52.7 56.5 57.1	04 14.1 27.5	21.5 33.5 34.8 34.8 55.7
Star	α Tri ε Cas β Ari α Hyi	γ And A α Ari	$\begin{array}{c} \beta \text{ Tri} \\ \alpha \text{ UMi } A \\ o \text{ Cet } A \\ \gamma \text{ Cet } A B \\ \theta \text{ Eri } A B \end{array}$	α Cet	γ rer β Per Per	δ Per η Tau ~ Hvi	ζ Per A ε Per A γ Eri	α Ret A ε Tau	π^{3} Ori π^{3} Ori π^{3} Ori

		// Rigel C apella m B4.98m1 // Bellatrix Elnoth	" 53′′ " 29′′	Alnilam Phact Alnitak	Betelgeuse Menkalinan 3'', var., 1.4 ^d	Canopus Alhena
	Ecl. R 0.81 ^m 9886 ^d	Manganese star Irr.? R 0.08-0.20, B 6.65 ^m 9 Ecl. R 3.32-3.50, 8.0 ^d , A 3.59	B 9.4 ^m 3'' Eci. R 2.20–2.35 5.7 ^d , B 6.74 ^t A 3.56 ^m B 5.54 ^m 4'' C 10.92 ⁿ A 2.78 ^m B 7.31 ^m 11''	Shell star B 12" 12'' A 1.91"B4.05" 3''	Irr.? R 0.06:-0.75: ^m Silicon star A 2.67 ^m B 7.14 ^m 3	R 0.27 ^m , B 6.70 ^m 1'' R 0.14 ^m β CMa type variable, 0.25 ^d
Я	km/sec -01.4 +01.0 +01.4 +07.4 -08	+27.7 +20.7 +19.8 +18.2 +08.0	+22.0 +24.7 +33.5 +27.6	+26.1 +22.8 +35 +18.1 +20.6	+89.4 +21.0 -18.2 +29.3	+ 19.0 + 32.2 + 54.8 + 33.7 + 20.5 - 12.5
ㅋ	,, 0.008 0.077 0.077 0.122	0.049 0.001 0.435 0.435 0.015 0.015	0.006 0.006 0.006 0.006	$\begin{array}{c} 0.000\\ 0.023\\ 0.026\\ 0.004\\ 0.004 \end{array}$	0.402 0.028 0.051 0.097	$\begin{array}{c} 0.066\\ 0.004\\ 0.129\\ 0.004\\ 0.025\\ 0.066\end{array}$
D	1.y. 3400 170 370 78	390 900 940 940 940 940	113 900 1800 1800 2000	1600 940 140 2100	520 88 108	200 3390 750 98 105
M_{ν}	-7.1 -0.4 +0.9		+0.1 -6.1 -5.1 -6.1	-6.8	+0.0 +5.6 +0.3 +0.1	-0.6 -2.4 -3.1 -3.1
Ħ	0.004 0.006 0.013 0.042	0.018 003 0.073 0.004 0.026 0.018	0.004 0.004 0.006 0.006	$\begin{array}{c} -.007\\ -.002\\ 0.005\\ 0.002\\ 0.009\end{array}$	$\begin{array}{c} 0.023\\ 0.005\\ 0.037\\ 0.018\end{array}$	$\begin{array}{c} 0.013\\003\\ 0.021\\ 0.014\\ 0.018\\ 0.031\end{array}$
Type	s III	$\begin{array}{c} \begin{array}{c} 111p\\ Ia\\ 8\\ 111\\ 111\\ 111\\ 111\\ 111\\ 111\\ 111\\$		$\begin{array}{c} III \\ III \\ Pe \\ 0.5 \\ Ib \\ 0.5 \\ Ia \\ Ia \end{array}$	2 III 2 Iab 2 V	3 III 3 III-III 1 Ib-II
	A BX F		300£80			ATEXES
B -V	+0.50 +1.46 -0.18 +0.13	-0.09 +0.04 -0.18 -0.18 -0.23 -0.23	+0.82 +0.20 +0.22 -0.18 -0.18	-0.19 -0.13 -0.11 -0.22 -0.22	+1.16 +1.87 +0.06 -0.07	+1.58 -0.18 +1.63 +1.63 +0.24 +0.16
~	3.0v 3.17 3.17 2.79	3.29 0.14v 0.05 3.32v 1.64 1.65	2.20v 3.40 2.58	1.70 3.07: 1.79 2.06	$3.12 \\ 0.41v \\ 1.86 \\ 2.65v$	3.33v 3.04 2.92v 1.96v 1.96v 1.93
80 Dec.	。 + 43 48 - 22 24 + 41 13 - 05 06	$\begin{array}{c} -16 \ 13 \\ -08 \ 13 \\ +45 \ 59 \\ -02 \ 24 \\ +06 \ 20 \\ +28 \ 36 \end{array}$	-20 47 -20 47 -17 51 +09 55 -05 56	-01 13 +21 08 -34 05 -01 57 -09 41	-3547 +0724 +4457 +3713	$\begin{array}{c} +22 & 31 \\ -30 & 03 \\ +22 & 32 \\ -17 & 56 \\ -52 & 41 \\ +16 & 25 \end{array}$
R.A. 19	h m 05 00.5 04.6 05.1 06.9	12.1 13.6 15.2 23.5 24.0 25.0	27.4 31.0 34.1 34.1	35.2 36.5 39.7 39.7 46.8	50.2 54.0 58.0 58.4	06 13.7 19.6 21.7 21.8 23.5 36.6
Star	ε Aur ε Lep η Aur β Eri	μ Lep β Ori <i>A</i> α Aur η Ori <i>AB</i> γ Ori β Tau	β Lep A δ Ori A α Lep λ Ori AB ι Ori AB	ε Ori ζ Tau α Col A ζ Ori AB κ Ori	$ \begin{array}{c} \beta \ \text{Col} \\ \alpha \ \text{Ori} \\ \beta \ \text{Aur} \\ \theta \ \text{Aur} \ AB \end{array} $	γ Gem A ζ CMa μ Gem β CMa α Car γ Gem

	Sirius Adhara	13'' Castor Procyon Pollux	<i>Avior</i> // / D12 ^m 20//
	n 1976: 11″, p.a. 57° 5m 8″	8.4-6.2, 141 ⁴ 22'' B-V+0.02, C 9.08v ^m ' ¤ 4''	2.72-2.87, 0.14 ^d n 41'' 7'' B 5.1m 3'' CD 10 ^m 69 B 5.2m0.2''15',C6.8m3'' 8n 4''
	B 8.66	LP, R.	Var. R B 4.31' B 15 ^m A 2.0 ^m BC 10.
R	km/sec + 28.2 + 28.2 + 09.9 + 25.3 + 20.6 + 36.4 + 27.4	$\begin{array}{c} ++++++++++++++++++++++++++++++++++++$	-24 + 46.6 + 35.6 + 11.5 + 12.2 + 12.2 + 12.2
ц	,, 0.010 0.224 1.324 0.272 0.079 0.004	$\begin{array}{c} 0.000\\ 0.005\\ 0.008\\ 0.008\\ 0.008\\ 0.195\\ 0.199\\ 0.199\\ 0.199\\ 0.199\\ 0.005\\ 0.$	$\begin{array}{c} 0.033\\ 0.098\\ 0.011\\ 0.030\\ 0.171\\ 0.086\\ 0.198\\ 0.101\\ 0.505\end{array}$
D	1.y. 620 64 64 8.7 57 124 680	3400 2100 650 650 140 180 180 180 180 180 180 180 11.3 35 1240 430	2400 520 340 150 150 140 220
$M_{\mathcal{V}}$	-3.2 -3.2 +1.9 +2.1 -5.1	$\begin{array}{c} - & - & - & - & - & - & - & - & - & - $	+
Ħ	" 0.009 0.375 0.375	$\begin{array}{c}018 \\ 0.016 \\ 0.023 \\ 0.023 \\ 0.013 \\ 0.072 \\ 0.072 \\ 0.072 \\ 0.093 \\003 \end{array}$	0.031 0.004 0.013 0.013 0.023 0.066
Type	II II II II II	Ia ggM5e) (gK4) Ia V III IV-V III ID IV	s IIp III+B2:v III III II-III V
	$F5\\B2\\R0\\B2\\\mathsf{$	B3 B3 B3 B3 B3 B3 B3 B3 B3 B3 B3 B3 B3 B	A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A7 A7 A7 A7 A7 A7 A7 A7 A7 A7 A7 A7 A7
B-V	-0.10 +1.39 +0.43 +0.21 +1.21 +1.21 -0.18:	$\begin{array}{c} +0.09\\ +0.03\\ +1.02\\ +1.02\\ +1.02\\ +1.02\\ +1.02\\ -1.18\\ -1.123\\ -1.18\\ -$	-0.26 +0.42 +1.30: +1.30: +0.83 +0.05 +1.00 +1.00
А	3.19 3.00 3.38 3.38 3.38 3.27 2.92 1.48: 1.48:	$\begin{array}{c} 3.02\\ 1.85\\ 1.85\\ 3.246$	$\begin{array}{c} 2.23\\ 2.80v\\ 1.90;\\ 3.37\\ 3.39\\ 3.11\\ 3.12\end{array}$
80 Dec.	$\begin{array}{c} - & \circ \\ - & 4 & 3 \\ + & 25 & 09 \\ - & 16 & 42 \\ - & 56 & 36 \\ - & 28 & 57 \\ \end{array}$	$\begin{array}{c} -23 \ 48 \\ -26 \ 222 \\ -26 \ 222 \\ -26 \ 222 \\ -23 \ 48 \\ -23 \ 15 \\ -24 \ 231 \ 56 \\ -24 \ 50 \ 50 \\ -24 \ 50 \ 50 \\ -24 \ 50 \ 50 \\ -24 \ 50 \ 50 \\ -24 \ 50 \ 50 \ 50 \\ -24 \ 50 \ 50 \ 50 \ 50 \ 50 \ 50 \ 50 \ 5$	$\begin{array}{c} -39.57\\ -2415\\ -2418\\ -5926\\ +6047\\ -5438\\ +0630\\ +4807\end{array}$
R.A. 19	h 06 37.1 44.2 44.2 44.2 44.2 57.8 57.8	07 02:2 07:65 07:65 07:65 28:53 333:33 28:54 28:24 28:24 28:24 28:25 29:25 20:25 20 20 20:25 20 20 20 20 20 20 20 20 20 20 20 20 20	08 02.9 06.7 080.7 080.7 080.7 080.7 281.6 545.7 543.3 571.9
Star	v Pup ε Gem ξ Gem α CMa A α Pic τ Pup ε CMa A	o ² CMa δ CMa Γ ₂ Pup π Pup β CMa β CMa β CMa β Com β Com β Gem β Gem β Car χ Car	

	Phecda		Megrez Gienah	Acrux	Gacrux			a Crucis	Alioth 20'' r Caroli		į	Mizar r., Spica		Alkaid		
			.18-2.84	4.90m 89″	24''	.66–2.73	8 2.9m 2'' B 3.52m 4''	84.0 ^m 1'' ar.,0.25 ^d : Beto	um-europium star suropium star. $B5.61^{m} 2$			14 (Alcor, 708) 91–1.01, 4.0 ^d , B CMa vai	ar 017 ^d	at., V.17	.08–3.17	
		Var. R 2	var K 2.	$\}5'', C$	<u>Å</u> 8.26 ^m	Var. R 2	A 2.9 ^m <i>L</i> A 3.50 ^m	A 3.7 ^m Ε β CMa V	Chromi Silicon-6			B 3.94" Ecl. R 0	R CMa	h CIVIA	Var. R 3	
R	km/sec -12.9	+09+04.9	+ 20.4 - 12.9 - 04 2	-11.2 -00.6	$^{+09}_{+21.3}$	$+10^{-07.7}$	-07.5 -19.7	$^{+42}_{+20.0}$	-09.3 -03.3	-14.0 -05.4	+00.1	0.00+	- 13.2	- 10.9	+09.0 +12.6	+01.0 +06.5
ц	,, 0.094	0.042	0.106	0.042	$0.255 \\ 0.274$	0.059 0.037	$0.197 \\ 0.567$	0.041 0.049	0.113 0.238	$0.274 \\ 0.086$	0.351	0.12/ 0.054	0.287	0.123	0.037 0.032	$0.370 \\ 0.076$
D	1.y. 90	370 140	0/0 63	370 370	124 220	108 430	160 32	470 490	68 118	90 113	E	220 88	93 570	210	750 470	32 520
$M_{I\!\!P}$	+0.2	-2.7 -0.2	+1.9 + 1.9		$^{+0.1}_{-2.5}$	+0.1	+3.5	-2.1 -4.6	+0.2 +0.1	+0.6	+1.1	- 3.3 - 3.3	+1.1	-2.1	-3.4 -2.7	+2.7 -3.4
н	,, 020)52		018	027	006 101		023)36	8	21/2	335	04		102
			0.0		0.0	ö	<u>.</u>		0.0	0.0	0.0	00	0.0	0.0		o.
Type	V 0.	IVne	N 0.0	12>	V:n 0.(0.0 V-V	<i>ν</i> : 0.	> III	0.0 0.0	II-III 0.0	V 0.0	>>	Vn 0.0	V 0.0	V:pne	ĬV IV
Type	A0 V 0.	B2 IVne K3 III	B2 IV A3 V 0.0	B0.5 IV B1 V	B9.5 V:n 0.(M4 III	G5 III 0. B2 IV-V	A0 IV: 0. F0 V 0.	B2 V B0.5 III	A0pv 0.0 B9.5pv 0.0	G9 II-III 0.0 G8 III 0.0	A2 V 0.0	B1 V 0.0	A3 Vn 0.0	B3 V 0.0	B2 IV B2 V:pne	G0 IV 0. B2.5 IV 0.
B-V Type	0.00 A0 V 0.	-0.11: B2 IVne +1.33 K3 III	-0.23 B2 IV +0.07 A3 V 0.0	-0.25 B0.5 IV -0.25 B1 V	-0.04 B9.5 V:n 0.0 +1.55 M4 III	+0.89 G5 III 0. -0.20 B2 IV-V	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.17: B2 V	-0.03 A0pv 0.0	+0.93 G9 II-III 0.0	+0.05 A2 V 0.0	+0.02 A2 V 0.0 -0.24 B1 V 0.0	+0.10 A3 Vn 0.0	-0.20 B3 V 0.0	-0.22 B2 IV -0.13: B2 V:pne	+0.59 G0 IV 0.
V B-V Type	2.44 0.00 A0 V 0.	2.59v -0.11: B2 IVne 3.00 +1.33 K3 III	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.97 -0.04 B9.5 V:n 0.0 1.69 +1.55 M4 III	2.66 +0.89 G5 III 0. 2.70v -0.20 B2 IV-V	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.06 -0.17: B2 V 1.28v -0.25 B0.5 III	1.79v -0.03 A0pv 0.0 2.90v -0.10 B9.5pv 0.0	2.83 +0.93 G9 II-III 0.0	2.76 +0.05 A2 V 0.0	2.26 + 0.02 A2 V 0.00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.87 - 0.20 B3 V 0.0	3.42 -0.22 B2 IV 3.12v -0.13: B2 V:pne	2.69 +0.59 G0 IV 0. 2.56 -0.23: B2.5 IV 0.
80 Dec. V B-V Type	° , +53 49 2.44 0.00 A0 V 0.	-50 36 2.59v -0.11: B2 IVne	-58 38 2.81v -0.23 B2 1v +57 09 3.30 +0.07 A3 v 0.0	-62 59 1.39 -0.25 B0.5 IV -62 59 1.86 -0.25 B1 V	-16 24 2.97 -0.04 B9.5 V.n 0.0 -57 00 1.69 +1.55 M4 III	-23 17 2.66 +0.89 G5 III 0. -69 01 2.70v -0.20 B2 IV-V	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-68 00 3.06 -0.17: B2 V -59 35 1.28v -0.25 B0.5 III	+56 04 1.79v -0.03 A0pv 0.0 +38 26 2.90v -0.10 B9.5pv 0.0	+11 05 2.83 +0.93 G9 II-III 0.0 -23 04 2.98 +0.92 G8 III 0.0	$-36\ 36\ 2.76\ +0.05\ A2$ V 0.0	+55 02 2.26 +0.02 A2 V 0. -11 03 0.91v -0.24 B1 V 0.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+49 25 1.87 -0.20 B3 V 0.0	-41 35 3.42 -0.22 B2 IV -42 23 3.12v -0.13: B2 V:pne	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
R.A. 1980 Dec. V B-V Type	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12 07.3 -50 36 2.59v -0.11: B2 IVne 09.1 -22 30 3.00 +1.33 K3 III	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25.4 -62 59 1.39 -0.25 B0.5 IV 25.4 -62 59 1.86 -0.25 B1.7 V	28.8 -16 24 2.97 -0.04 B9.5 V:n 0.0 30.1 -57 00 1.69 +1.55 M4 III	33.3 -23 17 2.66 +0.89 G5 III 0. 36.0 -69 01 2.70v -0.20 B2 IV-V	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	45.0 -68 00 3.06 -0.17: B2 V 46.6 -59 35 1.28v -0.25 B0.5 III	53.2 +56 04 1.79v -0.03 A0pv 0.0 55.1 +38 26 2.90v -0.10 B9.5pv 0.0	13 01.2 +11 05 2.83 +0.93 G9 III-III 0.0 17.8 -23 04 2.98 +0.92 G8 III 0.0	19.5 - 36 36 2.76 + 0.05 42 V 0.0	23.1 + 55 02 2.26 +0.02 A2 V 0.0 24.1 -11 03 0.91v -0.24 B1 V 0.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	46.8 + 49 25 1.87 - 0.20 B3 V 0.0	48.3 -41 35 3.42 -0.22 B2 IV 48.4 -42 23 3.12v -0.13: B2 V:pne	53.8 +18 30 2.69 +0.59 G0 IV 0. 54.3 -47 12 2.56 -0.23; B2.5 IV 0.

	Ma var. Hadar Menkent Arcturus	Rigil Kentaurus) ^m B 8.61 ^m 16'' Zubenelgenubi Kochab		Alphecca Dschubba
	А 0.7 ^m В 3.9 ^m 1′′, β.С	Var, R 2.33-2.45 18'' B CMa var., 0.26 ^d B CMa var., 0.24 ^d A 2.47 ^m B 5.04 ^m 3'' B 5.15 ^m 231''	B7.8m71'' B7.84m 105'' Europium star B CMa var., 0.165 ^d	A 3.47 ^m B 7.70 ^m 15''
R	km/sec -12 +27.2 +01.3 -05.2 -35.5	$\begin{array}{c} -00.2 \\ -24.6 \\ +07.3 \\ +07.3 \\ +16.5 \\ +16.9 \\ +00.3 \\ +09.1 \end{array}$	-19.9 -04.3 -09.7 -12.2 -35.2 -06 -03.9 -03.9	+00.7 +01.7 +02.9 -00.3 +07 -14
=	,, 0.035 0.156 0.738 2.284 0.186	0.049 3.676 0.033 0.308 0.051 0.130 0.033 0.066 0.033	$\begin{array}{c} 0.059\\ 0.089\\ 0.135\\ 0.148\\ 0.067\\ 0.067\\ 0.026\\ 0.026\\ 0.026\\ 0.012\\ 0.002\\ 0.$	$\begin{array}{c} 0.03\\ 0.154\\ 0.139\\ 0.034\\ 0.032\\ 0.032\end{array}$
D	1.y. 490 84 55 36 118	390 4.3 4.3 4.3 4.3 66 103 540 540 540	58: 58: 140 113 680 680 113 102 102	570 570 570 570 590
$M_{\boldsymbol{\nu}}$	+ 0.3 + 0.3 + 0.3 + 0.2	$\begin{array}{c} -3.0\\ -2.4\\$	++++-+++	+ + + + + + + + + + + + + + + + + + +
π	", 0.016 0.039 0.059 0.090 0.016	$\left. \begin{array}{c} .751 \\ 0.049 \\ 0.013 \\ 0.031 \end{array} \right.$	$\begin{array}{c} 0.022\\ 0.056\\ 0.036\\ 0.028\\ 0.028\\ 0.005\\ 0.005\\ 0.032\\ \end{array}$	0.043 0.046 0.078 0.005
Type	III III-IV III-IV	5 V:ne v v v v i: III:+A n III		
	: B1 K2 K2 K2 K2 K2	B1.4 G21.4 K1:: K1:: B2 B2 B2 B2 B2 B2 B1.4	K23320 K23320 K23320 K23320 K200 K20	B0 B1 A0 B2
B-V	-0.23 +1.13 +1.03 +1.23 +0.19	-0.21 +0.68 +0.73 +0.25 +0.25 -0.25 -0.25 -0.25 -0.25 -0.23	+0.95 +0.90 +0.01 +0.01 +0.01 +0.01 +0.02 +1.18	-0.22 + 1.17 + 0.28 - 0.19 - 0.13
7	$\begin{array}{c} 0.63\\ 3.25\\ -0.06\\ 3.05\\ 3.05\\ 3.05\end{array}$	$\begin{array}{c} 2.39 \\ 0.01 \\ 1.40 \\ 3.18 \\ 2.37 \\ 2.37 \\ 2.37 \\ 3.15 \\ 3.15 \\ 3.15 \\ 3.15 \end{array}$	3.28 3.21 3.221 3.221 5.221 5.21 5.21 5.21 5.21 5.21 5.21	2.3223 3.402285 3.402285
80 Dec.	$^{\circ}$	-42 04 -42 04 -60 46 -60 46 -60 46 -47 19 -15 54 -15 54 -15 54 -15 54 -15 79 -15	+ 40 28 - 25 12 - 52 01 - 68 36 + 71 34 + 71 34 + 71 34	+26
R.A. 19	h m 14 02.4 05.3 05.5 14.8 31.3	34.2 35.5 57.5 8 37.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5	15 01.2 02.9 10.8 14.7 17.1 20.1 22.8 22.8	58.86 53.33 58.86 59.86 59.86 59.86 59.86 59.86 50 50 50 50 50 50 50 50 50 50 50 50 50
Star	β Cen AB π Hya θ Cen α Boo γ Boo	r Cen α Cen A α Cen A α Cen A α Cin AB α Cin AB α Cin AB β UMi β Lup κ Cen	β Boo σ Lib ζ Lup A β Lib β Lib δ Lup δ Lup δ Lup c Una c Una	α CrB α Ser β TrA η Lup AB δ Sco

2 4 2 2	3m 14'' .B 8,49 ^m 20'' Antares	Atria	Sabik Ras-Algethi	Shaula Rasalhague
	A 2.78 ^m B 5.04 ^m 1'', C 4.9 B CMa R 2.82–2.90, 0.25 ^d , B 8.7 ^m 6'' A 0.86 ^m –1.02 ^m B 5.07 ^m 3''	A 2.91 ^m B 5.46 ^m 1'' Ecl. R 2.99–3.09, 1.4 ^d	A 3.0 ^m B 3.4 ^m 1'' A 3.2 ^m ± 0.3 B 5.4 ^m 5'' β CMa var., 0.14 ^d B 10 ^m 18'' B 11.49 ^m 4''	β CMa var., 0.21 ^d
R	km/sec - 01.0 - 19.9 - 10.3 - 19.9 - 14.3 - 03.2 - 03.2 - 00.7	$\begin{array}{c} -19\\ -69.9\\ +08.3\\ -03.6\\ -03.6\\ -25\\ -55.6\\ -55.6\end{array}$	$\begin{array}{c} -14.1\\ -28.4\\ -28.4\\ -33.1\\ -33.1\\ -33.1\\ -33.1\\ -33.1\\ -03.6\\ -00.4\\ -00.4\\ -00.4\\ -20.0\\ 0\end{array}$	$-02 \\ 00 \\ +12.7 \\ +01.4$
=	<pre></pre>	$\begin{array}{c} 0.022\\ 0.608\\ 0.097\\ 0.044\\ 0.064\\ 0.033\\ 0.033\\ 0.042\\ \end{array}$	$\begin{array}{c} 0.026\\ 0.097\\ 0.293\\ 0.164\\ 0.025\\ 0.015\\ 0.017\\ 0.019\\ 0.019\\ 0.019\end{array}$	0.083 0.031 0.260 0.012
D	1.y. 650 90 570 520 103 750	520 520 520 520 520 520 520 520 520 520	620 69 52 96 710 1030 540 540 310	390 310 58 650
Μ	- $ -$	+ - + + - + + - + - +	++++++++++++++++++++++++++++++++++++	-2.4 -3.3 +0.8 -4.6
ĸ), 0.004 0.036 0.036 0.043 0.019 0.017	$\begin{array}{c} - & .007 \\ 0.110 \\ 0.053 \\ 0.024 \\ 0.049 \\ 0.026 \\ 0.036 \end{array}$	0.017 0.047 0.063 0.063 0.024 0.023 0.024 0.026 0.026	0.056 0.020
Fype		N ^{I−IV} B ^{I−IV} E ^I	≅≻≅¤⋝¤⋝ _{ਚਚ} ⋝¤	>>II <i>b</i>
	BO BO BO SO BO SO BO SO BO SO BO SO BO	09.5 K2 K2 K2 K2 K2 K2 K2 K2 K2 K2 K2 K2 K2	B8 B1 B1 B1 B2 B1 B1 B1 B1 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2	B2.5 B1 A5 F0
B-V	-0.09 +1.59 +0.14 +0.14 +1.84 +1.84 +0.92 -0.25	+0.00 +0.64 +1.64 +1.16 +1.15 +1.15 +1.61	+0.22	-0.18: -0.24 +0.16 +0.39
И	2.65 2.72 3.22 2.71 2.78 0.92v 2.78 2.78 2.78	2.57 2.81 1.93 2.28 3.18 3.12	2.232 2.29v 2.29v 2.711 2.771	2.95 1.60v 2.09 1.86
80 Dec.	19 45 19 45 03 37 - 25 33 - 28 33 - 28 33 - 28 10	-10 31 +31 38 +31 38 +33 58 -68 60 -68 60 +38 16 +03 25 -55 57	+ 65 $+ 65$ $+ 15$ $+ 65$ $+ 15$ $+ 24$ $+ 14$ 24 $+ 14$ 24 $+ 14$ 24 51 $+ 24$ 51 $+ 24$ 51 $+ 24$ 53 12 231 16 $+ 25$ 20	-4952 -3705 +1235 -4259
R.A. 19	h II 604.3 11604.3 17.2 20.0 28.2 28.2 34.6	36.1 40.6 50.5 50.5 50.5 50.5 50.5 50.5	17 19 10.73 13.87 14.87	30.3 32.3 34.0 35.9
Star	β Sco AB δ Oph σ Sco A σ Sco A η Dra A β Her f Sco A	ζ Oph η Her α TrA α TrA ε Sco κ Oph ζ Ara	$ \begin{array}{c} \zeta \ \text{Dra} \\ 11 \ \text{Oph} \ AB \\ 11 \ \text{Sco} \\ 30 \ \text{Her} \ AB \\ 5 \ \text{Her} \ AB \\ 7 \ \text{Ara} \ A \\ 9 \ \text{Ara} \ A \\ 9 \ \text{Dra} \ A \\ 9 \ \text{Dra} \ A \\ \end{array} $	α Ara λ Sco α Oph β Sco

	Eltanin		is Australis Vega	n 46'' Nunki		Albireo	Altair
	β CMa var., 0.20 ^d BC 9.78 ^m 33′′	B 10m 4''	Kau	Ecl. R 3.38–4.36, 12.9 ^d , <i>B</i> 7.8	A 3.3 ^m B 3.5 ^m < 1'' B 12 ^m 5'' A 3.7 ^m B 3.8 ^m C 6.0 ^m < 1''	B 5.11 ^m 35'' A 2.91 ^m B 6.44 ^m 2''	
R	km/sec - 10 - 12.0 - 15.6 - 27.6 + 24.7 + 12.4	+22.1 +00.5 +00.5 +08.9	-11 - 43.3 - 43.3 - 13.9 + 21.5	-17.8 -11 -19.9 -21.5	+22 -26.3 +45.4 +24.8	-29.9 -24.0 -21	-26.3
п	" 0.031 0.160 0.811 0.004 0.064 0.026	0.200 0.218 0.050 0	$0.135 \\ 0.194 \\ 0.345 \\ 0.052$	0.007 0.059 0.035 0.007	0.020 0.101 0.092 0.040 0.130	0.267 0.009 0.060	0.658
۵	1.y. 470 124 33400 102 108 108	124 86: 60	124 71 590.5	$1300 \\ 300 \\ 160 \\ 370 $	140 160 160 124 124	53 410 270	, 16.5 16.5
M_{ν}	-3.4 +3.6 +3.6 +3.6 +0.7 +0.7 +0.2	+0.1	$^{-1.1}_{+1.1}$	-4.6 +0.0 -2.1 -2.1	+0.1	+2.3 -1.7 -2.4	+2.2
н	" 0.023 0.108 0.013 0.013 0.017 0.017	0.018 0.038 0.039 0.054	0.015 0.046 0.123	011 0.006 0.011	$\begin{array}{c} 0.020\\ 0.036\\ 0.036\\ 0.038\\ 0.016\\ 0.028 \end{array}$	0.062 0.004 0.021	0.198
Type	5 III III IIII III	.5 III III-IV		>==	// nr:V n:V III-II III-II	S III 5 III	IV-V
	GKK73GKB	SEX SS	BAR B	age Ze	6588356	e Xeix	A7
B-V	-0.21 +1.16 +0.75 +0.49 +1.18 +1.18 +1.52 +1.00	+1.00 +1.55 +1.39 +0.94	-0.02 +1.05 -0.00 -0.11	-0.05 +1.18 -0.05	+0.08 +0.01 +0.01 +1.18 +0.35 +1.00	+0.31 +1.12 -0.03 +1.52	+0.22
7	2.39v 2.77 3.42 3.21 3.32 3.32	2.97 3.12 3.23	$ \begin{array}{c} 1.81\\ 2.80\\ 3.20\\ 3.20\\ \end{array} $	3.38v 2.12: 3.51 3.25	3.30 3.30 3.30 3.30 3.30 3.30 3.30 3.30	3.38 3.07 2.87 77	0.77
80 Dec.	 ° -39 01 +27 45 -40 06 -37 02 +51 29 -09 47 	- 30 26 - 36 47 - 29 50 - 02 54	- 34 24 - 25 27 + 38 46 - 27 01	+33 21 -26 19 -21 07 +32 40	-29 54 +13 50 -04 55 -27 42 +67 38	+03 04 +27 55 +45 05 +10 33	+ 08 49
R.A. 15	h m 17 41.1 42.5 45.7 48.4 56.1 58.0	18 04.5 16.3 19.7 20.2	26.7 36.2 44.4	49.4 54.0 56.5 58.2	19 01.3 04.5 05.2 05.7 08.6 12.5	24.5 29.9 44.3	49.8
Star	κ Sco β Oph μ Her A G Sco γ Oph	Y Sgr 1 Sgr A 8 Sgr A 1 Ser	φ Sgr byr Sgr	β Lyr A σ Sgr ξ ² Sgr Υ Lyr	ζ Sgr AB ζ Aql A λ Aql τ Sgr ABC δ Dra	δ Aql β Cyg <i>A</i> δ Cyg <i>AB</i> ~ Aql	α Aql

	5'' eacock Deneb	leramin Enif	ll Na'ir ''	nalhaut Scheat Markab
	e B; <i>B</i> 5.97 ^m 20: <i>F</i>	16, 0.19ª Ald	م , 5.4 ^d , <i>B</i> 6.19 ^m 4	Fon
	Type gK0: + lat	β CMa R 3.14–3. <i>B</i> 11 ^m 82″ Var. R 2.88–2.95	Cep. R 3.51–4.42 Var. R 2.11–2.23	Var. R 2.4–2.7
R	km/sec -27.3 -27.3 -27.3 -07.5 +02.0 +02.0 +02.0 +09.8 +09.8 -10.3	+17.4 -10 -03.1 +06.5 +04.7 -00.2 -02.1	+ 07.5 + 111.8 + 111.8 + 128.4 + 111.8 + 128.4 + 128	+06.5 +08.7 -03.5 -42.4
ц	$\begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c} 0.056\\ 0.156\\ 0.014\\ 0.017\\ 0.025\\ 0.392\\ 0.102\end{array}$	0.016 0.194 0.015 0.015 0.077 0.077 0.077 0.027 0.027	0.367 0.234 0.071 0.168
D	1.y. 330 130 750 310 310 84 1600 160 74	390 52 980 780 540 540	1080 1240 1300 210 280 360 84	22.6 210 109 51
Μ	+ 1.1	1+1+1+2	+ + + + + + + + + + + + + + + + + + +	+2.0 -1.5 -0.1 +2.2
ĸ	0.008 0.005 0.005 0.039 0.039 0.013 0.026	$\begin{array}{c} 0.021\\ 0.063\\ 0.005\\ 0.006\\ 0.005\\ 0.065\\ 0.008\end{array}$	0.003 0.019 0.019 0.005 0.005 0.005 0.005 0.003 0.003	0.144 0.015 0.030 0.064
Type	80.5 III 80.5 III 80.5 II 80.5 V 80.15 V 80.11 10 10 10 10 10 10 10 10 10 10 10 10 1	86m 86m 86m 1V-V 1V-V 1B 1V-V 1B 1V-V 1B 1V-V 1B 10 10 10 10 10 10 10 10 10 10 10 10 10	22 22 25 25 25 25 25 25 25 25 25 25 25 2	A3 V A2 II-III 89.5 III IV
B-V		++1.00 ++0.22 ++0.22 +-0.10 +0.23	++0.96 ++0.96 ++1.59 ++0.085 ++0.085 ++0.085 +0.085 ++	$\begin{array}{c} +0.10 \\ +1.67 \\ +1.02 \\ 1 \\ +1.02 \end{array}$
7	3.24 3.24 3.11 3.11 3.45 3.45 2.45 2.46	3.19 3.15v 2.386 2.92v 3.00	2.93 1.76 3.36 3.96v 2.17v 2.95 3.287 2.95	1.15 2.5 v 3.20
80 Dec.	$\begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$	$\begin{array}{c} + 30 \\ + 52 \\ + 70 \\ - 05 \\ + 70 \\ - 05 \\ + 09 \\ + 09 \\ + 37 \\ 27 \\ - 37 \\ 27 \\ - 37 \\ 27 \\ - 37 \\ 27 \\ - 37 \\ 27 \\ - 37 \\ 27 \\ - 37 \\ $	-12000000000000000000000000000000000000	-29 44 +27 58 +15 05 +77 30
R.A. 19	h 20 10.3 19.9 211.5 221.5 221.5 44.9 43.2 44.9 45.4	21 12.1 18.2 28.4 30.5 45.9 52.7 52.7	22 04.7 10.1 171.1 28.5 421.5 53.1 53.5 1	23 02.8 03.8 38.5
Star	0 Aql β Cap A Cyg A α Cyg β Pav β Pav Cep Cyg β Cap A α Cyg β Pav	ζ Cyg α Cep β Aqr ε Peg A δ Cap	A A A A A A A A A A A A A A A A A A A	α Peg β Peg γ Cep
DOUBLE AND MULTIPLE STARS BY CHARLES E. WORLEY

Many stars can be separated into two or more components by use of a telescope. The larger the aperture of the telescope, the closer the stars which can be separated under good seeing conditions. With telescopes of moderate size and average optical quality, and for stars which are not unduly faint or of large magnitude difference, the minimum angular separation is given by 4.6/D, where D is the diameter of the telescope's objective in inches.

The following lists contain some interesting examples of double stars. The first list presents pairs whose orbital motions are very slow. Consequently, their angular separations remain relatively fixed and these pairs are suitable for testing the per-formance of small telescopes. In the second list are pairs of more general interest, including a number of binaries of short period for which the position angles and separations are changing rapidly.

In both lists the columns give, successively: the star designation in two forms: its right ascension and declination for 1980; the combined visual magnitude of the pair and the individual magnitudes; the apparent separation and position angle for 1978.0; and the period, if known.

Many of the components are themselves very close visual or spectroscopic binaries. (Other double stars appear in the table of The Brightest Stars and of The Nearest Stars.)

Star	A.D.S.	h h	R.A. 19 m	De 80.0	c. ,	Mag comb.	gnitude A	s B	P.A. 197	Sep. 78.0,	P (app.) years
$\begin{array}{c c} \hline & & \\ \hline \lambda & Cas \\ \alpha & Psc \\ 33 & Ori \\ O\Sigma & 156 \\ \Sigma & 1338 \\ 35 & Com \\ \Sigma & 2054 \\ \epsilon^1 & Lyr^{\dagger} \\ \epsilon^2 & Lyr^{\dagger} \\ \epsilon^2 & Lyr^{\dagger} \\ \pi & Aql \\ O\Sigma & 500 \end{array}$	434 1615 4123 5447 7307 8695 10052 11635 11635 12962 16877	00 02 05 06 09 12 16 18 18 19 23	$\begin{array}{r} 30.7\\01.0\\30.2\\46.3\\19.7\\52.3\\23.6\\43.7\\43.7\\47.7\\36.5\end{array}$	+54 +02 +03 +18 +38 +21 +61 +39 +39 +11 +44	26 40 16 13 17 21 44 38 38 45 20	4.9 4.0 5.7 6.1 5.8 5.1* 5.6 5.1 4.4 5.6 5.9	5.5 4.3 6.0 6.8 6.5 5.2 6.0 5.4 5.1 6.0 6.4	5.8 5.3 7.3 7.0 6.7 7.4 7.2 6.5 5.3 6.8 7.1	182 282 27 244 251 161 355 356 84 110 355	0.6 1.8 1.8 0.5 1.1 1.0 1.1 2.7 2.3 1.4 0.5	640 720 1100 400 500 1200 600 —
$\begin{array}{c} \hline & \\ & & \\$	671 1538 B 1630 C 1630 2799 5423 6650 C 6650 7203 7724 8119 8630 9343 9413 10157 11046 12880 14360 143787 15270	00 01 02 03 06 07 08 09 10 11 12 14 14 14 16 18 18 18 20 21 21 22	47.7 54.8 02.4 49.2 44.3 33.3 11.1 11.1 11.1 08.6 18.9 17.1 40.1 50.4 40.1 50.4 40.1 50.4 40.5 44.4 13.9 43.2 27.8	$\begin{array}{c} +57\\ +01\\ +42\\ +25\\ -16\\ +31\\ +17\\ +17\\ +17\\ +17\\ +31\\ -01\\ +31\\ +02\\ +45\\ -02\\ +37\\ +28\\ -00\end{array}$	44 45 16 32 40 55 43 43 43 57 39 21 49 12 38 11 32 04 53 57 39 08	3.5* 6.0 2.1* 5.2 -1.4 1.6 5.2* 1.8 3.8 3.8 3.8 3.8 4.5 2.8 4.7 4.0 2.9* 6.0 3.7 4.6	3.58 2.58 2.58 -1.00 5.42 -2.00 5.42 -2.00 5.42 -2.00 -2.02	$\begin{array}{c} 7.2\\ 6.1\\ 5.1\\ 6.2\\ 5.3\\ 2.8\\ 9.3\\ 2.8\\ 9.3\\ 4.5\\ 5.5\\ 9\\ 6.3\\ 2.4\\ 1.5\\ 6.5\\ 5.9\\ 6.3\\ 2.4\\ 1.5\\ 6.3\\ 2.4\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5$	306 54 64 108 207 53 101 292 82 4 123 298 305 334 157 277 341 298 305 154 230	$11.9 \\ 1.4 \\ 9.8 \\ 0.6 \\ 10.8 \\ 2.1 \\ 0.9 \\ 5.9 \\ 3.1 \\ 1.3 \\ 3.0 \\ 4.3 \\ 3.0 \\ 4.1 \\ 1.2 \\ 1.2 \\ 1.2 \\ 1.9 \\ 2.0 \\ 0.7 \\ 0.9 \\ 1.8 \\ 1.$	480 170

*There is a marked colour difference between the components.

[†]The separation of the two pairs of ε Lyr is 208"

VARIABLE STARS

By Janet Mattei

The systematic observation of variable stars is an area in which an amateur can make a valuable contribution to astronomy. For beginning observers, maps of the fields of four bright variable stars are given below. In each case, the magnitudes (with decimal point omitted) of several suitable comparison stars are given. Using two comparison stars, one brighter, one f ainter than the variable, estimate the brightness of the variable in terms of these two stars. Record also the date and time of observation. When a number of observations have been made, a graph of magnitude versus date may be plotted. The shape of this "light curve" depends on the type of variable. Further information about variable star observing may be obtained from the American Association of Variable Star Observers, 187 Concord Ave., Cambridge, Mass. 02138.

In the tables the first column, the Harvard designation of the star, gives the 1900 position: the first four figures give the hours and minutes of R.A., the last two figures give the Dec. in degrees, italicised for southern declinations. The column headed *Max*. gives the mean maximum magnitude. The *Period* is in days. The *Epoch* gives the predicted date of the *earliest* maximum occurring this year; by adding the period to this epoch other dates of maximum may be found. The list of long-period variables has been prepared by the American Association of Variable Star Observers and includes the variables may reach maximum for several weeks. The second table contains stars which are representative of other types of variable. The data are taken from the third edition and the *Second Supplement* of the third edition of "*The General Catalogue of Variable Stars*" by Kukarkin and Parenago and for the eclipsing binaries and RR Lyrae variables from *Rocznik Astronomiczny Obserwatorium Krakowskiego* 1977, International Supplement.

LONG-TERIOD VARIABLE STAR	LONG-PERIOD	VARIABLE	STARS
---------------------------	-------------	----------	-------

Variable	Max. m	Per d	Epoch 1978	Variable	Max. m	Per d	Epoch 1978
001755 T Cas 001838 R And 021143 W And 021403 o Cet 022813 U Cet 023813 R Tri 043065 T Cam 045514 R Lep 050953 R Aur 054920 U Ori 061702 V Mon 065355 R Lyn 070122aR Gem 070310 R CMi 072708 S CMi 081112 R Cnc 081617 V Cnc 084803 S Hya 085008 T Hya 093934 R LMi 094211 R Leo 103769 R UMa 121418 R Crv 122001 SS Vir 123160 T UMa	$\begin{array}{c} 7.8\\ 7.0\\ 7.4\\ 3.4\\ 7.5\\ 6.2\\ 8.0\\ 6.8\\ 7.7\\ 6.3\\ 7.0\\ 7.5\\ 6.8\\ 7.9\\ 7.1\\ 8.0\\ 7.5\\ 6.8\\ 7.9\\ 7.8\\ 7.1\\ 5.8\\ 7.5\\ 6.8\\ 7.7\\ 6.9\\ 7.8\\ 7.5\\ 6.8\\ 7.7\\ 6.8\\ 7.7\\ 6.8\\ 7.7\\ 6.8\\ 7.8\\ 7.8\\ 7.5\\ 6.8\\ 7.7\\ 6.8\\ 7.8\\ 7.8\\ 7.5\\ 7.8\\ 7.5\\ 7.8\\ 7.5\\ 7.8\\ 7.5\\ 7.8\\ 7.8\\ 7.5\\ 7.8\\ 7.8\\ 7.8\\ 7.5\\ 7.8\\ 7.8\\ 7.8\\ 7.8\\ 7.8\\ 7.8\\ 7.8\\ 7.8$	445 409 397 332 235 2266 374 432 459 372 335 379 370 338 332 257 288 372 257 288 372 257 288 372 257 2117 302 217 2257 217 217 217 217 217 217 217 217 217 21	July 19 Jan. 29 Jan. 1 Oct. 31 Feb. 6 Apr. 12 Nov. 22 Nov. 9 Feb. 13 Sept. 16 Mar. 20 May 25 Aug. 8 July 14 Feb. 26 Dec. 23 Sept. 5 Aug. 31 Sept. 6 Mar. 22 Feb. 1 Sept. 6 Mar. 22 Feb. 1 Oct. 17 Aug. 16 Feb. 6 Feb. 6	142539 V Boo 143227 R Boo 151731 S CrB 154639 V CrB 154615 R Ser 160625 RU Her 162119 U Her 162119 U Her 162127 V Oph 163266 R Dra 164715 S Her 170215 R Oph 171723 RS Her 180531 T Her 180531 T Her 180531 T Her 181136 W Lyr 183308 X Oph 190108 R Aql 191017 T Sgr 193449 R Cyg 194632 χ Cyg 194632 χ Cyg 194632 χ Cyg 201647 U Cyg 204405 T Aqr 210868 T Cep 213753 RU Cyg 230110 R Peg 230759 V Cas	$\begin{array}{c} 7.9\\ 7.2\\ 7.3\\ 7.5\\ 6.9\\ 8.0\\ 7.5\\ 7.6\\ 7.9\\ 7.9\\ 7.9\\ 8.0\\ 7.5\\ 7.6\\ 7.9\\ 8.0\\ 7.5\\ 7.6\\ 7.9\\ 8.0\\ 7.9\\ 7.9\\ 6.8\\ 6.1\\ 7.3\\ 5.2\\ 7.7\\ 6.0\\ 8.0\\ 7.9\\ 7.9\\ 7.9\\ 7.9\\ 7.9\\ 7.9\\ 7.9\\ 7.9$	258 223 361 358 357 484 406 298 298 298 298 298 298 298 298 298 298	Aug. 30 Apr. 29 Jan. 12 Sept. 28 Aug. 5 Sept. 18 Mar. 22 Jan. 31 Jan. 9 July 1 May 28 May 16 June 22 Sept. 23 Aug. 29 July 28 Apr. 29 Aug. 19 May 6 Sept. 18 May 3 Feb. 13 Sept. 18 Mar. 11 Mar. 12 June 7
131546 V CVn 132706 S Vir 134440 R CVn 142584 R Cam	6.8 7.0 7.7 7.9	192 378 328 270	Feb. 24 Jan. 31 Mar. 21 July 2	231508 S Peg 233815 R Aqr 235350 R Cas 235715 W Cet	8.0 6.5 7.0 7.6	319 387 431 351	July 24 Feb. 3 Apr. 4 Feb. 16

OTHER TYPES OF VARIABLE STARS

Var	iable	Max. m	Min. m	Type	Sp. Cl.	Period d	Epoch 1978 E.S.T.
005381 025838 030140 035512 060822 061907 065820 154428 171014 184205 184633 192242 194700 222557	U Cep ρ Per β Per λ Tau η Gem T Mon ζ Gem R Cr B α Her R Sct β Lyr R R Lyr R R Lyr η Aql δ Cep	$\begin{array}{c} 6.7\\ 3.3\\ 2.1\\ 3.5\\ 3.1\\ 6.4\\ 4.4\\ 5.8\\ 3.0\\ 6.3\\ 3.4\\ 6.9\\ 4.1\\ 4.1 \end{array}$	9.8 4.0 3.3 4.0 5.2 14.8 4.0 8.6 4.3 8.0 5.2 5.2	Ecl. Semi R Ecl. Semi R δ Cep R Cr B Semi R RVTau Ecl. RR Lyr δ Cep δ Cep	B8+gG2 M4 B3+G B3 F7-K1 F7-G3 cFpep M5 G0e-K0p B8 A2-F1 F6-G4 F5-G2	2.49307 33-55,1100 2.86731 3.952952 233.4 27.0205 10.15082 50-130, 6 yrs. 144 12.9350 0.5668158 7.176641 5.366341	Jan. 3.26* Jan. 4.22* Jan. 4.98 Jan. 3.06 Jan. 9.91* Jan. 1.37 Jan. 3.77

*Minimum.

BRIEF DESCRIPTION OF VARIABLE TYPES

Variables can be divided into three main classes; pulsating, eruptive and eclipsing binary stars as recommended by Commission 27 of the International Astronomical Union at its 12th General Assembly in Hamburg in 1964. A very brief and general description about the major types of variables in each class is given below.

I. Pulsating Variables

Cepheids: Variables that pulsate periodically with periods 1 to 70 days. They have high luminosity with amplitudes of light variations ranging from 0.1 to 2^{m} . Some of the group are located in open clusters, and they obey the well known period-luminosity relation. They are of F spectral class at maximum and G-K at minimum. The later their spectral class the greater is the period of light variation. Typical representative: δ Cephei.

RR Lyrae Type: Pulsating, giant variables with periods ranging from 0.05 to 1.42 and amplitude of light variation between 1 and 2^{m} . They are usually of A spectral class. Typical representative: RR Lyrae.

RV Tauri Type: Supergiant variables with light curves of alternating deep and shallow minima. The periods, defined as the interval between two deep minima, range from 30 to 150 days. The amplitude of light variations goes up to 3^{m} . Many show long term variations of 500 to 9000 days in their mean magnitude. Generally the spectral classes range from G to K. Typical representative: R Scuti.

Long period—Mira Ceti variables: Giant variables that vary with amplitudes from 2.5 to 5^{m} and larger with well defined periodicity, ranging from 80 to 1000 days. They show characteristic emission spectra of late spectral classes of Me, Ce and Se. Typical representative: \circ Ceti (Mira).

Semiregular Variables: Giants and supergiants showing appreciable periodicity accompanied by intervals of irregularities of light variation. The periods range from 30 to 1000 days with amplitudes not exceeding 1 to 2^m, in general. Typical representative: R Ursae Minoris.

Irregular Variables: Stars that show no periodicity or only a trace of it at times. Typical representative: ω Canis Majoris.

II. Eruptive Variables

Novae: Hot, dwarf stars with sudden increase in brightness, from 7 to 16^m in amplitude, in a matter of 1 to several to hundreds of days. After the outburst the brightness decreases slowly until its initial brightness is reached in several years or decades. Near the maximum brightness, spectra similar to A or F giants are usually observed. Typical representative: CP Puppis (Nova 1942).

Supernovae: Novae in a much larger scale, with sudden increase in brightness up to 20^m or more. The general appearance of their light curve is similar to novae. Typical representative: CM Tauri (central star of the Crab Nebula).

R Coronae Borealis Type: High luminosity variables with slow, non-periodic drops in brightness of amplitudes from about 1 to 9^m . The duration of minima varies from some dozen to several hundreds of days. Members of this type are of F to K and R spectral class. Typical representative: R Coronae Borealis.

U Geminorum Type: Dwarf novae that have long intervals of apparent quiesence at minimum with sudden rises to maximum. The range of outburst is from 2 to 6^{m} in light variations and ten to thousands of days between outbursts depending upon the star. It is a well established fact that most of the members are spectroscopic binaries with periods in order of hours. Typical representative: SS Cygni.

Z Camelopardalis Type: Variables similar to U Gem stars in their physical and spectroscopic properties. They show cyclical variations with intervals of constant brightness for several cycles, approximately one third of the way from maximum to minimum. Typical representative: Z Camelopardalis.

III. Eclipsing Binaries

Binary systems of stars with the orbital plane lying close to the line of sight of the observer. The components periodically eclipse each other, causing variations in the apparent brightness of the system, as is seen and recorded by the observer. The period of the eclipses coincides with the period of the orbital motion of the components. Typical representative: β Persei (Algol).

Each year, in cooperation with the A.A.V.S.O., we introduce a new variable to our readers. This year's star is Z UMa, an interesting semiregular variable. It is bright, and very easy to observe with binoculars or small telescopes. On the finding charts below, the numbers beside the stars are the magnitudes, with the decimal points removed. The light curve below is a computer-plotted graph of 10-day mean values of observations from 1963 to 1966 (JD 2438300 to 2439300). The 1976 and 1977 HANDBOOKS featured the stars R CrB and R Sct, respectively.

THE NEAREST STARS

BY ALAN H. BATTEN

The accompanying table is similar to one that has been published in the HANDBOOK for several years, Like its predecessors, it is based on the work of Professor van de Kamp who has studied many of the nearest stars and published a revised list of them in 1969 in the Publications of the Astronomical Society of the Pacific. Since that list was published, four new stars have been found to have parallaxes of about 0''190 or greater and are therefore within the distance limit of about seventeen light years (or just over five parsecs) which has been arbitrarily set as the limit for this table. One of them, G158–27, has been included in the HANDBOOK since 1972; the other two, L725–32 and B.D. 44° 2051, appear for the first time in the 1976 HANDBOOK. New determinations of the parallaxes of some of the stars in this list have also been published in the last few years. They have not been used because van de Kamp's discussion made use of all the data available for each star, and the inclusion of new data from single observatories for just a few stars would destroy the homogeneity of his list. The reader should remember, however, that new results may affect the order of stars in the list, and that the parallaxes of the new stars included will be relatively uncertain until more observations are available. The latest determination of the parallax of Stein 2051A and B is 0.7179 and if this value is confirmed the stars should be dropped from the list.

Measuring the distances of stars is one of the most difficult and important jobs of an observational astronomer. As the earth travels around the sun each year, the directions of the nearer stars seem to change very slightly compared with those of more distant background stars. This change is called *annual parallax*; even for the nearest star it is less than one second of arc—the angle subtended by a penny about 2.5 miles away. That explains the difficulty of the task, and why results from different observatories are often slightly different. Parallax measurements are important because all our knowledge of the luminosities of stars, and hence of the structures of both the stars and the Galaxy, depends on the relatively few stellar distances that can be directly and accurately measured. The distances are so vast that new units are needed to describe them. Often we talk of *light-years*—the distance (nearly ten million million km or six million milles) that light travels in a year—but in their own calculations astronomers use *parsecs*. One parsec is the distance of a star that has an annual parallax of one second of arc, and is equal to about 3.26 light years. The distance in parsecs is the reciprocal of the parallax expressed (as in the table) in seconds of arc.

The table gives the name and position of each star, the annual parallax π , the distance D in light-years, the spectral type, the proper motion μ in seconds of arc per year (that is the apparent motions), the total space velocity W in km/sec (if known), the visual apparent magnitude and the luminosity in visible light in terms of that of the sun. In column 6, wd stands for white dwarf, and e indicates the presence of emission lines in the spectrum. Very few stars in our neighbourhood are brighter than the sun, and there are no very luminous or very hot stars at all. Most stars in this part of the galaxy are small, cool, and insignificant objects; we shall probably never be sure we have found them all.

The newest list contains 63 stars, including the Sun, thirty-one of which are single. There are eleven double-star systems and two triple systems. Earlier lists have emphasized the unseen companions believed to be associated with seven of the stars or systems. Recent work has called the reality of some of these into question—especially that of the supposed planetary companion of Barnard's star. The suspected companions are still indicated by asterisks in the table, but the evidence for several of them is no longer as clear as it appeared to be some years ago.

THE NEAREST STARS

Name α δ π D Sp. μ W m L Sun h m \circ '' l.y. G2 3.68 32 -26.8 1.0 0.00000 Barnard's 17 56 +42.8 -62.36 M5e 11.0 0.00000 Barnard's 17 56 +04.36 .552 5.9 M55 10.30 140 9.5 0.00002 Lal.21185* 110.3 +36.07 A02 8.1 M27 8.6 A1 1.32 18 -1.5 20.0002 Luy.726-8A 1.37 -18.04 .365 8.9 M6e 3.35 52 12.5 0.0001 Cuy.726-8B 1.37 -18.04 .365 8.9 M6e 1.32 18.6 12.2 0.0001 Ross 154 18.49 -19.23 .305 10.7 K5 1.22 1.0 0.0010 Luy.789-6 R2.38 1.10.8							•			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1	980							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Name	α	δ	π	D	Sp.	μ	w	m	L
	-	h m	• •		l.y.			km/sec		
	Sun	14 38	-60 46	0.760	4.3	G2 G2	3.68	32	-26.8 0.1	1.0
$ \begin{array}{c} \begin{array}{c} \textbf{Barnards}{l} \textbf{Barnards}{l} \textbf{H} 236 \\ \mbox{ wold} 359 \\ \mbox{ wold} 359 \\ \mbox{ wold} 359 \\ \mbox{ lal, 21} 185^{*} \\ \mbox{ loss} 10 \\ \mbox{ so lal, 21} 185^{*} \\ \mbox{ loss} 10 \\ \mbox{ so lal, 21} 185^{*} \\ \mbox{ loss} 10 \\ \mbox{ so lal, 21} 185^{*} \\ \mbox{ loss} 10 \\ \mbox{ so lal, 21} \\ \mbox{ lal, 21} 185^{*} \\ \mbox{ loss} 10 \\ \mbox{ lal, 21} 185^{*} \\ \mbox{ loss} 10 \\ \mb$	B	14 00	(2.20			K5			1.5	0.36
	Barnard's*	17 56	+04 36	. 552	5.9	M5e M5	10.30	140	9.5	0.00044
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Wolf 359	10 56	$+07\ 10$ +36\ 07	.431	7.6	M6e	4.84	55	13.5	0.00002
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sirius A	6 44	-16 42	.377	8.6	AĨ	1.32	18	-1.5	23.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	B Luy. 726–8A	1 37	-18 04	. 365	8.9	wd M6e	3.35	52	7.2	0.008
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B Ross 154	18 49	-23 50	345	9.4	M6e M5e	0.74	12	13.0	0.00004
	Ross 248	23 40	+44 04	.317	10.3	M6e	1.82	86	12.2	0.00011
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ε Eri Luv. 789–6	22 38	-09 32 -15 28	.305	10.7	K2 M6	0.97	22	12.2	0.30
	Ross 128	11 47	+00 58	. 301	10.8	M5	1.40	26	11.1	0.00033
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	61 Cyg A B*	21 06	+ 38 38	. 292	11.2	К5 К7	5.22	106	5.2	0.083
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ɛ Ind	22 03	-5652	. 291	11.2	K5	4.67	86	4.7	0.13
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B B	07 39	+05 17	. 287	11.4	r5 wd	1.25	21	10.8	0.0005
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Σ 2398 A	18 42	+59 36	. 284	11.5	M3.5	2.29	39	8.9	0.0028
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Groom. 34 A	00 18	+43 54	. 282	11.6	M1	2.91	52	8.1	0.0013
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Lacaille 9352	23 05	-35 59	.279	11.7	M6 M2	6.87	117	7.4	0.00040
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	τ Ceti	01 43	$-16\ 03$.273	11.9	. G8	1.92	37	3.5	0.44
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	L725-32	01 11	-1706	.260	12.2	M4 M5e	1.31	/1	11.5	0.0003
Auger of 0 A 03 11 -44 39 -250 12.7 M0 6.87 232 5.8 0.0040 B - - - M6 0.87 212 5.8 0.0047 11.2 0.0017 B - - - M6 0.87 31 9.7 0.0017 11.2 0.0004 B - 06 22 27 457 36 .249 13.1 M5 0.87 31 9.7 0.0017 BD -12°4523 16 30 -12 36 .249 13.1 M5 1.18 38 10.0 0.00017 Walf 424 A 12 33 +09 09 .229 14.2 M6e 1.87 39 12.6 0.00017 Wolf 424 A 12 33 +09 09 .224 14.6 M6e 1.87 39 12.6 0.00017 G158 27 00 06 -07 38 .214 15.0 M0 1.45 40 6.6 0.0030 CD -44°11540 17 28 -46 53 .216 15.1	Lacaille 8760	21 16	-3858	.260	12.5	M1 M0	3.46	67	6.7	0.025
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Kruger 60 A	22 27	+57 36	.250	12.8	M4	0.87	31	9.7	0.0040
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B Boss 614 A	06.28	-02.48	249	13.1	M6 M5e	0.97	30	11.2	0.00044
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B	00 20	02 40		15.1	?	0.57	50	14.8	0.00002
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BD-12°4523 van Maanen's	16 30	-12 36 + 05 19	.249	13.1	M5 wdF	1.18	38	10.0	0.0013
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Wolf 424 A	12 33	+0909	.229	14.2	M6e	1.87	39	12.6	0.00014
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	В CD-37°15492	00 04	-37 27	.225	14.5	M6e M3	6.09	130	12.6	0.00014
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	G158 27	00 06	-0738	. 224	14.6	2.00	2.1	40	13.8	0.00005
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$CD - 46^{\circ}11540$	17 28	+49 33 -46 53	.217	15.0	M0 M4	1.45	40	6.6 9.4	0.040
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CD-49°13515	21 32	-49 11	.214	15.2	M3	0.78		8.7	0.0058
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Luy. 1159–16	01 59	-44 17 +13 00	.213	15.3	(M7)	2.08		11.2	0.00003
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Lal. 25372	13 44	+1501	.208	15.7	M3.5	2.30	55	8.5	0.0076
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CC 658	11 44	+68 22 -64 42	.207	15.7	wd	2.69	54	11.0	0.0044
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ross 780	22 52	-1422	. 206	15.8	M5	1.17	28	10.2	0.0016
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B	.04 14	-07 41	. 205	15.5	wdA	4.08	104	9.9	0.0027
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C BD $\pm 20^{\circ}2465^{*}$	10 19	+19 58	202	16.1	M4e M4.5	0.49	15	11.2	0.00063
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BD+44°2051	11 05	+43 36	.199	16.4	M2e	4.40		8.8	0.0063
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Altair 70 Oph A	19 49	+08 49 +02 31	. 196	16.6 16.7	A'/ K1	0.66	31 29	0.8 4.2	0.44
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B			104	16.0	K6	0.07	101	6.0	0.083
Stein 2051 A B 04 30 +58 57 .192 17.0 (M5) wd 2.37 11.1 0.0008 12.4 0.0003 0.003	$AC + 79^{\circ}3888$ BD + 43°4305*	11 46 22 46	+1847 +4414	. 194	16.8	M4 M5e	0.87	21	10.1	0.0009
	Stein 2051 A	04 30	+58 57	. 192	17.0	(M5)	2.37		11.1	0.0008
	<u></u>					nu			12.4	0.0003

*Star may have an unseen component.

GALACTIC NEBULAE

By René Racine

The following objects were selected from the brightest and largest of the various classes to illustrate the different types of interactions between stars and interstellar matter in our galaxy. *Emission regions* (HII) are excited by the strong ultraviolet flux of young, hot stars and are characterized by the lines of hydrogen in their spectra. *Reflection nebulae* (Ref) result from the diffusion of starlight by clouds of interstellar dust. At certain stages of their evolution stars become unstable and explode, shedding their outer layers into what becomes a *planetary nebula* (P1) or a *supernova remnant* (SN). Protostellar nebulae (PrS) are objects still poorly understood; they are somewhat similar to the reflection nebulae, but their associated stars, often variable, are very luminous infrared stars which may be in the earliest stages of stellar evolution. Also included in the selection are four *extended complexes* (Compl) of special interest for their rich population of dark and bright nebulosities of various types. In the table S is the optical surface brightess in magnitude per square second of arc of representative regions of the nebula, and m* is the magnitude of the associated star.

				α 19	980 δ			Sime	S		Dist.	
NGC	м	Con	h	m	٥	•	Туре	Size	sq'	*	l.y.	Remarks
650/1 IC348 1435 1535 1952	76 1	Per Per Tau Eri Tau	01 03 03 04 05	40.9 43.2 46.3 13.3 33.3	+51 + 32 + 24 - 12 + 22	28 07 01 48 05	Pl Ref Ref Pl SN	1.5 3 15 0.5 5	20 21 20 17 19	17 8 4 12 16v	15 0.5 0.4 4	Nebulous cluster Merope nebula "Crab" + pulsar
1976 1999 ζ Ori 2068 IC443	42 78	Ori Ori Ori Ori Gem	05 05 05 05 06	34.3 35.5 39.8 45.8 16.4	$ \begin{array}{c c} -05 \\ -06 \\ -01 \\ +00 \\ +22 \end{array} $	25 45 57 02 36	HII PrS Comp Ref SN	30 1 2° 5 40	18 20	4 10v	1.5 1.5 1.5 1.5 2	Orion nebula Incl. "Horsehead"
2244 2247 2261 2392 3587	97	Mon Mon Gem UMa	06 06 06 07 11	31.3 32.1 38.0 28.0 13.6	+04 + 10 + 08 + 20 + 55	53 20 44 57 08	HII PrS PrS Pl Pl	50 2 0.3 3	21 20 18 21	7 9 12v 10 13	3 4 10 12	Rosette neb. Hubble's var. neb. Clown face neb. Owl nebula
ρOph θOph 6514 6523 6543	20 8	Oph Oph Sgr Sgr Dra	16 17 18 18 17	24.4 20.7 01.2 02.4 58.6	$ \begin{array}{r} -23 \\ -24 \\ -23 \\ -24 \\ +66 \end{array} $	24 59 02 23 37	Comp Comp HII HII Pl	4° 5° 15 40 0.4	19 18 15	11	0.5 3.5 4.5 3.5	Bright + dark neb. Incl."S" neb. Trifid nebula Lagoon nebula
6611 6618 6720 6826 6853	16 17 57 27	Ser Sgr Lyr Cyg Vul	18 18 18 19 19	17.8 19.7 52.9 44.4 58.6	$-13 \\ -16 \\ +33 \\ +50 \\ +22$	48 12 01 28 40	HII HII Pl Pl Pl	15 20 1.2 0.7 7	19 19 18 16 20	10 15 10 13	6 3 5.5 3.5 3.5	Horseshoe neb. Ring nebula Dumb-bell neb.
6888 γCyg 6960/95 7000 7009		Cyg Cyg Cyg Cyg Aqr	20 20 20 20 21	11.6 21.5 44.8 58.2 03.0	+38 +40 +30 +44 -11	21 12 38 14 28	HII Comp SN HII Pl	15 6° 150 100 0.5	22 16	12	2.5 3.5 3	HII + dark neb. Cygnus loop N. America neb. Saturn nebula
7023 7027 7129 7293 7662		Cep Cyg Cep Aqr And	21 21 21 22 23	01.4 06.4 42.5 28.5 25.0	$^{+68}_{+42}_{+65}_{-20}_{+42}$	05 09 00 54 25	Ref Pl Ref Pl Pl	5 0.2 3 13 0.3	21 15 21 22 16	7 13 10 13 12	1.3 2.5 4	Small cluster Helix nebula

MESSIER'S CATALOGUE OF DIFFUSE OBJECTS

This table lists the 103 objects in Messier's original catalogue. The columns contain: Messier's number (M), the number in Dreyer's New General Catalogue (NGC), the constellation, the 1970 position, the integrated visual magnitude (m_v) , and the class of object. OC means open cluster, GC, globular cluster, PN, planetary nebula, DN, diffuse nebula, and G, galaxy. The type of galaxy is also indicated, as explained in the table of external galaxies. An asterisk indicates that additional information about the object may be found elsewhere in the *Handbook*, in the appropriate table.

M NGC	Con	α 1	980 δ	m _v	Туре	М	NGC	Con	α	198	30	δ	mγ	Type
1 1952 2 7089 3 5272 4 6121 5 5904	Tau Aqr CVn Sco Ser	5 33.3 21 32.4 13 41.3 16 22.4 15 17.5	$^{+22 01}_{-00 54}$ $^{+28 29}_{-26 27}$ $^{+02 11}$	11.3 6.27 6.22 6.07 5.99	DN* GC* GC* GC* GC*	56 57 58 59 60	6779 6720 4579 4621 4649	Lyr Lyr Vir Vir Vir	19 18 12 12 12	15.8 52.9 36.7 41.0 42.6	+30 + 33 + 11 + 11 + 11	08 01 56 47 41	8.33 9.0 9.9 10.3 9.3	GC PN* G-SBb G-E G-E
6 6405 7 6475 8 6523 9 6333 10 6254	Sco Sco Sgr Oph Oph	17 38.9 17 52.6 18 02.4 17 18.1 16 56.0	$\begin{array}{r} -32 & 11 \\ -34 & 48 \\ -24 & 23 \\ -18 & 30 \\ -04 & 05 \end{array}$	6 5 7.58 6.40	OC* OC* DN* GC GC*	61 62 63 64 65	4303 6266 5055 4826 3623	Vir Sco CVn Com Leo	12 16 13 12 11	20.8 59.9 14.8 55.7 17.8	$^{+04}_{-30}_{+42}_{+21}_{+13}$	36 05 08 48 13	9.7 7.2 8.8 8.7 9.6	G-Sc GC G-Sb* G-Sb* G-Sa
11 6705 12 6218 13 6205 14 6402 15 7078	Sct Oph Her Oph Peg	18 50.0 16 46.1 16 41.0 17 36.5 21 29.1	$\begin{array}{r} -06 \ 18 \\ -01 \ 55 \\ +36 \ 30 \\ -03 \ 14 \\ +12 \ 05 \end{array}$	7 6.74 5.78 7.82 6.29	OC* GC* GC* GC GC*	66 67 68 69 70	3627 2682 4590 6637 6681	Leo Cnc Hya Sgr Sgr	11 8 12 18 18	19.1 50.0 38.3 30.1 42.0	$^{+13}_{+11}_{-26}_{-32}_{-32}$	07 54 38 23 18	9.2 7 8.04 7.7 8.2	G-Sb OC* GC GC GC GC
16 6611 17 6618 18 6613 19 6273 20 6514	Ser Sgr Sgr Oph Sgr	18 17.8 18 19.7 18 18.8 17 01.3 18 01.2	$-13 \ 48 \\ -16 \ 12 \\ -17 \ 09 \\ -26 \ 14 \\ -23 \ 02$	7 7 7 6.94	OC* DN* OC GC DN*	71 72 73 74 75	6838 6981 6994 628 6864	Sge Aqr Aqr Psc Sgr	19 20 20 1 20	52.8 52.3 57.8 35.6 04.9	+18 -12 -12 +15 -21	44 39 44 41 59	6.9 9.15 9.5 8.31	GC GC OC G-Sc GC
21 6531 22 6656 23 6494 24 6603 25 4725†	Sgr Sgr Sgr Sgr Sgr	18 03.4 18 35.2 17 55.7 18 17.3 18 30.5	$\begin{array}{r} -22 & 30 \\ -23 & 55 \\ -19 & 00 \\ -18 & 27 \\ -19 & 16 \end{array}$	7 5.22 6 6 6	OC GC* OC* OC OC*	76 77 78 79 80	650 1068 2068 1904 6093	Per Cet Ori Lep Sco	1 2 5 5 16	40.9 41.6 45.8 23.3 15.8	$^{+51}_{-00}$ $^{+00}_{-24}$ $^{-22}$	28 04 02 32 56	11.4 9.1 7.3 7.17	PN* G-Sb DN GC GC
26 6694 27 6853 28 6626 29 6913 30 7099	Sct Vul Sgr Cyg Cap	18 44.1 19 58.8 18 23.2 20 23.3 21 39.2	$\begin{array}{r} -09 \ 25 \\ +22 \ 40 \\ -24 \ 52 \\ +38 \ 27 \\ -23 \ 15 \end{array}$	9 8.2 7.07 8 7.63	OC PN* GC OC GC	81 82 83 84 85	3031 3034 5236 4374 4382	UMa UMa Hya Vir Com	9 9 13 12 12	54.2 54.4 35.9 24.1 24.3	+69 +69 -29 +13 +18	09 47 46 00 18	6.9 8.7 7.5 9.8 9.5	G-Sb* G-Irr* G-Sc* G-E G-SO
31 224 32 221 33 598 34 1039 35 2168	And And Tri Per Gem	0 41.6 0 41.6 1 32.8 2 40.7 6 07.6	$^{+41 \ 09}_{+40 \ 45}_{+30 \ 33}_{+42 \ 43}_{+24 \ 21}$	3.7 8.5 5.9 6 6	G-Sb* G-E* G-Sc* OC OC*	86 87 88 89 90	4406 4486 4501 4552 4569	Vir Vir Com Vir Vir	12 12 12 12 12	25.1 29.7 30.9 34.6 35.8	$^{+13}_{+12}_{+14}_{+12}_{+13}$	03 30 32 40 16	9.8 9.3 9.7 10.3 9.7	G-E G-Ep G-Sb G-E G-Sb
36 1960 37 2099 38 1912 39 7092 40 —	Aur Aur Aur Cyg UMa	5 35.0 5 51.5 5 27.3 21 31.5	$^{+34}_{+32} \begin{array}{c} 05 \\ +32 \\ +35 \\ +35 \\ +48 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -$	6 6 6 6	OC OC* OC OC 2 stars	91 92 93 94 95	6341 2447 4736 3351	Her Pup CVn Leo	17 7 12 10	16.5 43.6 50.1 42.8	$+43 \\ -23 \\ +41 \\ +11$	10 49 14 49	6.33 6 8.1 9.9	M58? GC* OC G-Sb* G-SBb
41 2287 42 1976 43 1982 44 2632 45 —	CMa Ori Ori Cnc Tau	6 46.2 5 34.4 5 34.6 8 38.8 3 46.3	$\begin{array}{r} -20 \ 43 \\ -05 \ 24 \\ -05 \ 18 \\ +20 \ 04 \\ +24 \ 03 \end{array}$	6 4 2	OC* DN* DN OC* OC*	96 97 98 99 100	3368 3587 4192 4254 4321	Leo UMa Com Com Com	10 11 12 12 12	45.6 13.7 12.7 17.8 21.9	$^{+11}_{+55}_{+15}_{+14}_{+15}$	56 08 01 32 56	9.4 11.1 10.4 9.9 9.6	G-Sa PN* G-Sb G-Sc G-Sc
46 2437 47 2422 48 2548 49 4472 50 2323	Pup Pup Hya Vir Mon	7 40.9 7 35.6 8 12.5 12 28.8 7 02.0	$-14 \ 46 \\ -14 \ 27 \\ -05 \ 43 \\ +08 \ 07 \\ -08 \ 19$	7 5 6 8.9 7	OC* OC OC G-E* OC	101 102 103 †I	5457 581	UMa Cas Catalog	14 1 ue	02.5 31.9 Numb	+54 $+\overline{60}$ er.	27 35	8.1 7	G-Sc* M101? OC
51 5194 52 7654 53 5024 54 6715 55 6809	CVn Cas Com Sgr Sgr	13 29.0 23 23.3 13 12.0 18 53.8 19 38.7	$^{+47}_{-30}$ 18 $^{+61}_{-39}$ $^{+18}_{-30}$ 30 $^{-31}_{-30}$ 00	8.4 7 7.70 7.7 6.09	G-Sc* OC GC GC GC GC*									

STAR CLUSTERS

BY T. SCHMIDT-KALER

The star clusters for this list have been selected to include those most conspicuous. Two types of clusters can be recognized: open (or galactic), and globular. Globulars appear as highly symmetrical agglomerations of very large numbers of stars, distributed throughout the galactic halo but concentrated toward the centre of the Galaxy. Their colour-magnitude diagrams are typical for the old stellar population II. Open clusters appear usually as irregular aggregates of stars, sometimes barely distinguished from random fluctuations of the general field. They are concentrated to the galactic disk, with colour-magnitude diagrams typical for the stellar population I of the normal stars of the solar neighbourhood.

The first table includes all well-defined open clusters with diameters greater than 40' or integrated magnitudes brighter than 5.0, as well as the richest clusters and some of special interest. NGC indicates the serial number of the cluster in Dreyer's New General Catalogue of Clusters and Nebulae, M, its number in Messier's catalogue, a and δ denote right ascension and declination, P, the apparent integrated photographic magnitude according to Collinder (1931), D, the apparent diameter in minutes of arc according to Trumpler (1930) when possible, in one case from Collinder; m, the photographic magnitude of the fifth-brightest star according to Shapley (1933) when possible or from new data, in italics; r, the distance of the cluster in kpcs (1 kpc = 3263 light-years), usually as given by Becker and Fenkart (1971); Sp, the earliest spectral type of cluster stars as a mean determined from three colour photometry and directly from the stellar spectra. The spectral type indicates the age of the cluster, expressed in millions of years, thus: O5 = 2, BO = 8, B5 = 70, AO = 400, A5 = 1000, FO = 3000 and F5 = 10000.

The second table includes all globular clusters with a total apparent photographic magnitude brighter than 7.6. The first three columns are as in the first table, followed by *B*, the total photographic magnitude; *D*, the apparent diameter in minutes of arc containing 90 per cent of the stars, and in italics, total diameters from miscellaneous sources; *Sp*, the integrated spectral type; *m*, the mean blue magnitude of the 25 brightest stars (excluding the five brightest); *N*, the number of known variables; *r*, the distance in kpcs (absolute magnitude of RR Lyrae variables taken as $M_B = +0.5$); *V*, the radial velocity in km/sec. The data are taken from a compilation by Arp (1965); in case no data were available there, various other sources have been used, especially H. S. Hogg's Bibliography (1963).

	α 1980 δ									
NGC	h	m	0	'	Р	D	m	r	Sp	Remarks
188 752 869 884 Perseus Pleiades 1912 1976/80 2099 2168 2232 2244 2264 2287 2362 2362 2362	00 01 02 03 03 04 05 05 06 06 06 06 06 07 07	42.0 56.6 17.6 21.0 45.9 19 27.3 34.4 51.1 07.6 25.5 31.3 39.9 46.2 18.0 34.7	$\begin{array}{r} + 85 \\ + 37 \\ + 57 \\ + 57 \\ + 48 \\ + 24 \\ + 15 \\ + 35 \\ - 05 \\ + 32 \\ + 24 \\ - 04 \\ + 04 \\ + 09 \\ - 20 \\ - 24 \\ - 14 \end{array}$	14 35 04 02 32 04 35 49 24 32 21 44 53 54 43 54 27	9.3 6.6 4.3 4.4 2.3 1.6 0.8 7.5 5.6 5.2 5.6 4.1 5.2 4.1 5.8 4.3	14 45 30 240 120 400 18 50 24 29 20 27 30 32 7 30	14.6 9.6 9.5 5.2 1.5 9.7 5.5 9.7 9.0 7 8.0 8.8 9.8	$\begin{array}{c} 1.55\\ 0.38\\ 2.15\\ 2.48\\ 0.17\\ 0.125\\ 0.040\\ 1.41\\ 0.41\\ 1.28\\ 0.87\\ 0.49\\ 1.62\\ 0.72\\ 0.66\\ 1.64\\ 0.48 \end{array}$	F2 A5 B1 B0 B1 B6 A2 B5 O5 B8 B5 B3 O5 O8 B4 O9 B3	oldest known h Per χ Per, M supergiants moving cl., α Per M45, best known moving cl. in Tau* Trapezium, very young M37 M35 Rosette, very young S Mon M41 τ CMa

OPEN CLUSTERS

*Basic for distance determination.

•		α 19	δ 08											
NG	C h	m	0	,	Р	D	m	1	r	Sp		Rei	narks	
2437 2437 2451 2516 2546 2632 1C239 2682 3114 1C260 Tr 16 3532 3766 Coma 4755 6067 6231 Tr 24 6405 1C466 6475 6494 6523 6611 1C472 1C472 1C475 6705 Mel 2 1C139 7790	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	40.9 40.9 40.9 558.0 11.8 39.0 39.7 40.4 49.3 39.7 40.4 49.3 39.7 40.4 49.3 39.7 40.4 49.3 39.7 40.4 49.3 30.7 52.6 55.6 55.7 52.4 411.7 52.6 55.7 55.6 55.7 1.9 17.8 830.5 55.7 19.1 9 17.8 830.5 55.7 19.1 9 17.8 830.5 55.7 19.1 9 17.8 830.5 55.7 19.1 9 17.8 833.5 57.4	$\begin{array}{c} -14\\ -17\\ -37\\ -60\\ -37\\ +20\\ -52\\ -37\\ +11\\ -60\\ -54\\ -58\\ -61\\ +26\\ -60\\ -54\\ -41\\ -40\\ -322\\ +05\\ -34\\ -19\\ -24\\ -13\\ -19\\ -24\\ +05\\ -34\\ -19\\ -24\\ +05\\ -79\\ +57\\ +61\\ \end{array}$	46 55 51 35 69 07 54 01 17 54 01 136 33 30 13 10 46 38 12 44 48 01 23 48 16 26 18 225	$\begin{array}{c} 6.6\\ 3.7\\ 3.3\\ 5.0\\ 3.9\\ 2.6\\ 6.7\\ 4.5\\ 1.6\\ 6.7\\ 3.4\\ 4.9\\ 5.2\\ 6.5\\ 8.5\\ 5.2\\ 6.2\\ 5.1\\ 7.1 \end{array}$	$\begin{array}{c} 27\\ 37\\ 50\\ 45\\ 90\\ 45\\ 20\\ 18\\ 37\\ 65\\ 12\\ 300\\ 12\\ 16\\ 16\\ 60\\ 26\\ 50\\ 27\\ 45\\ 8\\ 35\\ 50\\ 12.5\\ 60\\ 60\\ 4.5\\ \end{array}$	10.8 6 10.1 7 7.5 3.5 10.1 10.8 7 6 8.1 8.1 7 7.5 7.3 8.3 7 7.4 10.2 7 7.4 10.2 7 10.6 9.3 8.5 11.7	1. 0. 0	66 30 37 84 158 1590 83 85 15 990 83 85 15 990 83 85 15 990 83 85 15 990 83 85 10 45 33 23 445 56 69 60 44 70 24 71 16	B85 B85 B85 B85 B85 B85 B85 B85 B85 B85	M46 Prae M67 θ Ca η Ca Veryy κ Cr G ar O su M6 M7 M23 M8, ve N M16 M25 M11 Tr 3 Ceph C	sepe, , old of rr and spars; u, "jej pergia d K s pergia GC65 , nebu , Cep , very 7 neids: F Cas	M44 cl. Nebul se cl. wel bo: supergiants, W boon ne ing cl. 30 ila heid, U rich cl CEa, C	a ants R-stars b. and U Sgr I. CEb,
	l				G	LOBULA	r Cl	USTE	RS					
			α 19	80 δ										
NGC	М	h	m		• •	В		D	Sp		m	N	r	v
104 *1851 2808 5139 5272 5904 6121 6205 6218 6254 *6341 6397 6541 6656 6723 6752 6809 *7078	47 Tuo ω Cen 3 5 4 13 12 10 92 22 55 15 2	c 00 05 09 13 13 15 16 16 16 16 16 16 16 17 17 18 18 18 18 19 19 21 21	23.1 13.3 11.5 25.6 41.3 17.5 22.4 41.0 46.1 56.0 16.5 39.2 06.5 35.1 58.3 09.1 38.8 29.1 32.4	$\begin{array}{r} -7\\ -4\\ -6\\ -4\\ +2\\ +0\\ -2\\ +3\\ -0\\ 0\\ -0\\ -0\\ +4\\ +3\\ -5\\ -2\\ -3\\ -6\\ -3\\ +1\\ -0\\ \end{array}$	2 11 0 02 0 02 0 42 7 12 8 29 02 10 6 30 1 55 4 10 3 40 3 45 3 56 6 39 0 59 0 59 0 55	4.3: 7.72 7.4 4.5 6.86 6.69 7.04 7.58 7.26 6.92 6.92 6.92 6.92 6.92 6.92 6.92 6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 1.5 8.8 5.4 9.3 0.7 2.9 1.5 5.2 9.2 5.2 9.3 2.3 9.3 2.3 9.3 1.5 5.2 1.5 5.2 9.3 1.5 5.2 9.3 1.5 5.2 9.3 1.5 5.2 9.3 1.5 5.2 9.3 1.5 5.2 9.3 1.5 5.2 9.3 1.5 5.2 9.3 1.5 5.2 9.3 1.5 5.2 9.3 1.5 5.2 9.3 1.5 5.2 9.3 1.5 5.2 9.3 1.5 5.2 9.3 1.5 5.2 9.3 1.5 5.2 9.3 1.5 5.2 9.3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	G3 F7 F8 F7 F7 F6 G0 F6 F6 F7 F6 F7 G4 F5 F2 F2 F4	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.54 5.09 3.01 4.35 4.07 3.21 3.85 4.07 4.17 3.96 2.71 3.45 3.73 4.32 3.68 3.68 4.44 4.77	$ \begin{array}{c} 11\\ 3\\ 4\\ 165\\ 189\\ 97\\ 43\\ 10\\ 1\\ 3\\ 16\\ 3\\ 1\\ 24\\ 19\\ 1\\ 6\\ 103\\ 22\\ \end{array} $	5 14.0 9.1 5.2 10.6 8.1 4.3 7.4 6.2 7.9 2.9 4.0 7.4 5.3 6.0 7.4 5.3 10.5 12.3	$\begin{array}{r} -24\\ +309\\ +101\\ +230\\ -153\\ +49\\ +65\\ -241\\ -16\\ +71\\ -118\\ +111\\ -118\\ +11\\ -148\\ -144\\ -3\\ -39\\ +170\\ -5\\ \end{array}$

*Compact X-ray sources were discovered in these clusters in 1975.

EXTERNAL GALAXIES

BY S. VAN DEN BERGH

Among the hundreds of thousands of systems far beyond our own Galaxy relatively few are readily seen in small telescopes. The first list contains the brightest galaxies. The first four columns give the catalogue numbers and position. In the column *Type*, *E* indicates elliptical, *I*, irregular, and *Sa*, *Sb*, *Sc*, spiral galaxies in which the arms are more open going from *a* to *c*. Roman numerals I, II, III, IV, and V refer to supergiant, bright giant, giant, subgiant and dwarf galaxies respectively; *p* means "peculiar". The remaining columns give the apparent photographic magnitude, the angular dimensions and the distance in millions of light-years. The second list contains the nearest galaxies and includes the photographic

distance modulus $(m - M)_{pq}$, and the absolute photographic magnitude, M_{pq} .

NGCor		α 198	80 δ			Dimen-	Distance
name	М	h m	• •	Туре	m _{pg}	, 510115	of l.y.
55 205 221 224 247	32 31	00 14.0 00 39.2 00 41.6 00 41.6 00 46.1	$ \begin{array}{r} -39 & 20 \\ +41 & 35 \\ +40 & 46 \\ +41 & 10 \\ -20 & 51 \end{array} $	Sc or Ir E6p E2 Sb I–II S IV	7.9 8.89 9.06 4.33 9.47	30×5 12×6 3.4×2.9 163×42 21×8.4	7.5 2.1 2.1 2.1 7.5
253 SMC 300 598 Fornax	33	00 46.6 00 52.0 00 54.0 01 32.8 02 38.7	$\begin{array}{r} -25 \ 24 \\ -72 \ 56 \\ -37 \ 48 \\ +30 \ 33 \\ -34 \ 36 \end{array}$	Scp Ir IV or IV–V Sc III–IV Sc II–III dE	7.0: 2.86 8.66 6.19 9.1:	$22 \times 4.6216 \times 21622 \times 16.561 \times 4250 \times 35$	7.5 0.2 7.5 2.4 0.4
LMC 2403 2903 3031 3034	81 82	05 23.7 07 34.9 09 31.0 09 53.9 09 54.4	-69 46 +65 39 +21 36 +69 09 +69 47	Ir or Sc III–IV Sc III Sb I–II Sb I–II Scp:	0.86 8.80 9.48 7.85 9.20	432 × 432 22 × 12 16 × 6.8 25 × 12 10 × 1.5	0.2 6.5 19.0 6.5 6.5
4258 4472 4594 4736 4826	49 104 94 64	12 18.0 12 28.8 12 38.8 12 50.0 12 55.8	+47 25 +08 06 -11 31 +41 13 +21 48	Sbp E4 Sb Sbp II: ?	8.90 9.33 9.18 8.91 9.27	19×7 9.8×6.6 7.9×4.7 13×12 10×3.8	14.0 37.0 37.0 14.0 12.0:
4945 5055 5128 5194 5236	63 51 83	13 04.1 13 14.8 13 24.2 13 29.0 13 36.0	$ \begin{array}{r} -49 & 22 \\ +42 & 08 \\ -42 & 54 \\ +47 & 18 \\ -29 & 46 \end{array} $	Sb III Sb II EOp Sc I Sc I–II	8.0 9.26 7.87 8.88 7.0:	$20 \times 4 \\ 8.0 \times 3.0 \\ 23 \times 20 \\ 11 \times 6.5 \\ 13 \times 12$	14.0 14.0 8.0:
5457 6822	101	14 02.4 19 43.8	+54 26 -14 49	Sc I Ir IV–V	8.20 9.21	23 × 21 20 × 10	14.0 1.7

THE BRIGHTEST GALAXIES

			α 19	80 δ						Dist.
Name	NGC	h	m	0	'	m_{pg}	$(m-M)_{pg}$	M_{pg}	Type	of l.y.
M31	224	00	41.6	+41	10	4.33	24.65	-20.3	Sb I–II	2,100
Galaxy					-	—	—	?	Sb or Sc	—
M33	598	01	32.8	+ 30	33	6.19	24.70	-18.5	Sc II–III	2,400
LMC		05	23.7	-69	46	0.86	18.65	-17.8	Ir or SBc III–IV	160
SMC		00	52.0	-72	56	2.86	19.05	-16.2	Ir IV or IV–V	190
NGC	205	00	39.2	+41	35	8.89	24.65	-15.8	E6p	2.100
M32	221	00	41.6	+40	46	9.06	24.65	-15.6	E2	2.100
NGC	6822	19	43.8	-14	49	9.21	24.55	-15.3	Ir IV–V	1.700
NGC	185	00	37.8	+48	14	10.29	24.65	-14.4	E0	2.100
IC1613		01	04.0	+02	01	10.00	24.40	-14.4	Ir V	2,400
NGC	147	00	32.0	+48	14	10.57	24.65	-14.1	dE4	2,100
Fornax		02	38.7	-34	36	9.1:	20.6:	-12:	dE	430
And I		00	44.4	+37	56	13.5:	24.65	-11:	dE	2,100
And II		01	15.3	+33	20	13.5:	24.65	-11:	dE	2,100
And III		00	34.3	+36	24	13.5:	24.65	-11:	dE	2,100
Leo I		10	07.4	+12	24	11.27	21.8:	-10:	dE	750:
Sculptor		00	58.9	-33	49	10.5	19.70	-9.2:	dE	280:
Leo II		11	12.4	+22	16	12.85	21.8:	-9:	dE	750:
Draco		17	19.8	+57	56		19.50	?	dE	260
Ursa Minor	1	15	08.5	+67	11	—	19.40	?	dE	250
Carina		06	47.2	- 50	59		21.8:	?	dE	550

THE NEAREST GALAXIES

MAXIMA OF DELTA CEPHEI

Date	Time	Date	Time	Date	Time	Date	Time
Jan. 4 9 15 20 25 31	h m 11 40 20 30 5 10 14 00 22 50 7 40	Apr. 5 11 16 21 27	h m 17 10 1 50 10 40 19 30 4 20	July 5 11 16 22 27	h m 22 30 7 20 16 10 1 00 9 50	Oct. 5 10 15 21 26	h m 4 00 12 50 21 40 6 30 15 10
31 Feb. 5 11 16 21 27	16 20 1 10 10 00 18 50 3 30	May 2 7 13 18 24 29	13 00 21 50 6 40 15 30 0 10 9 00	Aug. 1 7 12 17 23 28	18 30 3 20 12 10 21 00 5 40 14 30	Nov. 1 6 11 17 22 27	0 00 8 50 17 40 2 20 11 10 20 00
Mar. 4 9 15 20 25 31	12 20 21 10 6 00 14 40 23 30 8 20	June 3 9 14 19 25 30	17 50 2 40 11 20 20 10 5 00 13 50	Sept. 2 8 13 19 24 29	23 20 8 10 16 50 1 40 10 30 19 20	Dec. 3 8 13 19 24 30	4 50 13 30 22 20 7 10 16 00 0 40

RADIO SOURCES

By John Galt

Although several thousand radio sources have been catalogued most of them are only observable with the largest radio telescopes. This list contains the few strong sources which could be detected with amateur radio telescopes as well as representative examples of astronomical objects which emit radio waves.

	α (19	80) δ	
Name	h m	o /	Remarks
Tycho's s'nova	00 24.6	$\begin{array}{r} + 64 \ 01 \\ + 41 \ 09 \\ + 62 \ 01 \\ - 23 \ 14 \\ + 41 \ 26 \end{array}$	Remnant of supernova of 1572
Andromeda gal.	00 41.5		Closest normal spiral galaxy
IC 1795, W3	02 23.9		Multiple HII region, OH emission
PKS 0237–23	02 39.1		Quasar with large red shift $Z = 2.2$
NGC 1275, 3C 84	03 18.5		Seyfert galaxy, radio variable
Fornax A	03 21.6	-37 15	10th mag. SO galaxy
CP 0328	03 31.3	+54 29	Pulsar, period = 0.7145 sec., H abs'n.
Crab neb, M1*	05 33.2	+22 00	Remnant of supernova of 1054
NP 0532	05 33.2	+22 00	Radio, optical & X-ray pulsar
V 371 Orionis	05 32.7	+01 54	Red dwarf, radio & optical flare star
Orion neb, M42	05 34.3	$ \begin{array}{r} -05 & 24 \\ +22 & 36 \\ +04 & 53 \\ -20 & 42 \\ +02 & 10 \end{array} $	HII region, OH emission, IR source
IC 443	06 16.1		Supernova remnant (date unknown)
Rosette neb	06 30.9		HII region
YV CMa	07 22.2		Optical var. IR source, OH, H ₂ O emission
3C 273	12 28.0		Nearest, strongest quasar
Virgo A, M87*	12 29.8	$ \begin{array}{r} +12 & 30 \\ -42 & 55 \\ +52 & 18 \\ -15 & 35 \\ -00 & 58 \end{array} $	EO galaxy with jet
Centaurus A	13 24.2		NGC 5128 peculiar galaxy
3C 295	14 10.7		21st mag. galaxy, 4,500,000,000 light years
Scorpio X-1	16 18.8		X-ray, radio optical variable
3C 353	17 19.5		Double source, probably galaxy
Kepler's s'nova	17 27.6	$\begin{array}{r} -21 & 16 \\ -28 & 56 \\ -16 & 10 \\ +09 & 05 \\ +21 & 50 \end{array}$	Remnant of supernova of 1604
Galactic nucleus	17 44.3		Complex region OH, NH ₃ em., H ₂ COabs'n.
Omega neb, M17	18 19.3		HII region, double structure
W 49	19 09.4		HII region s'nova remnant, OH emission
CP 1919	19 20.8		First pulsar discovered, $P = 1.337$ sec.
Cygnus A*	19 58.7	+40 41	Strong radio galaxy, double source
Cygnus X	20 21.9	+40 19	Complex region
NML Cygnus	20 45.8	+40 02	Infrared source, OH emission
Cygnus loop	20 51.4	+29 36	S'nova remnant (Network nebula)
N. America	20 54.4	+43 59	Radio shape resembles photographs
3C 446 Cassiopeia A* Sun* Moon Jupiter*	22 24.7 23 22.5	-05 04 + 58 42	Quasar, optical mag. & spectrum var. Strongest source, s'nova remnant Continuous emission & bursts Thermal source only Radio bursts controlled by Io

*Could be detected with amateur radio telescopes.

The above map represents the evening sky on the dates and times shown. For earlier (or later) dates, add (or subtract) two hours per month. For instance, the map represents the early morning sky in late October at 4 a.m. The map is drawn for latitude 45° N. but is useful for latitudes several degrees north or south of this.

The centre of the map is the *zenith*, the point directly overhead; the circumference of the map is the *horizon*. To identify the stars, hold the map in front of you so that the part of the horizon which you are facing (north, for instance) is downward.

The above map represents the evening sky on the dates and times shown. For earlier (or later) dates, add (or subtract) two hours per month. For instance, the map represents the early morning sky in late December at 4 a.m. The map is drawn for latitude 45° N, but is useful for latitudes several degrees north or south of this.

The centre of the map is the *zenith*, the point directly overhead; the circumference of the map is the *horizon*. To identify the stars, hold the map in front of you so that the part of the horizon which you are facing (north, for instance) is downward.

The above map represents the evening sky on the dates and times shown. For earlier (or later) dates, add (or subtract) two hours per month. For instance, the map represents the early morning sky in late February at 4 a.m. The map is drawn for latitude 45° N, but is useful for latitudes several degrees north or south of this.

The centre of the map is the *zenith*, the point directly overhead; the circumference of the map is the *horizon*. To identify the stars, hold the map in front of you so that the part of the horizon which you are facing (north, for instance) is downward.

The above map represents the evening sky on the dates and times shown. For earlier (or later) dates, add (or subtract) two hours per month. For instance, the map represents the early morning sky in late April at 4 a.m. The map is drawn for latitude 45° N, but is useful for latitudes several degrees north or south of this.

The centre of the map is the *zenith*, the point directly overhead; the circumference of the map is the *horizon*. To identify the stars, hold the map in front of you so that the part of the horizon which you are facing (north, for instance) is downward.

The above map represents the evening sky on the dates and times shown. For earlier (or later) dates, add (or subtract) two hours per month. For instance, the map represents the early morning sky in late June at 4 a.m. The map is drawn for latitude 45° N, but is useful for latitudes several degrees north or south of this.

The centre of the map is the *zenith*, the point directly overhead; the circumference of the map is the *horizon*. To identify the stars, hold the map in front of you so that the part of the horizon which you are facing (north, for instance) is downward.

The above map represents the evening sky on the dates and times shown. For earlier (or later) dates, add (or subtract) two hours per month. For instance, the map represents the early morning sky in late August at 4 a.m. The map is drawn for latitude 45° N, but is useful for latitudes several degrees north or south of this.

The centre of the map is the *zenith*, the point directly overhead; the circumference of the map is the *horizon*. To identify the stars, hold the map in front of you so that the part of the horizon which you are facing (north, for instance) is downward.

VISITING HOURS AT SOME CANADIAN OBSERVATORIES

COMPILED BY MARIE LITCHINSKY

Burke-Gaffney Observatory, Saint Mary's University, Halifax, Nova Scotia B3H 3C3. October-April: Saturday evenings 7:00 p.m. May-September: Saturday evenings 9:00 p.m.

- David Dunlap Observatory, Richmond Hill, Ontario L4C 4Y6. Wednesday mornings throughout the year, 10:00 a.m. Saturday evenings, April through October (by reservation, tel. 884-2112).
- Dominion Astrophysical Observatory, Victoria, B.C. V8X 3X3. May-August: Daily, 9:15 a.m.-4:15 p.m. Sept.-April: Monday to Friday, 9:15 a.m.-4:15 p.m. Public observing, Saturday evenings, April-October inclusive.
- Dominion Radio Astrophysical Observatory, Penticton, B.C. V2A 6K3. Sunday, July and August only (2:00-5:00 p.m.).
- National Museum of Science and Technology, 1867 St. Laurent Blvd., Ottawa, Ontario K1A 0M8. Evening tours, by appointment only (613) 998–9520.
 Sept.-June: Group tours: Mon., Tues., Wed., Thurs. Public visits Fri. July-Aug.: Public visits: Tues., Wed., Thurs.

PLANETARIUMS

- The Calgary Centennial Planetarium, Mewata Park, Calgary, Alberta T2P 2M5. Winter: Mon., Wed., Fri., 7:30 p.m.; Sat.-Sun., 2:30 and 7:30 p.m. (Closed Christmas Day, New Year's Day and Good Friday.) Summer: Daily except Tues., 2:15, 3:30, 7:15, 8:30 p.m.
- The Lockhart Planetarium, 394 University College, 500 Dysart Road, The University of Manitoba, Winnipeg., Man. R3T 2N2.

Telephone 474–9785 for times of public shows and for group reservations.

- H. R. MacMillan Planetarium, 1100 Chestnut Street, Vancouver, B.C. V6J 3J9.
 Public shows daily except Mondays, 2:30 and 8:00 p.m.
 Additional shows at 4:00 and 9:30 p.m. on weekends and holidays.
 Children's shows at 1:00 p.m. on weekends and school holidays.
- Manitoba Planetarium, 190 Rupert Ave. and Main St., Winnipeg, Manitoba R3B 0N2. Shows are presented several times each day, except Mondays. Monday programs are presented during July and August and on holidays. For current show times and information, call the Manitoba Planetarium recorded message at (204) 943–3142. Planetarium staff can be reached at 956–2830.

cont'd. on pg. 128

McLaughlin Planetarium, 100 Queen's Park, Toronto, Ont. M5S 2C6. Tues.-Sun. 1:30 (except weekdays in winter season), 3:00 and 7:30 p.m. Holidays 1:30 and 3:00 p.m. Theatre closed Mondays, except holidays.

McMaster University, School and Adult Education, GH-122, Hamilton, Ontario L8S 4L8. Group reservations only. Phone 525–9140, ext. 4691.

Queen Elizabeth Planetarium, Edmonton, Alberta T5J 0K1. Winter: Tues.-Fri. 8:00 p.m.; Sat., Sun. and holidays 3:00 and 8:00 p.m. Summer: Daily: 3:00, 8:00 and 9:00 p.m.

Seneca College Planetarium, 1750 Finch Ave. East, Willowdale, Ont. M2N 5T7. Group reservations only.

INDEX

Algol, Minima/37, 39-61, 108 Anniversaries, Festivals/3 Asteroids/88-90 Calendar/Inside Back Cover Clusters/116–117 Comets/91 Constellations/5 Coordinates/4 Delta Cephei/108, 119 Eclipses/64 Galaxies/118-119 Greek Alphabet/4 Impact Craters/92–93 Julian Day Calendar/11 Jupiter/32 Jupiter: Belts, Zones/83 Jupiter: Eph. Phys. Obs'ns./83 Jupiter: Satellite Configurations/39–61 Jupiter: Satellite Phenomena/84-86 Mars/31-32 Mars: Eph. Phys. Obs'ns./82 Mars: Map/82 Mercury/28-29 Messier's Catalogue/115 Meteors/91-92 Miscellaneous Astron. Data/8 Moon: Observation of/36 Moon: Map/81 Moon: Rise and Set/22-27 Nebulae, Galactic/114 Neptune/35 Occultations, Grazing/74-80 Occultations, Total/65-73 Occultations, Planetary/64

Planets in 1978/28-35 Planets: Elements/6 Planets: Helio. Long./81 Pluto/35 Precession/94 Radio Sources/120 Satellites: Elements/7 Saturn/33 Saturn: Satellites/87-88 Sky Month by Month/36-61 Solar System: Planets/6 Solar System: Satellites/7 Star Maps/121-126 Stars, Brightest/96-106 Stars, Brightest/96–106 Stars, Clusters/116–117 Stars, Double/107 Stars, Names/95 Stars, Nearest/112–113 Stars, Variable/108–111, 119 Sun: Ephemeris/9 Sun: Physical Obs'ns./62–63 Sun: Rise and Set/14-20 Sunspots/63 Symbols, Terminology/4 Time: Correction to Sundial/9 Time: Radio Time Signals/11 Time: Solar, Sidereal etc./10 Time: Sidereal, Diagram/12 Time Zones: Map/13 Twilight/12, 21 Uranus/33-34 Venus/29, 31 Visiting Hours/127-128

CALENDAR

Janu	ary			F	February								ch					A	April								
SM	Τ	W	Т	F	S	S	Μ	Т	W	Τ	F	S	S	Μ	Τ	W	Τ	F	S	S	Μ	Τ	W	Τ	F	S	
1 2	3	4	5	6	7				1	2	3	4				1	2	3	4							1	
8 9	10	11	12	13	14	5	6	7	8	9	10	11	5	6	7	8	9	10	11	2	3	4	5	6	7	8	
15 16	17	18	19	20	21	12	13	14	15	16	17	18	12	13	14	15	16	17	18	9	10	11	12	13	14	15	
22 23	24	25	26	27	28	19	20	21	22	23	24	25	19	20	21	22	23	24	25	16	17	18	19	20	21	22	
29 30	31					26	27	28					26	27	28	29	30	31		23	24	25	26	27	28	29	
																	1			30							
May						Ju	June													A	August						
SM	Т	w	Т	F	S	S	Μ	Т	w	Т	F	S	S	M	Т	w	Т	F	S	S	M	Т	w	Т	F	S	
1	2	3	4	5	6					1	2	3							1			1	2	3	4	5	
7 8	9	10	11	12	13	4	5	6	7	8	9	10	2	3	4	5	6	7	8	6	7	8	9	10	11	12	
14 15	16	17	18	19	20	11	12	13	14	15	16	17	9	10	11	12	13	14	15	13	14	15	16	17	18	19	
21 22	23	24	25	26	27	18	19	20	21	22	23	24	16	17	18	19	20	21	22	20	21	22	23	24	25	26	
28 29	30	31				25	26	27	28	29	30		23	24	25	26	27	28	29	27	28	29	30	31			
													30	31													
Septe	0	October							November							December											
SM	T	W	Т	F	S	S	Μ	Т	w	Т	F	S	S	Μ	Т	W	Т	F	S	S	Μ	Т	w	Т	F	S	
				1	2	1	2	3	4	5	6	7				1	2	3	4						1	2	
3 4	5	6	7	8	9	8	9	10	11	12	13	14	5	6	7	8	9	10	11	3	4	5	6	7	8	9	
10 11	12	13	14	15	16	15	16	17	18	19	20	21	12	13	14	15	16	17	18	10	11	12	13	14	15	16	
17 18	19	20	21	22	23	22	23	24	25	26	27	28	19	20	21	22	23	24	25	17	18	19	20	21	22	23	
24 25	26	27	28	29	30	29	30	31					26	27	28	29	30			24	25	26	27	28	29	30	
																				A 12.9/							

CALENDAR

January February March April SMTWTFS SMTWTFS SMTWTFS SMTWTFS 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 1 2 3 4 5 6 7 1 2 3 7 8 9 10 11 12 13 4 5 6 7 8 9 10 8 9 10 11 12 13 14 14 15 16 17 18 19 20 11 12 13 14 15 16 17 11 12 13 14 15 16 17 15 16 17 18 19 20 21 21 22 23 24 25 26 27 18 19 20 21 22 23 24 18 19 20 21 22 23 24 22 23 24 25 26 27 28 28 29 30 31 25 26 27 28 25 26 27 28 29 30 31 29 30

May							Jı	ine					14	August													
S	Μ	Т	W	Т	F	S	S	Μ	Т	W	Т	F	S	S	M	Т	W	Т	F	S	S	M	Т	w	Т	F	S
		1	2	3	4	5						1	2	1	2	3	4	5	6	7				1	2	3	4
6	7	8	9	10	11	12	3	4	5	6	7	8	9	8	9	10	11	12	13	14	5	6	7	8	9	10	11
13	14	15	16	17	18	19	10	11	12	13	14	15	16	15	16	17	18	19	20	21	12	13	14	15	16	17	18
20	21	22	23	24	25	26	17	18	19	20	21	22	23	22	23	24	25	26	27	28	19	20	21	22	23	24	25
27	28	29	30	31			24	25	26	27	28	29	30	29	30	31					26	27	28	29	30	31	

September							0	cto	obe	er				N	ov	en	ıbe	er			D	December						
S	Μ	Т	W	Т	F	S	S	Μ	Т	W	Т	F	S	S	Μ	Ŧ	W	Т	F	S	S	Μ	Т	w	Т	F	S	
						1		1	2	3	4	5	6					1	2	3							1	
2	3	4	5	6	7	8	7	8	9	10	11	12	13	4	5	6	7	8	9	10	2	3	4	5	6	7	8	
9	10	11	12	13	14	15	14	15	16	17	18	19	20	11	12	13	14	15	16	17	9	10	11	12	13	14	15	
16	17	18	19	20	21	22	21	22	23	24	25	26	27	18	19	20	21	22	23	24	16	17	18	19	20	21	22	
23	24	25	26	27	28	29	28	29	30	31				25	26	27	28	29	30		23	24	25	26	27	28	29	
30																					30	31						

1979

1978

