THE OBSERVER'S HANDBOOK 1958

Fiftieth Year of Publication THE ROYAL ASTRONOMICAL SOCIETY OF CANADA

Price 75 cents

THE ROYAL ASTRONOMICAL SOCIETY OF CANADA

Incorporated 1890 — Royal Charter 1903

The National Headquarters of the Royal Astronomical Society of Canada, seen above, is located at 252 College Street, Toronto 2B, Ontario. The business office of the Society, reading rooms and astronomical library, are housed here, as well as a large room for the accommodation of telescope making groups.

Membership in the Society is open to anyone interested in astronomy. Applicants may affiliate with one of the Society's thirteen centres across Canada, or may join the National Society. Centres of the Society are established in Halifax, Quebec, Montreal, Ottawa, Hamilton, London, Windsor, Winnipeg, Edmonton, Vancouver, Victoria, and Toronto. Addresses of the Centres' secretaries may be obtained from the National Headquarters.

Publications of the Society are free to members, and include the JOURNAL (6 issues per year) and the OBSERVER'S HANDBOOK (published annually in November). Annual fees of \$5.00 are payable October 1 and include the publications for the following year.

Requests for additional information regarding the Society or its publications may be sent to the address above. Communications to the Editor should be sent to Miss Ruth J. Northcott, David Dunlap Observatory, Richmond Hill, Ontario.

THE OBSERVER'S HANDBOOK 1958

Editor Ruth J. Northcott

Fiftieth Year of Publication THE ROYAL ASTRONOMICAL SOCIETY OF CANADA

252 College Street, Toronto 2B, Ontario

CONTENTS

								PA	AGE
Acknowledgements									3
Anniversaries and Festivals						•	•	•	3
Symbols and Abbreviations .	•								4
The Constellations		•		•	•			•	5
Miscellaneous Astronomical D) ata			•				•	6
Ephemeris of the Sun					•	•		•	7
Principal Elements of the Sola	ar Sy	sten	ı.				•		8
Satellites of the Solar System							•		9
Solar and Sidereal Time .					•				10
Map of Standard Time Zones			•						11
Julian Day Calendar			•						11
Times of Rising and Setting	of tl	he S	un a	nd	Moo	n			12
Sunrise and Sunset									13
Beginning and Ending of	Twil	ight			•	•	•		19
Moonrise and Moonset .	•				•				20
The Planets for 1958					•	•	•	•	26
The Sky and Astronomical Ph	nenoi	mena	a Mo	onth	ı by	Mo	nth	•	3 2
Phenomena of Jupiter's Satell	lites			•					56
Ephemeris for Physical Obser	vatio	on of	the	Mo	oon		•		57
Ephemeris for the Physical O	bserv	vatio	n of	the	Sun			•	58
Eclipses, 1958					•				59
Lunar Occultations, 1958 .	•	•			•				59
Meteors, Fireballs and Meteo	rites	•			•				61
The Brightest Stars, their may	gnitu	des.	typ	es, r	prope	er m	otio	ns,	
distances and radial veloci	ties :	and	navi	gati	ion s	tars		•	62
Table of Precession for 50 Ye	ars	•		•			•	•	73
Double and Multiple Stars .		•						•	74
Variable Stars			•		•				76
Clusters and Nebulae:									
Star Clusters			•				•		78
Galactic Nebulae		•				•		•	79
External Galaxies .									80
Four Circular Star Maps .				•		•		•	81
Calendar	•	•					Co	ver p	o. iii

PRINTED IN CANADA BY THE UNIVERSITY OF TORONTO PRESS

CLARENCE AUGUSTUS CHANT, 1865–1956

Since the last issue of the Observer's Handbook went to press death has claimed Dr. C. A. Chant who conceived the Handbook in the year 1907 and who edited it continuously for fifty years.

ACKNOWLEDGEMENTS

The Observer's Handbook for 1958 is the 50th and largest yet published. In preparing this volume the Editor has had invaluable assistance with the manuscript and the proof. For the expenditure of much time and effort our cordial thanks are offered to Gustav Bakos, Barbara Gaizauskas, Charles M. Good, James Hogg, Helge Mairo, Kulli Milles, Donald Morton, Isabel K. Williamson and Dorothy Yane. Special thanks are due Margaret W. Mayall, A.A.V.S.O. Director, for the predictions of times of maxima of the long-period variables. Our deep indebtedness to the British Nautical Almanac and the American Ethematics theorem in the long of the

Ephemeris is thankfully acknowledged.

RUTH J. NORTHCOTT

ANNIVERSARIES AND FESTIVALS, 1958

New Year's DayWed.	Jan.	1
EpiphanyMon.	Jan.	6
Septuagesima Sunday	Feb.	2
Accession of Oueen		
Elizabeth (1952) Thu.	Feb.	6
Ouinquagesima (Shrove		
Sunday).	Feb.	16
Ash Wednesday	Feb	19
St David Sat	Mar	1
St. David:	Mar.	17
Delas Sanden	Mar.	11
Paim Sunday	. Mar.	30
Good Friday	. Apr.	4
Easter Sunday	Apr.	6
Birthday of Queen		
Elizabeth (1926) Mon.	Apr.	21
St. George Wed.	Apr.	23
Rogation Sunday	. Mav	11
Ascension Day	May	15
Empire Day (Victoria		
Day)Mon.	May	19

Pentecost (Whit Sunday)	. May	25
Trinity Sunday	June	1
Corpus ChristiThu.	June	5
St. John Baptist (Mid-		
summer Day)Tue.	June	24
Dominion DayTue.	July	1
Birthday of Queen Mother		
Elizabeth (1900)Mon.	Aug.	4
Labour DayMon.	Sept.	1
Hebrew New Year		
(Rosh Hashanah)Mon.	Sept.	15
St. Michael		
(Michaelmas Day) Mon.	Sept.	29
Thanksgiving DayMon.	Oct.	13
All Saints' DaySat.	Nov.	1
Remembrance DayTue.	Nov.	11
St. AndrewSun.	Nov.	30
First Sunday in Advent	Nov.	30
Christmas Day Thu.	Dec.	25

SYMBOLS AND ABBREVIATIONS

SUN, MOON AND PLANETS

\odot	The Sun
۲	New Moon
3	Full Moon
Ð	First Quarter
Œ	Last Quarter

ĝ The Moon generally Mercurv õ Venus 🕀 Earth

o⁷ Mars

- 21 Jupiter Þ
 - Šaturn
 - ð Uranus
 - Neptune P Pluto

ASPECTS AND ABBREVIATIONS

♂ Conjunction, or having the same Longitude or Right Ascension.
 ♂ Opposition, or differing 180° in Longitude or Right Ascension.
 □ Quadrature, or differing 90° in Longitude or Right Ascension.
 ☆ Ascending Node; ♡ Descending Node.

- α or R.A., Right Ascension; δ or Dec., Declination.

h, m, s, Hours, Minutes, Seconds of Time. "", Degrees, Minutes, Seconds of Arc.

SIGNS OF THE ZODIAC

y	Aries 0°	ର Leo	120° オ	Saggittarius240°
	Taurus 30°	₩ Virgo	150° で	Capricornus270°
Й	Gemini60°	≏ Libra	…180° ≈	Aquarius 300°
69	Cancer90°	M Scorpius	…210° ≻	Pisces 330°

THE GREEK ALPHABET

Α, α	Alpha	Ι, ι	Iota	Ρ, ρ	Rho
Β, β	Beta	К, к	Kappa	Σ, σ	Sigma
Γ, γ	Gamma	Λ, λ	Lambda	Τ, τ	Tau
Δ, δ	Delta	Μ, μ	Mu	Υ, υ	Upsilon
Ε, ε	Epsilon	Ν, ν	Nu	Φ, φ	Phi
Ζ, ζ	Zeta	Ξ, ξ	Xi	Χ, χ	Chi
Η, η	Eta	0, 0	Omicron	Ψ, ψ	\mathbf{Psi}
θ, θ, θ	Theta	Π, π	Pi	Ω, ω	Omega

THE CONFIGURATIONS OF JUPITER'S SATELLITES

In the Configurations of Jupiter's Satellites (pages 33, 35, etc.), O represents the disk of the planet, d signifies that the satellite is on the disk, * signifies that the satellite is behind the disk or in the shadow. Configurations are for an inverting telescope.

CALCULATIONS FOR ALGOL

The calculations for the minima of Algol are based on the epoch J.D. 2434576.5110 and period 2.86731 days as published in the 1954 International Supplement, Kracow Observatory.

CELESTIAL DISTANCES

Celestial distances given herein are based on the standard value of 8.80" for the sun's parallax, not the more recent value 8.790" determined by Sir Harold Spencer Jones.

THE CONSTELLATIONS

LATIN AND ENGLISH NAMES WITH ABBREVIATIONS

Andromeda,		Leo, <i>Lion</i> Leo	Leon
(Chained Maiden) And	Andr	Leo Minor, Lesser Lion. LMi	LMin
Antlia, Air PumpAnt	Antl	Lepus, HareLep	Leps
Apus, Bird of Paradise. Aps	Apus	Libra, ScalesLib	Libr
Aquarius, Water-bearer. Aqr	Aqar	Lupus, WolfLup	Lupi
Aquila, EagleAql	Aqil	Lynx, $Lynx$ Lyn	Lync
Ara, AltarAra	Arae	Lyra, LyreLyr	Lyra
Aries, RamAri	Arie	Mensa, Table (Mountain) Men	Mens
Auriga, (Charioteer)Aur	Auri	Microscopium,	
Bootes, (Herdsman)Boo	Boot	Microscope	Micr
Caelum, ChiselCae	Cael	Monoceros, UnicornMon	Mono
Camelopardalis, Giraffe Cam	Caml	Musca, Fly Mus	Musc
Cancer, CrabCnc	Canc	Norma, SquareNor	Norm
Canes Venatici,		Octans, OctantOct	Octn
Hunting DogsCVn	CVen	Ophiuchus,	
Canis Major, Greater Dog.CMa	CMaj	Serpent-bearerOph	Ophi
Canis Minor, Lesser Dog. CMi	CMin	Orion, (Hunter)Ori	Orio
Capricornus, Sea-goatCap	Capr	Pavo, <i>Peacock</i> Pav	Pavo
Carina, Keel	Cari	Pegasus, (Winged Horse)Peg	Pegs
Cassiopeia,		Perseus, (Champion)Per	Pers
(Lady in Chair) Cas	Cass	Phoenix, PhoenixPhe	Phoe
Centaurus, CentaurCen	Cent	Pictor, <i>Painter</i> Pic	Pict
Cepheus, (King) Cep	Ceph	Pisces, FishesPsc	Pisc
Cetus, WhaleCet	Ceti	Piscis Australis,	
Chamaeleon, ChamaeleonCha	Cham	Southern FishPsA	PscA
Circinus, CompassesCir	Circ	Puppis, PoopPup	Pupp
Columba, DoveCol	Colm	Pyxis, CompassPyx	Pyxi
Coma Berenices,		Reticulum, NetRet	Reti
Berenice's HairCom	Coma	Sagitta, ArrowSge	Sgte
Corona Australis,		Sagittarius, ArcherSgr	Sgtr
Southern Crown CrA	CorA	Scorpius, ScorpionSco	Scor
Corona Borealis,		Sculptor, SculptorScl	Scul
Northern CrownCrB	CorB	Scutum, ShieldSct	Scut
Corvus, <i>Crow</i> Crv	Corv	Serpens, SerpentSer	Serp
Crater, CupCrt	Crat	Sextans, SextantSex	Sext
Crux, (Southern) CrossCru	Cruc	Taurus, Bull	Taur
Cygnus, SwanCyg	Cygn	Telescopium, TelescopeTel	Tele
Delphinus, DolphinDel	Dlph	Triangulum, TriangleTri	Tria
Dorado, SwordfishDor	Dora	Triangulum Australe,	
Draco, DragonDra	Drac	_ Southern TriangleTrA	TrAu
Equuleus, Little HorseEqu	Equl	Tucana, ToucanTuc	Tucn
Eridanus, River Eridanus. Eri	Erid	Ursa Major, Greater Bear.UMa	UMaj
Fornax, FurnaceFor	Forn	Ursa Minor, Lesser Bear. UMi	UMin
Gemini, TwinsGem	Gemi	Vela, SailsVel	Velr
Grus, CraneGru	Grus	Virgo, VirginVir	Virg
Hercules,		Volans, Flying FishVol	Voln
(Kneeling Giant) Her	Herc	Vulpecula, FoxVul	Vulp
Horologium, <i>Clock</i> Hor	Horo		
Hydra, Water-snakeHya	Hyda	The 4-letter abbreviations	are in-
Hydrus, Sea-serpentHyi	Hydi	tended to be used in cases v	vhere a
Indus, IndianInd	Indi	maximum saving of space	is not
Lacerta, <i>Lizard</i> Lac	Lacr	necessary.	

UNITS OF LENGTH 1 Angstrom unit $= 10^{-8}$ cm. 1 micron = 10-4 cm. 1 meter $= 10^{2}$ cm. = 3.28084 feet 1 kilometer = 10⁵ cm. = 0.62137 miles 1 mile $= 1.60935 \times 10^{5}$ cm. = 1.60935 km. 1 astronomical unit = 1.49504 × 10¹³ cm. = 92,897,416 miles 1 light year = 9.463×10^{17} cm. = 5.880×10^{12} miles = 0.3069 parsecs = 30.84×10^{17} cm. = 19.16×10^{12} miles = 3.259 l.y. 1 parsec 1 megaparsec $= 30.84 \times 10^{23}$ cm, $= 19.16 \times 10^{18}$ miles $= 3.259 \times 10^{6}$ l.v. UNITS OF TIME Sidereal day = 23h 56m 04.09s of mean solar time Mean solar day = $24h \ 03m \ 56.56s$ of sidereal time Synodical month = $29d \ 12h \ 44m$; sidereal month = $27d \ 07h \ 43m$ Tropical year (ordinary) = 365d 05h 48m 46s Sidereal year $=365d \ 06h \ 09m \ 10s$ Eclipse year $=346d \ 14h \ 53m$ THE EARTH Equatorial radius, a = 3963.35 miles; flattening, c = (a-b)/a = 1/297.0Polar radius, b = 3950.01 miles 1° of latitude = $69.057 - 0.349 \cos 2\phi$ miles (at latitude ϕ) 1° of longitude = 69.232 cos ϕ -0.0584 cos 3 ϕ miles Mass of earth = 6.6×10^{21} tons; velocity of escape from $\bigoplus = 6.94$ miles/sec. EARTH'S ORBITAL MOTION Solar parallax = 8.''80; constant of aberration = 20.''47Annual general precession = 50."26; obliquity of ecliptic = 23° 26' 50" (1939) Orbital velocity = 18.5 miles/sec.; parabolic velocity at \bigoplus = 26.2 miles/sec. SOLAR MOTION Solar apex, R.A. 18h 04m; Dec. + 31° Solar velocity = 12.2 miles/sec. THE GALACTIC SYSTEM North pole of galactic plane R.A. $12h \ 40m$, Dec. + $28^{\circ} \ (1900)$ Centre, 325° galactic longitude, = R.A. 17h 24m, Dec. -30° Distance to centre = 10,000 parsecs; diameter = 30,000 parsecs. Rotational velocity (at sun) = 262 km./sec.Rotational period (at sun) = 2.2×10^8 years Mass = 2×10^{11} solar masses EXTRA-GALACTIC NEBULAE Red shift =+180 km./sec./megaparsec=+34 miles /sec./million l.y. **RADIATION CONSTANTS** Velocity of light = 299,774 km./sec. = 186,271 miles/sec. Solar constant = 1.93 gram calories/square cm./minute Light ratio for one magnitude = 2.512; log ratio = 0.4000Radiation from a star of zero apparent magnitude = 3×10^{-6} meter candles Total energy emitted by a star of zero absolute magnitude = 5×10^{25} horsepower MISCELLANEOUS Constant of gravitation, $G = 6.670 \times 10^{-8}$ c.g.s. units Mass of the electron, $m = 9.1055 \times 10^{-28}$ gm.; mass of the proton = 1.6725×10^{-24} gm. Planck's constant, $h = 6.6234 \times 10^{-27}$ erg. sec. Loschmidt's number = 2.6873×10^{19} molecules/cu. cm. of gas at N.T.P. Absolute temperature = T° K = T° C + 273° = 5/9 (T° F + 459°) 1 radian = 57°.2958 $\pi = 3.141,592,653,6$ = 3437'.75 No. of square degrees in the sky = 206.265''=41.253

1958 EPHEMERIS OF THE SUN AT 0h GREENWICH CIVIL TIME

Date 1958	Apparent R.A.	Corr. to Sun-dial	Apparent Dec.	Date 1958	Apparent R.A.	Corr. to Sun-dial	Apparent Dec.
Jan. 1 4 7 10 13 16 19 22 25 28 28 21	$\begin{array}{c} h \ m \ s \\ 18 \ 43 \ 50 \\ 18 \ 57 \ 03 \\ 19 \ 10 \ 13 \\ 19 \ 23 \ 19 \\ 19 \ 36 \ 20 \\ 19 \ 49 \ 16 \\ 20 \ 02 \ 05 \\ 20 \ 14 \ 49 \\ 20 \ 27 \ 25 \\ 20 \ 39 \ 54 \\ 20 \ 52 \ 15 \end{array}$	$\begin{array}{c} m & s \\ + & 3 & 16 \\ + & 4 & 40 \\ + & 6 & 00 \\ + & 7 & 16 \\ + & 8 & 28 \\ + & 9 & 34 \\ + & 10 & 34 \\ + & 11 & 27 \\ + & 12 & 14 \\ + & 12 & 52 \end{array}$	$\begin{array}{c} \circ & \prime \\ -23 & 03 & 6 \\ -22 & 47.7 \\ -22 & 27.7 \\ -22 & 03.7 \\ -21 & 35.8 \\ -21 & 04.2 \\ -20 & 28.9 \\ -19 & 50.2 \\ -19 & 08.1 \\ -18 & 22.9 \\ -17 & 24.7 \end{array}$	July 3 6 9 12 15 18 21 24 27 30	h m s 6 45 59 6 58 21 7 10 40 7 22 55 7 35 07 7 47 14 7 59 17 8 11 14 8 23 06 8 34 52	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \circ & \prime \\ +23 & 01.3 \\ +22 & 45.9 \\ +22 & 26.9 \\ +22 & 04.5 \\ +21 & 38.6 \\ +21 & 09.4 \\ +20 & 37.0 \\ +20 & 01.4 \\ +19 & 22.9 \\ +18 & 41.5 \end{array}$
Feb. 3 6 9 12 15 18 21 24 27	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} +13 & 23 \\ +13 & 49 \\ +14 & 06 \\ +14 & 16 \\ +14 & 15 \\ +14 & 15 \\ +13 & 48 \\ +13 & 26 \\ +12 & 58 \end{array}$	$\begin{array}{r} -16 & 43.7 \\ -16 & 43.7 \\ -15 & 50.1 \\ -14 & 54.0 \\ -13 & 55.7 \\ -12 & 55.3 \\ -11 & 52.9 \\ -10 & 48.9 \\ -9 & 43.4 \\ -8 & 36.6 \end{array}$	Aug. 2 5 8 11 14 17 20 23 26 29	$\begin{array}{c} 8 \ 46 \ 33 \\ 8 \ 58 \ 09 \\ 9 \ 09 \ 39 \\ 9 \ 21 \ 04 \\ 9 \ 32 \ 24 \\ 9 \ 43 \ 40 \\ 9 \ 54 \ 50 \\ 10 \ 05 \ 56 \\ 10 \ 16 \ 58 \\ 10 \ 27 \ 56 \end{array}$	$\begin{array}{r} + \ 6 \ 14 \\ + \ 6 \ 00 \\ + \ 5 \ 40 \\ + \ 5 \ 16 \\ + \ 4 \ 46 \\ + \ 4 \ 12 \\ + \ 3 \ 33 \\ + \ 2 \ 01 \\ + \ 2 \ 01 \\ + \ 1 \ 09 \end{array}$	$\begin{array}{r} +17 \ 57.3 \\ +17 \ 10.5 \\ +16 \ 21.2 \\ +15 \ 29.5 \\ +14 \ 35.5 \\ +13 \ 39.5 \\ +12 \ 41.5 \\ +11 \ 41.7 \\ +10 \ 40.3 \\ + 9 \ 37.4 \end{array}$
Mar. 2 5 8 11 14 17 20 23 26 29	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} +12 \ 24 \\ +11 \ 46 \\ +11 \ 04 \\ +10 \ 19 \\ + \ 9 \ 31 \\ + \ 8 \ 40 \\ + \ 7 \ 48 \\ + \ 6 \ 54 \\ + \ 6 \ 00 \\ + \ 5 \ 05 \end{array}$	$\begin{array}{r} -7 & 28.7 \\ -6 & 19.8 \\ -5 & 10.1 \\ -3 & 59.8 \\ -2 & 49.0 \\ -1 & 38.0 \\ -0 & 26.8 \\ +0 & 44.3 \\ +1 & 55.2 \\ +3 & 05.7 \end{array}$	Sept. 1 4 7 10 13 16 19 22 25 25 28	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} + & 0 & 15 \\ - & 0 & 43 \\ - & 1 & 43 \\ - & 2 & 44 \\ - & 3 & 47 \\ - & 4 & 50 \\ - & 5 & 54 \\ - & 6 & 58 \\ - & 8 & 01 \\ - & 9 & 02 \end{array}$	$\begin{array}{r} + 8 & 33.0 \\ + & 7 & 27.4 \\ + & 6 & 20.8 \\ + & 5 & 13.2 \\ + & 4 & 04.7 \\ + & 2 & 55.6 \\ + & 1 & 46.1 \\ + & 0 & 36.2 \\ - & 0 & 33.9 \\ - & 1 & 44.0 \end{array}$
$\begin{array}{ccc} \text{Apr.} & 1 \\ 4 \\ 7 \\ 10 \\ 13 \\ 16 \\ 19 \\ 22 \\ 25 \\ 28 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} + 4 & 11 \\ + 3 & 17 \\ + 2 & 24 \\ + 1 & 34 \\ + 0 & 46 \\ + 0 & 01 \\ - 0 & 01 \\ - 1 & 19 \\ - 1 & 54 \\ - 2 & 24 \end{array}$	$\begin{array}{r} + \ 4 \ 15.6 \\ + \ 5 \ 24.8 \\ + \ 6 \ 33.2 \\ + \ 7 \ 40.6 \\ + \ 8 \ 46.8 \\ + \ 9 \ 51.7 \\ + \ 10 \ 55.2 \\ + \ 11 \ 57.0 \\ + \ 12 \ 57.1 \\ + \ 13 \ 55.2 \end{array}$	Oct. 1 4 7 10 13 16 19 22 25 28 28 31	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -10 & 02 \\ -11 & 00 \\ -11 & 54 \\ -12 & 44 \\ -13 & 31 \\ -14 & 12 \\ -14 & 49 \\ -15 & 20 \\ -15 & 46 \\ -16 & 05 \\ -16 & 18 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
May 1 4 7 10 13 16 19 22 25 28 31	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} +14 \ 51.3 \\ +15 \ 45.1 \\ +16 \ 36.6 \\ +17 \ 25.6 \\ +18 \ 12.1 \\ +18 \ 55.7 \\ +19 \ 36.5 \\ +20 \ 14.3 \\ +20 \ 49.0 \\ +21 \ 20.4 \\ +21 \ 48.6 \end{array}$	Nov. 3 6 9 12 15 18 21 24 24 27 30	$\begin{array}{c} 11 & 10 & 02 \\ 14 & 30 & 36 \\ 14 & 42 & 28 \\ 14 & 54 & 27 \\ 15 & 06 & 34 \\ 15 & 18 & 49 \\ 15 & 31 & 11 \\ 15 & 43 & 40 \\ 15 & 56 & 17 \\ 16 & 09 & 00 \\ 16 & 21 & 50 \end{array}$	$\begin{array}{cccc} -16 & 23 \\ -16 & 21 \\ -16 & 12 \\ -15 & 54 \\ -15 & 29 \\ -14 & 57 \\ -14 & 17 \\ -13 & 30 \\ -12 & 36 \\ -11 & 36 \end{array}$	$\begin{array}{c} -14 \ 50.1 \\ -15 \ 45.8 \\ -16 \ 39.1 \\ -17 \ 29.9 \\ -18 \ 18.0 \\ -19 \ 03.2 \\ -19 \ 45.3 \\ -20 \ 24.2 \\ -20 \ 59.6 \\ -21 \ 31.6 \end{array}$
June 3 6 9 12 15 18 21 24 27 30	$\begin{array}{c} 4 & 41 & 39 \\ 4 & 53 & 59 \\ 5 & 06 & 22 \\ 5 & 18 & 47 \\ 5 & 31 & 14 \\ 5 & 43 & 43 \\ 5 & 56 & 12 \\ 6 & 08 & 40 \\ 6 & 21 & 08 \\ 6 & 33 & 35 \end{array}$	$ \begin{array}{c} - 2 & 07 \\ - 1 & 37 \\ - 1 & 04 \\ - & 0 & 28 \\ + & 0 & 09 \\ + & 0 & 48 \\ + & 1 & 27 \\ + & 2 & 06 \\ + & 2 & 45 \\ + & 3 & 21 \end{array} $	$\begin{array}{r} +22 \ 13.3 \\ +22 \ 34.5 \\ +23 \ 52.2 \\ +23 \ 16.6 \\ +23 \ 23.4 \\ +23 \ 26.4 \\ +23 \ 25.6 \\ +23 \ 21.2 \\ +23 \ 13.1 \end{array}$	Dec. 3 9 12 15 18 21 24 27 30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrr} -10 & 29 \\ - & 9 & 17 \\ - & 7 & 59 \\ - & 6 & 38 \\ - & 5 & 13 \\ - & 3 & 45 \\ - & 2 & 16 \\ - & 0 & 47 \\ + & 0 & 42 \\ + & 2 & 10 \end{array}$	$\begin{array}{c} -21 \ 59.9 \\ -22 \ 24.3 \\ -23 \ 44.9 \\ -23 \ 01.4 \\ -23 \ 12.8 \\ -23 \ 22.0 \\ -23 \ 22.5 \\ -23 \ 21.5 \\ -23 \ 12.8 \end{array}$

PRINCIPAL ELEMENTS OF THE SOLAR SYSTEM

Planet	Mean I from	Distance 1 Sun a)	Perioc Revolu	l of tion Mean	Eccen- tri-	In- clina-	Long. of	Long. of Peri.	Mean Long. of
	⊕ = 1	millions of miles	Sidereal (P)	Syn- odic	city (e)	tion (i)	Node (လ)	$\begin{array}{c} \text{helion} \\ (\pi) \end{array}$	Planet
				dave		 0	0		 o
Mercury	0.387	36.0	88.0d.	116	.206	7.0	47.8	76.8	305.8
Venus	0.723	67.2	224.7	584	.007	3.4	76.3	130.9	127.1
Earth	1.000	92.9	365.3		.017		• • • •	102.2	99.4
Mars	1.524	141.5	687.0	780	.093	1.8	49.2	335.2	21.3
Jupiter	5.203	483.3	11.86y.	399	.048	1.3	100.0	13.6	108.0
Saturn	9.539	886.	29.46	378	.056	2.5	113.3	92.2	219.5
Uranus	19.18	1783.	84.01	370	.047	0.8	73.8	169.9	119.8
Neptune	30.06	2791.	164.8	367	.009	1.8	131.3	44.2	205.9
Pluto	39.52	3671.	248.4	367	.249	17.1	109.6	223.2	137.6
1						1			

ORBITAL ELEMENTS (1954, Dec. 31, 12^h G.C.T.)

PHYSICAL ELEMENTS

Object	Symbol	Mean Di- ameter* miles	$Mass^* \oplus = 1$	Mean Density* water = 1	Axial Rotation	Mean Sur- face Grav- ity* ⊕ = 1	Albedo*	Magni- tude at Greatest Brillian- cy
Sun	O	864,000	332,000	1.41	24 ^d .7 (equa-	27.9		-26.8
Moon	đ	2.160	0.0123	3.33	27^{d} 7.7 ^h	0.16	0.072	-12.6
Mercury	ĝ	3.010	0.0543	5.46	88 ^d	0.38	0.058	- 1.9
Venus	Ŷ	7,610	0.8136	5.06	30 ^d ?	0.88	0.76	- 4.4
Earth	Ð	7,918	1.0000	5.52	$23^{h} 56^{m}.1$	1.00	0.39	
Mars	₫	4,140	0.1069	4.12	24 ^h 37 ^m .4	0.39	0.148	- 2.8
Jupiter	21	86,900	318.35	1.35	$9^{h} 50^{m} \pm$	2.65	0.51	- 2.5
Saturn	þ	71,500	95.3	0.71	$10^{h} 02^{m} \pm$	1.17	0.50	- 0.4
Uranus	ô	29,500	14.54	1.56	10 ^h .8±	1.05	0.66	+ 5.7
Neptune	Ψ	26,800	17.2	2.47	15 ^h .8±	1.23	0.62	+ 7.6
Pluto	е	3,600	0.033?	2?		0.16?	0.16	+14

*Kuiper, "The Atmospheres of the Earth and Planets," 1952.

SATELLITES OF THE SOLAR SYSTEM

Name	Stellar Mag.	Mean F	Dist. from Planet Miles	Re d	volu Perio h	tion d m	Diamete Miles	r Discoverer
SATELLITE	OF THE	Earth						
Moon	-12.6	530	238,857	27	07	43	2160	
SATELLITES	OF MA	RS						
Phobos	12	8	5,800	0	07	39	10?	Hall, 1877
Deimos	13	21	14,600	1	06	18	5?	Hall, 1877
SATELLITES	of Jue	PITER						
V	13	48	112,600	0	11	57)	100?	Barnard, 1892
Io	5	112	261,800	1	18	28	2300	Galileo, 1610
Europa	6	178	416,600	3	13	14	2000	Galileo, 1610
Ganymede	5	284	664,200	7	03	43	3200	Galileo, 1610
Callisto	6	499	1,169,000	16	16	32	3200	Galileo, 1610
VI	14	3037	7,114,000	250	10		100?	Perrine, 1904
VII V	10	3113	7,292,000	200	01		401	Nicholaan 1029
	18	5110	14,000,000	200		1	152	Nicholson, 1938
	16	6940	14,000,000	720			101	Molotto 1008
IX	17	6360	14,000,000	758			202	Nicholson 1014
XII	18			00			15?	Nicholson, 1951
SATEL LITES								
SAIELLIIES	OF SAL	UKN	115 000	•	00	0.7	1002	
Mimas	12	27	115,000	0	22	37	400?	W. Herschel, 1789
Enceladus	12	34 12	148,000	1	08	10	2002	W. Herschel, 1789
Diono		40	224 000	2	41 17	10	7002	C Cassini, 1084
Rhea	10	76	327 000	4	12	25	1100?	G. Cassini, 1004 G. Cassini, 1672
Titan	8	177	759,000	15	22	41	2600?	Huvgens 1655
Hyperion	13	214	920,000	21	$\tilde{0}\tilde{6}$	38	300?	G. Bond. 1848
lapetus	ii l	515	2.210.000	79	07	56	1000?	G. Cassini, 1671
Phoebe	14	1870	8,034,000 5	50			200?	W. Pickering, 1898
SATELLITES	OF UR	ANUS						
Miranda	17	0.1	81 000	1	00	561	1	Kuiner 1048
Ariol		14	110 000	2	12	20	6002	1xu1pe1, 1940
Umbriel	16	19	166,000	4	03	28	400?	Lassell 1851
Titania	14	32	272,000	8	16	56	1000?	W. Herschel, 1787
Oberon	14	$4\tilde{2}$	364,000	13	ĩĭ	07	900?	W. Herschel, 1787
SATELLITES	of Nei	TUNE						
Triton	13	16 1	220 000)	5	21	03)	3000?	Lassell, 1846
Nereid	19	260 I	3,460,000 3	359			200?	Kuiper, 1949
			_,,			<u>`</u>		

*As seen from the sun.

Satellites Io, Europa, Ganymede, Callisto are usually denoted I, II, III, IV respectively, in order of distance from the planet.

SOLAR AND SIDEREAL TIME

In practical astronomy three different kinds of time are used, while in ordinary life we use a fourth.

1. Apparent Time—By apparent noon is meant the moment when the sun is on the meridian, and apparent time is measured by the distance in degrees that the sun is east or west of the meridian. Apparent time is given by the sun-dial.

2. Mean Time—The interval between apparent noon on two successive days is not constant, and a clock cannot be constructed to keep apparent time. For this reason mean time is used. The length of a mean day is the average of all the apparent days throughout the year. The real sun moves about the ecliptic in one year; an imaginary mean sun is considered as moving uniformly around the celestial equator in one year. The difference between the times that the real sun and the mean sun cross the meridian is the equation of time. Or, in general, Apparent Time—Mean Time = Equation of Time. This is the same as Correction to Sun-dial on page 7, with the sign reversed.

3. Sidereal Time—This is time as determined from the stars. It is sidereal noon when the Vernal Equinox or First of Aries is on the meridian. In accurate time-keeping the moment when a star is on the meridian is observed and the corresponding mean time is then computed with the assistance of the Nautical Almanac. When a telescope is mounted equatorially the position of a body in the sky is located by means of the sidereal time. At 0h. G.C.T. the Greenwich Sidereal Time = R.A. apparent sun + 12h. — correction to sundial (p. 7). Sidereal time gains with respect to mean time at the rate of 3m. 56s. a day or about 2 hours a month.

4. Standard Time—In everyday life we use still another kind of time. A moment's thought will show that in general two places will not have the same mean time; indeed, difference in longitude between two places is determined from their difference in time. But in travelling it is very inconvenient to have the time varying from station to station. For the purpose of facilitating transportation the system of Standard Time was introduced in 1883. Within a certain belt approximately 15° wide, all the clocks show the same time, and in passing from one belt to the next the hands of the clock are moved forward or backward one hour.

In Canada we have seven standard time belts, as follows;—Newfoundland Time, 3h. 30m. slower than Greenwich; 60th meridian or Atlantic Time, 4h.; 75th meridian or Eastern Time, 5h.; 90th meridian or Central Time, 6h.; 105th meridian or Mountain Time, 7h.; 120th meridian or Pacific Time, 8h.; and 135th meridian or Yukon Time, 9h. slower than Greenwich.

The boundaries of the time belts are shown on the map on page 11.

Daylight Saving Time is the standard time of the next zone eastward. It is adopted in many places between certain specified dates during the summer.

MAP OF STANDARD TIME ZONES

Revisions: Newfoundland Time is 3h. 30m. slower than Greenwich Time. The "panhandle" region of Alaska, containing such towns as Juneau and Skagway, is on 120th meridian (Pacific) Time, instead of Yukon Time.

JULIAN DAY CALENDAR, 1958

J.D. 2,430,000 plus the following:

Jan.	1	6,205	May	1	. 6,325	Sept.	16,4	148
Feb.	1	6,236	June	1	. 6,356	Oct.	16,4	178
Mar.	1	6,264	July	1	. 6,386	Nov.	16,8	509
Apr.	1	6,295	Aug.	1	.6,417	Dec.	16,5	539

The Julian Day commences at noon. Thus J.D. 2,436,205.0 = Jan. 1.5 G.C.T.

TIMES OF RISING AND SETTING OF THE SUN AND MOON

The times of sunrise and sunset for places in latitudes ranging from 32° to 54° are given on pages 13 to 18, and of twilight on page 19. The times of moonrise and moonset are given on pages 20 to 25. The times are given in Local Mean Time, and in the table below are given corrections to change from Local Mean Time to Standard Time for the cities and towns named.

The tabulated values are computed for the sea horizon for the rising and setting of the upper limb of the sun and moon, and are corrected for refraction. Because variations from the sea horizon usually exist on land, the tabulated times can rarely be observed.

The sun's declination, apparent diameter and the equation of time do not have precisely the same values on corresponding days from year to year. As the times of sunrise and sunset depend upon these factors, these tables for the solar phenomena can give only average values which may be in error by one or two minutes.

The Standard Times for Any Station

To derive the Standard Time of rising and setting phenomena for any place, first, from the list below find the approximate latitude of the place and the correction in minutes which follows the name. Then find in the monthly table the Local Mean Time of the phenomenon for the proper latitude on the desired day. Finally apply the correction to get the Standard Time.

CANADI.	AN	CITIES	S AND TOWNS			AMERICAN	СІТ	IES
	Lat.	Cor.		Lat.	Cor.		Lat.	Cor.
Belleville Brantford Calgary Charlottetown Chatham Cornwall Dawson Edmonton Fort William Fredericton Galt Glace Bay Graeby Guelph Halifax Hamilton Hull Kitchener London Medicine Hat Montreal Moose Jaw Niagara Falls North Bay Oshawa Ottawa Owen Sound	$\begin{array}{c} 44\\ 50\\ 431\\ 442\\ 5\\ 442\\ 5\\ 446\\ 346\\ 445\\ 445\\ 445\\ 445\\ 503\\ 66\\ 503\\ 644\\ 45\\ 445\\ 45\\ 445\\ 45\\ 45\\ 45\\ 45\\ 45$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Peterborough Port Arthur Prince Albert Prince Rupert Quebec Regina St. Catharines St. Hyacinthe Saint John, N.B. St. John's, Nfld. St. Thomas Sarnia Saskatoon Sault Ste. Marie Shawinigan Falls Sherbrooke Stratford Sudbury Sydney Timmins Toronto Three Rivers Trail Truro Vancouver Victoria Windsor Winnipeg Woodstock Yellowknife	$\begin{array}{c} 44\\ 483\\ 554\\ 47\\ 503\\ 465\\ 433\\ 433\\ 433\\ 47\\ 443\\ 443\\ 445\\ 49\\ 445\\ 49\\ 445\\ 49\\ 445\\ 49\\ 445\\ 49\\ 48\\ 45\\ 63\\ 63\\ \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Atlanta Baltimore Birmingham Boston Buffalo Chicago Cincinnati Cleveland Dallas Denver Detroit Fairbanks Indianapolis Juneau Kansas City Los Angeles Louisville Memphis Milwaukee Minneapolis New Orleans New York Omaha Philadelphia Pittsburgh Portland St. Louis San Francisco Seattle Washington	$\begin{array}{c} 34\\ 39\\ 442\\ 433\\ 422\\ 433\\ 422\\ 433\\ 40\\ 425\\ 40\\ 589\\ 438\\ 335\\ 435\\ 435\\ 431\\ 40\\ 406\\ 439\\ 838\\ 48\\ 339\\ \end{array}$	$\begin{array}{r} +37\\ +06\\ -118\\ +15\\ -138\\ +227\\ 00\\ +27\\ +27\\ -158\\ +27\\ 00\\ +27\\ -158\\ +27\\ -009\\ +241\\ +201\\ +109\\ +101\\ -109\\ +08\end{array}$

Example—Find the time of sunrise at Owen Sound, on February 12.

In the above list Owen Sound is under " 45° ", and the correction is +24 min. On page 13 the time of sunrise on February 12 for latitude 45° is 7.07; add 24 min. and we get 7.31 (Eastern Standard Time).

	DAT		[anuary			February	
	ы	-0200	11 15 19 19	21 23 29 29 29	86423	12 14 18 18	22222
Lati	Sunri		~~~~		66666	999999 1 7 7 7 7 7	99999
itud	ise S	22225 B	85558	668129	100223322 100233322	442 10 10 10 10 10 10 10 10 10 10 10 10 10	29 33 33 33
e 3 2	Sunse	00111 1001	000000 000000	0000000 000000	ດດດດດດ ແຕເດເຊ	で い い い い い 4 4 4 4 4	ດດດດດດ
°.	etS	31084 B	7080 2	491-0-	000-1010	04500	00405
ati	unri	н н н н н н н н н н н н н н н н н н н		00000	66677 6550	000000 00444	$\begin{smallmatrix}6&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&$
ude	se S			80004	0.000	0-0-0	000000
36	unse	0020251	885112	82828. 	ភ្លំសំស័សីស៊ី .	88444 88444	50000 2000 2000 2000 2000
	t S				20 - 0 0 -	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0000
atit	unris	00000 H	14444	11111	-0000 	00000 00000	$\begin{array}{c} 6 6 6 6 6 6 6 6$
nde	še Sj	- 000000	4-4-000	00 10 4 01 -	00040	000000	0.000
40,	unse	1 4 4 4 2 H	1 54 5 56 5 00 5 00 5 00 5 00 5 00 5 00 5 00	1210000	5666	3337377	44444
	r Si						
atii	unris	6666668B	11111 11111	88888 77777		000000	66660
tude	se Si	- 10 10 10 4	48000	80 C 4 C	020140	40000	40140
44	unse		4440°	2000 a 20	0-1-1-1-0 1-1-1-1-0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
i o	t S		0.00000		<u> </u>	0.4500	
atit	unris	ч	40000	14440 14444	11400	0000F	66655
tude	se Si	- 88881	0000	40-02	40000		0 m 0 m 0
46	unse		886444 886444	422220	2000 2000	x x x x x x x	5 4 4 3 3 3 3 3
п 。	t N		~~	~~~~~	~ ~~~~		01000-1-7
ati	unri	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	777777 44444	40000	00000 11110	11100	66665 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
tude	se S	- 00066	81-1040	001-100	010010	r-40©∞	0,000,000
48	unse		えるみなる	444600 444600	40000	88555 200000	0 0 0 0 0 0 4 0 0 0 0
I 。	r S		~	0110 00		~ ~~~~~	
ati	unri	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	77777 44440	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7444	66550 45550
tude	se S	- 0.0.001-	on400	86420	9001-4	12405	000-1-1-
s 50	nnse		すすすすす	র র র র র র ৪০০০ ব র র র	44400 00000	000000	ດດດດດດດ
I o	et S	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0	10 00 10 00	215821	000000	00100
ati	unri	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	x x x x x x x x x x x x x x x x x x x	88877	D4440		66 111
tude	se S		24005	20054	07408	28409	252822
54	unse	4 00 00 00 00 00 00 00 00 00 00 00 00 00	44444	すすすすす	44444 04400	400000 000	000000 00000
°	et	1 F 20 0 m 10 20	-48-5	80280 2	<u>801904</u>	828014	222222

	à					_		I	цэ	la	W						-	-						1	Jd	١v					
	ATE		2	4	۰	00	2	12	14	9; 	50		22	74	26	28	30	-	- ~) NC	~	•	Π	13	15	1	19	21	22		56
Lat	Sun	q	9	9	9	9	9	9	9	90	00		9	<u>م</u>		<u>م</u>	2	5	210	л Ч	210	5	5	50	50	50	5	101	ע ני אינ	01	0 10 0
titud	rise	E	27	24	22	10	17	14	12	60	24		23	6	22	40	5	10	29	24	12	68	20	*	2	6	22	22	20	89	0.0
e 3	Sun	q	55	09	9	09	9	$0\overline{9}$	09	0 9	6 I 6 I		9	9	6 1	61	6	e S	9 G 9 G	تة صد	i S O O	0 0 0	6 5	8 9	ନ୍ଧ ଡ	0 0	හි ග	00°	n d D	50 00	ం సో ల ల
ŝ	set §	8	80	0	=	<u>ლ</u>	4	9		0,0	0-		со ·	4	9	~	ø	_	> <	- C	1 4	20	9	8	0	0	2	ന 1	<u>ہ</u>		- 6
Lati	Sunri	h n	63	6 0	62	6 2	6 1	6 1	9	9 9	ර රි ල ල		09	0 9	5	ю С	2	ч Ч	н 4 У 10	14	54	3 2 2	5	5 32	52	5 2(2 2	5 2	° Ωì	ດ ະ ລຸ	5 E
tud	ise (0	2	4	2	6	~	4		~~ ~~			0	~	4	-	0) (C	- 	~~	4	S.	9	9 6	4	1	ມ ເ ກ	ي م	2 - C 2 - C
e 36	Juns	н Ч	5	ີ ດີ	20	09	ö 9	6	ŏ	6 0	2100		5 15	3	5 16	318	3 16	10	35	10	58	88 188	3 29	31	32	35	37	38	40	14	54 74
~	א ג			~	~	_	~				_				-	~	_						_								
Latil	unrie	8 4	6 3	6 3(6 5	62	6 2]	6 18	6 15	6 12	80 90 90 90		6 02	53	5	52	5 49	2 46	2 4 7 4 7 4		100	88	5 30	27	5 24	5 21	5 18	5 15	23	30	22
tude	ي م	⁴	~ 5	с С	<u>ں</u>		9	0	9	9	99 	,	9	9	9 0	9	9	4) (c	2	ະ ເ	90	9	9	9	9	9	9	90	2	00
40	unset	B	52	54	57	59	6	03	65	6	60	i	13	15	17	19	21	ŝ	ŝç	35	20	31	33	35	38	40	42	44	46	4 2	222
لم ا	t Su	[0	9	Ĵ	5	Ð	9	J	96	,	9	μĢ	a.)	асЭ	L)	ы		эи	2 16	ŝ	10	ŝ	5	ŝ	ŋ	ŝ	ŝ	ů.	4 4
atit	unris	8 2	3 37	5 34	3000	5 26	33	3 19	3 15	3 12	8 9 9 9 9 9	3	3 02	58	55	5 51	48		# {		58	53	25	22	19	15	12	60	88	3	50
ude	ดี 2		5	5	۔ 5	с С	~ ~	9	9.0	9	•••	, ,	9	9	9.0	9	9	9	0 4	29	2 6	99	9	° C	9	9	9	9	9	9	9 h-
44°	inset	8	48	51	54	56	59	8	6	6	6=	1	14	16	19	21	23	č	200	86	28	35	38	94	43	45	48	50	53	55	628
تر	Su	4	9	9	9	9	9	9	9	9	99	>	9	ŝ	ຽ	ŝ	õ	L	с и	с и	с r	ວະດ	LC,) 1 ,	5	ŝ	S	ŋ	ŝ	4	4 4
atitı	nrise	B	39	36	32	28	24	20	16	13	60	3	02	58	54	50	46	9	40	0 0	35	27	23	6	19	12	60	02	8	28	55
lde	Sui	4	ŋ	ŋ	ŝ	ŋ	ņ	9	9	9	99	>	9	9	9	9	9	ç	0 9	2 4	0 4	9	ų	<u>ي</u> د	ŝ	9	9	9	9	9	~ ~
46°	nset	B	46	49	52	55	58	10	8	90	61	-	14	16	19	22	24	ľ	N	Ŗ	5 6 5 6	88	40	432	46	48	51	54	56	59	55
Ľ	Sur	4	9	9	9	9	9	9	9	9	99	>	9	ŝ	ŝ	ŝ	ŝ	Ľ	0 u	0 P	O N	o ro	LC,	2) 1 .	ŝ	5	S	4	4	4 4
titu	nrise	a	41	37	33	29	25	21	17	13	66	3	0	57	53	49	45	;	46	200	200	5 70 70	20	36	, <u>c</u>	60	05	0	58	54	51
de l	Sun	4	ŝ	20	ŝ	5	Q	9	9	9	99	>	9	9	9	9	9	•	00	0	0 4	စ်စ	ų	ۍ د	ŝ	0	9	9	~	~	
°8	set	8	44	47	51	54	57	8	03	90	8°	1	15	18	50	33	25	ş	N i	50	41	2 4	43	46	40	22	55	58	0	8	98
I a	Sun	4	9	9	ę	9	9	9	9	9	99	>	9	ŝ	5	20	ŝ	1	Ω,	0,	о и	o vo	LC.	2	5 10	o io	2	4	4	4	4 4
ti ti	rise	E	43	30	5	31	26	22	18	14	25	3	01	22	52	48	43	ę	39	30	000	512	17	12	g	22	01	57	53	49	45
- 5	Sune	2	10	10	10		5	5	9	9	60	>	6	9	9	9	9		50	00	0 4 0 4	0 0 4 4	9	r 7 9 9	н ис о (С	96.0	6.0	7 0	7 0	0 1	- r
°	je ,	E	12	19	61	200	00	69	2	5	60	9	5	ø	5	1	5	-	29	20	20	_ က	ų	20	00	20	6	2	5 2	ø	
1 at	June	4	ġ		ç	9	9	9	9	9	6	5	9	1	2	, rc	20	1	د د	، ت د	ດ ເ	0 10	Ľ	יכ	אפ) 4 	4	4	4	4	4.4
Ē	se	E	8	4	68	34	63	24	8	2	24	2	e	22		5	9	1	52	ຂຸ	<u>.</u>	<u>ç</u>	-	19	22		2	2	<u></u>	∞	49
2	nus	<u>ء</u>	12	2 2 2	10) 12 17	5	5	9	90	9 9 9	-	6 1	9	6 2 9	101 99	03		ະ ເ	9	9 v 7 7	6 6 4 4	с И	יאכ ⊃פ) C) C	00 - 1-	0	7 1	7	- -	00 1-1
1 🗳	ۍ . تو	E	00	2 =	5	0	3	1	Ξ	4	ωc	1	9	6	2	1	=		4	ø	NG	00	~) (\sim	54	80		ŝ	6	က ဖ

	DA							VeM								əı	unſ				-
	TE			0 10	10	11	13	111	51	22	292	31	N 4	9 80	10	14	18	20	55	58	30
Lai	Sun	- -	υı	ດທ	5 5 5 5	ŝ	υΩu	ດດດ	4.	44	44	4	44	44	4	44	44	4	4 4	4 4	4
titud	rise	8	14	11	66	90	40	888	59	57	56 56	55	$54 \\ 54$	$54 \\ 53$	53	23	54 54	54	55	56	57
le 3	Suna	4	64	0 9 4 4	000	6 4	9 7 9	000	9	00	99	2	~~	~~	1		~~	7	~~	~~	7]
s	set	E	0	2 9	91	8	61 9	27.8	54	25	80	8	202	42	25	25	×	60	<u>6</u>	22	01
Lati	Sunr	4 4	50	200	200	4	44 4 10 10	* 4 4	4	4 4 7 7	44 44	4	ক ক ক ক	44	4	ব' ব' ব' ব'	7 7 7 7	4 4	44	44	4
tude	ise S		o i	<u>ت</u> ج		6	54	2007	<u> </u>	200	29	ច្នា	5 4	40	<u>.</u>			ŝ	44	43	S.
36°	unset	B	3 46	0 49 49 49	512	3 54	0 50 7	59	7 03	4.6	7 03	7 10	7 12	7 13	7 15	217	7 18	7 19	202020	512	7 21
	t Su	4	10	ব' শ	- বা বা	4	<u>च</u> र	া যা যা	4	4' T	খ প	ন	v v	খ স	ч' ч	4' 4 '	য'য'	- T	4.4	· • • •	ч
atitu	nrise	8	83	20 20	515	49	47	4 42	1 40	1 37	1 35	1 34	333	31	1 31	31	131	1 31	32	333	4 34
Ide 4	Sur	4	9	0 0	~~~	2			~	-1-	~ ~	2	~ ~	~~	1-1		~~	2	~ ~		2
°.	Iset	8	53	282	88	04	90	891	13	10	20	21	273 77	25 26	27	202	31	31	32	888 888	33
Lat	Suni	4	4	4 4	4 4	4	4	* * *	4.	4 4	44	4	4	44	4	4 4 1	4 4	4	4 4	**	4
itud	rise.	E	ន្ល	96 24	44	39	37 25	333	53	52	22	21	261	18	11	11	17	17	12	18	20
e 44	Suns	4	200	00	100	1		100	67 1-1	20	773	1 3	7 4	773	4	2 C 4 4	7 7 4 4	7 4	44	44	7 4
	er S		61 -	# [~	0 -	4	90	0Q0	4.	0 00	00	ر ال	0	% 0			4 10	2	ල ය		5
Latit	unrie	а 4	4	4 4 4 4	44	4	47	ますす	4	4 4 7 1	4 4 1 1	4	44	44	400	4 4 0 0 0	4 4 0 4	4 0	4 4 0 0	44	4 1
ude	e Su		60	-1-	02	مع م		004	00	- I	0.0	40	 200	-0	.~ I	- I I	x x x	20	ю о	0-	2
46°	Inset	8	88	ŝ	14	19	51	58 78 78 78 78 78 78 78 78 78 78 78 78 78	31	35.9	37	41	44	46	49	223	232	54	- 55 55	7 55	7 55
La	Sur	4	4	1 4	44	4	4 4	* 4* 4*	4.	7 7	44	4.	4' 4'	4 4	4.	ም ማ י	ব ব	4	ব বা	'ব'ব'	Ŧ
tituc	ırise	E	4	9 [2	31 31	28	35	122	15	31	00	90	323	88	56	588	38	8	55	03	1
le 4	Sunt	4		- 1-		2			-1	- [-]	~~	1-1	-1-1	~~	1-1	-1-0	00 00	80	00 00	00 00	8
ŝ	set \$	8	112	11	ន្តន	25	88	35.33	88	4 3	45	49	23	54 56	57	000	32	8	88	33	03
Lati	Sunri	q	4.4	# 4 *	44	4	4 4	44	4	# 4 ·	4.00	со с	n m (со с	0 co c	n n	m	n n	n n	3
tude	se S	8	<u> </u>	* 	52	21	8 2	220	50	383	10	22	222	223	21	100	200	20	51	53	54
20	unse	н Ц	12	58 - 1-	88 77	7 32	2 2 2 2 2	 44	4	+ ioi - [~]	20	200	580 000	රීට් නෙ ක	000	000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	80	2 22 20 00	00 00	8 1
	t S	_		- m		~	10 0	00	њо о	00		00 0	501	450	~ 0	000	0	20	200	იი	3
atit	unris	ц ц	47	1 - 1 -	44	4 00	4 G 2 2	676 19 19	39 F) () () () () () () () () () () () () () (3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	າ ຕາ ເ	0 0 0 0 0		ର୍ଦ୍ଦ ଜନ	4 č4 č 0 co c	15 M 60 M	30	00 10 10 00	0 0 0 0	3 3
ude	e Su	-	~~ ~~	-1-	~~	5	~ ~	- - 00			- 00 x	000	10000 11000	- 0 - 0	800	0000	~ ~		~ ∞	20 CD	1
54°	nset	B	32	32	41	48	55	58	05	3=;	14	19	773	28 X 0	30	583	35.94	36	88 88	88 89	3 36
			-									-			_				~ ~~		

DA						۸Įп	ſ					_	-				18	៣គ្នា	nv				
TE		04	90	0 <u>0</u>	21	16	18 20	22	24	9 X 7 X	30	-	с и	0 -	6	11	35	10	1	22	121	29	31
Lati	4 4	44 55	5 0 0 0	0 0 0 0	200	0 0 0 0	50	5 0	ю и 	 	20	5 1	ر بر م	 	2	10 M C1 C	ο ν ο ν ο	3 2 2 2 2 2 2	2	ຈັດ ທູ	101	ີດ ດ ດ.ດ	5 3
itude ise Sı		80	0,	22	1-1	4 10 - 1-	2 7	8 7	 0-	- 1-	4 9 9	56	9 9 9	00 00	0	0 9 9 9 9	9 9 9	6 6 6 6		ං ය ග ෆ	, 1.	3 00 3	46
32° inset	E	10	10	60 60	08	20 0	00	04	80	38	59	57	56	22 4	50	48	44	$^{42}_{20}$	60	00 M 60 M	888 888	28 53 78 53	26
Lati	4	44	4.	4 4 5	4	4 4 0 0	44	4 5	00 10 10	ວິດ ດູນ	0 0 0	5 0(ο Ω Ω	2010	5 13	5 1 1	200	5 2 1	4	36 2010 2010	i õi õ non	<u>йй</u> 22	5 3
itude ise Si		1.8	60	2-1-0	1-1	010 ~ 1~	2 2	9 7	-1 00	-1- 70	-1-	6 7	~r ~r	~1~	2 9	4 × 6 v	90 70	9 9 9		99 20 20))))	00 00	0 6
36°		88	19	18	18	118	15	13	<u>ខ</u>	18	01	05	64	38	58	56	51	49 16	40	43	100	33 33 33	30
Lat	- 2	44	4	4	4.	44	44	4	4-	4 4	* 4	4	41	0 10 0 10	5 (202	200	юл 		10 K	200	50 CA CA CA	5 2
titud ise S		35.	22	20 20	1	14	15	8	00	Ng	2.2	22	60	12	4	90	00	2 4 7 70		<u>ب</u> م ق		22	25
le 40° Sunset	h lat	7 33	$\frac{7}{22}$	7 31	$\frac{1}{2}$ 30	7 28	7 26	7 23	7 22	07 7	117	7 15	7 12	1 08	2 06	7 03	3 58	3 55 55	70 0	6 49 3 46	3 43	6 40 5 37	6 34
Lati	h d	44	4.	4 4 7 0	42	44	44	43	4.3	4 - 7 -	₽₽ ₽	4	4 - 4 -	44 970	45	4л 70 С	0 C C C C C	00 10 1	0	0 r 0 r		5 I 1 I	5 2
itud(122	3		000	2	23 4	9	<u>∞</u> <	ຸດ	14	9	~~ L	⊇ ⊇	10 10	r	2.0J	101		وہ ۔ م	- 40	9 9 9 80	0
e 44°	h m	7 47 7 46	7 46	7 45 7 44	7 43	42	7 39	7 36	7 34	22	7 27	7 25	7 22	17	7 15	7 12	60 20 20	7 03	80 (556		5 47 5 43	6 40
Latit	h d	44	4	4 4 1 1	4 2(4 4 2 2	44 7	4 3(4 3	4 ~ 2 0	4 3	4 41	4	4 4 5 4 5 4 5 4 5 4	4 5(4 55	4 4 5 5 5 5	5000	9 O C	50° 20°	512	5 15	5 18
tude s. S.		. 10 4 . 17 12	20	200	0	~ ~ N +	200	7 (0-1	-1- 	-1-	1	μ.	~ ~ ~	6	1-1	~ ~ ~ ~		~	<u> </u>	0 	00 00	3 6
46°	nuscr	54	53	52	50	49	44	42	40	88 98 98	6 6 6 6 6	31	58 58	23 20	20	11	22	20	60	83	23	49 45	42
Lati		44	4	4 4 9 1	4 12	4 4 7	4 4 313	4 22	4	4 4	4 4 32	4 35	4 37	4 4 42	45	45	4 4 53	4 56	4 32	5 01	50 50	5 00	5 15
tude	2	: xo xo	8	9 8 2 8	2	 	~~~	7	<u>г</u> -т		-1-	2	1-1 1-1		1		- 1-		~		- 00	00	9
48°	nser	03	01	00 29	58	57	54	50	48	45	40 40	38	35	31 28	25	22	15	11	5	48	22	$^{53}_{49}$	45
Latit	h m	3 55 3 55	3 58	359 401	$\frac{4}{2}$ 03	4 05 4 05	4 10 4 12	4 14	4 17	4 IU	4 25	4 28	4 31	$\frac{4}{23}$	4 39	4 42	4 4 4 8 4 8 4 8	4 51	4 04	4 57 57	5 03 2 03	5 06 5 09	5 12
ude 50	Suns	* 00 00	8	8 1 8 0 0 1	08	2 C 2 C	000	7 5	10 i 1-1	2 - 1	-1-	7 4	40	∞ ở ~ ~	7 3	1-1	5 - 1-	11	-	й г-г	-1-	0 0 0 0 0 0	6 4
0°L		100		0 00		9 9	- 01 0	00			>~	4		~ ~	1	4	+ 0	50	т N	× ×	+0	5 CO CO CO CO CO CO CO CO CO CO CO CO CO C	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
atitu		1.83 Z	36	88 40 88	3 42	8 44 7 47	23	56	59	52	88	12	15	23 <u>18</u>	25	29	36	40	43	47	54	57 01	04
de 5	inc 4	= 00 00	000	80 80	00	x x	00000	8	8	200	000	8		- 1- -	7 4	- I 4 C	~ 1~	-1-1	2	~	-1-	20 20	9
4	ឆ្ន័ ៖	35 8	33	82	82	229	132	16	2	25	3°	2		200	H	9	<u>8</u> 2	8	ŝ	<u> </u>	±0	50	55

¹⁰ Latitude 5	h m h	4 5 5 5 5 5 5 5 5 5 5 5 5 5	2 5 26 6 5 5 30 6 5 5 33 6 5 5 33 6 5 5 40 6 5 5 5 30 6 5 5 5 5 5 40 6 5	0 5 44 6 0 5 5 47 6 1 5 5 5 5 2 5 5 5 5 3 5 5 5 5	8 6 02 6 6 06 6 13 6 13 7 5 5 5 7 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7	7 6 20 5 3 6 24 5 3 6 28 5 5 6 32 4 5 6 32 4 4 6 36 4 4	7 6 39 4 8 6 43 4 9 6 47 4 5 6 51 4
Latitude 50	h m h m	5 15 6 44 5 15 6 44 5 21 6 46 5 21 6 31 5 24 6 31 5 27 6 31	5 5 3 5 6 1 2 5 3 5 6 1 2 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 45 6 00 5 45 5 5 5 5 51 5 5 5 5 57 5 4 5	6 00 5 38 6 00 5 38 6 06 5 29 6 12 5 29 6 12 5 21 6 12 5 21 7 12 1	6 15 5 17 6 19 5 18 6 22 5 09 6 28 5 00 6 28 5 01	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
atitude 48° I	h m h m	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 45 6 00 5 48 5 5 6 5 51 5 5 5 5 57 5 47 5 57 5 43	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 28 5 00 6 31 4 57 6 35 4 53 6 38 4 49 6 41 4 46
Latitude 46° I	h m h m	$\begin{array}{c} 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 2 \\ 5 \\ 2 \\ 2 \\ 5 \\ 3 \\ 6 \\ 2 \\ 3 \\ 6 \\ 2 \\ 3 \\ 7 \\ 3 \\ 6 \\ 2 \\ 3 \\ 7 \\ 2 \\ 3 \\ 7 \\ 2 \\ 3 \\ 7 \\ 2 \\ 3 \\ 5 \\ 2 \\ 3 \\ 5 \\ 2 \\ 3 \\ 5 \\ 2 \\ 3 \\ 5 \\ 2 \\ 3 \\ 5 \\ 2 \\ 3 \\ 5 \\ 2 \\ 3 \\ 5 \\ 2 \\ 3 \\ 5 \\ 2 \\ 3 \\ 5 \\ 2 \\ 3 \\ 5 \\ 2 \\ 2 \\ 2 \\ 3 \\ 5 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	5 33 6 19 5 35 6 15 5 38 6 11 5 41 6 07 5 44 6 03	5 46 5 59 5 48 5 55 5 51 5 55 5 53 5 48 5 53 5 48 5 56 5 48	$\begin{array}{c} 5 58 \\ 6 01 \\ 6 01 \\ 5 32 \\ 6 03 \\ 5 32 \\ 6 08 \\ 5 28 \\ 6 08 \\ 5 28 \\ 2 28 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Latitude 44 ° Surrise Surset	h m h m	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 46 5 59 5 48 5 55 5 51 5 55 5 53 5 48 5 53 5 48	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Latitude 40° Surrise Surget	h m h m	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 5 56 & 5 43 \\ 5 58 & 5 43 \\ 6 00 & 5 36 \\ 6 02 & 5 33 \\ 6 04 & 5 33 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Latitude 36° Surrise Surset	h m h m	5 31 6 27 5 33 6 24 5 34 6 24 5 36 6 19 5 38 6 16	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 47 5 58 5 49 5 55 55 5 51 5 55 52 5 52 5 49 5 52 5 49 5 53 5 49	5 55 5 44 5 56 5 41 5 56 5 41 5 58 5 38 6 01 5 32	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Latitude 32° Sunrise Sunset	h m h m	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 48 5 57 5 49 5 56 5 51 5 56 5 51 5 52 5 52 5 49 5 54 5 49	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
DATE			September 247586	22 24 30 30 30		October 258545	22 24 26 30

54°	inset	н Ч	1 28	1 24	1 20	116	12		1 09	1 06	001	100	3 56	54	5.5	64	44	345	1		4 4	940 80 80	88		800	88	38	88 88	2 20	6 4	4	43		3 46
tude	รี่	a	о. С	ო	-		- -		80	2	۔ ب		, ,	~		. .	1 00) (41	~ c	⊃ຕ			ж хос	- -	14	10	1	- 00) .		2	 6
atii	nuri	ц ц	6 5	0	0	· -	11		7 1	7	5	. L	30	7 3	. 7 4	. 4	.4	-2	: 1	0 1 1	0 0 - 0	v a	0000	((⊃- ∞ 0	000	$\frac{1}{2}$	8	0	 > 00	$\frac{1}{2}$) - C		8
п .	ا تد ايد	e	.		~				~	_		+		~			, 	- ~		<u>.</u>	_ ~		•		yn o	<u>.</u>		_	_	- ~		. 	, ,	~
e 50	suns	r q	433	4	4	5 7 7	र्थ सं त्य		42	4 2(4	4	4	4 1(4	, 4 2 2	- 4 - 4	- -		4	50	ಕ ನ ಕ	3 6 6 6	i	ຕິມ ກາ	л с с	s cc S cc	50 50	i v	44	4	4 4 6 0 0	•	40
tud	se	e	oo oo	2	مر) <u>–</u> (4	œ	-		000	-	4	1		, 		ģ	v Pr	- - 0	200	(x	2		4	Ľ	ي د		~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	6
Lati	unr	4	64	0 0	92.9) LC (C)	20		70	0 0	-	1	7 1	7 2	10	5	- I-		1	o o: ⊳ 1	- 0	- L-	• •	1	- L	- L-	• 1-	-20	и Г	- L-	-1-		•	7
2		R	ი	0	~	. 4			6	9	4		6	~) ব	5			_	٥ م	0	• ~	1	-1-	- 1-	. 00	00	0		,	∞ 4	•	9
e 48	Suns	ч	4	4	43	5 7 7	443		42	42	4 2	4	4 1	4 1	4	4	4	4	, ,	4.4	* ~	4 4 0 C	4		4~	* 4	4 0	40		4 4 7	4	44	•	4 1
itud	Ise	Ħ	4	5	20	ŝ	2.92		60	2	22	8	0	3	9	6	2	នេ	ļ	2	Ss	25	25	ş	30	25	14	5	16	25	8	610		00
Lat		4	9	9	9	ç	0		9	~	5	-	-	~	-	1	1	-1-	ı	-1	- 1	- 1-	-1-	1	-1	- 1-		-	r		-	~ ~	•	~
° 1	Set	E	5	4	H	×	200		ŝ	2	6	5	22	33	5	20	6	200	1	20	2 4	<u>.</u>	22	1	ក្មក	<u>9</u>	99	1	ø	0	ເລ	52		24
de 4		4	4	4	4	4	4		4	4	4	4	4	4	4	4	4	4		4,	* -	* 4	4		4 -	+ 4	4	4	4	4	4	44	I	4
titu	IIISe	8	39	42	45	48	51		53	56	59	8	04	20	10	12	12	18	ą	28	16	25	39	č	30 10 10	35	36	37	38	36	40	41		42
Lai		4	9	9	9	ę	9		9	9	ę	1	~	2	-	-	1	-1-	1	- 1	- 1	-1-	1	t		• [~	-1-	2	5	. ~	~	~~	•	~
4	Iser	8	52	49	46	43	41		39	37	35	32	31	29	28	27	25	54	g	202	ទទ	52	121	g		32	53	24	25	26 26	27	308		31
de 4		Ч	4	4	4	4	4		4	4	4	4	4	4	4	4	4	4	•	4 -	# -	44	4	•	4 -	4	4	4	4	4	4	44		4
titu	unse	8	35	88	41	43	46		48	51	54	57	59	10	040	80	60	11	Ş	<u>ц</u>	36	50 50	52	ð	4 č	22	29	30	31	32	33	34 34		35
La	2	д (9	9	9	ę	9		9	9	9	9	9	2		~	2	-	1	-1	- 1	- 1-	-1-	r	-1-	• [~	-	2	7	-1-	~	~~		7
40°		8 (20	55	53	5	49		47	45	44	42	41	39	38	37	36	36	à	00 0 0 0	36	38	35	ç	0 K 0 K	36	36	37	38	30	40	4 1 4		44
nde s.	5 .	ч.	4	4	4	4	4		4	4	4	4	4	4	4	4	4	4	•	4 -	4 4	44	4		4 4	4	4	4	4	4	4	44		4
atit		8	8	3	89 89 90	35	37		39	42	44	47	49	51	54	56	58	59	Z	38	35	35	60	÷	3£	14	16	17	18	19	20	212		22
ц į	5 . 	द (9	0	9	9	9		9	9	9	9	9	9	9	9	9	9	Ľ	- [• Г	- [-		r	-1-	• [~	-	~	-		~			2
36°		E ;	33	20	5	59	57		56	54	52	51	50	49	48	48	47	47	ļ	44	46	46	46	01	410	47	48	49	50	51	52	53 54		56
ude S	8 . 9 .	- 1	ດ.	- C	 	4	4		4	4	4	4	4	4	4	4	4	4		* ~	* 4	* 4	4		* - *	4	4	4	4	4	4	44		4
atit	Ĩ.	8) 2 0		27	80 00 00	6 21	13 0 0	,		89 10 10		33	33	6 41	6 45	345	3 47	348	1	5 4 0 4	2.5	5.0	5	2	őE	58 . N	04	20 2	20	0	2002	88 70		7 10
s I	2		_	_		_	_		_	_		_	-																_	-	-			
32°		а; а;	33	50	03	000	10		03	62	5	1 59	1 59	1 58	1 57	1 57	1 56	1 56	1		3 K 3 K	1 20 20	1 20	2	- - - - - - - - - - - - - - - - - - -	22	1 58	1 59	1 59	50	80	53		90
tude		_ (00	x	0	~			ແລ. ເດຍ	~	ື ດ	0	2	4	9	-	6			0 ~	н сс		6	2	⊃ ¢	ເຕ	4 4	5	9	-	~~ ∞			0
Lati	. ,	- , - ,	0	9	62	6 2	6 2		9 P.	6 2	0 13	63	63	63	63	63	63	64		4 T 9 G	7 7 9 9	6 4 4	64	2	ດ ເຊິ	000	6 5	6 5	6.5	6 5	6 5	0 0 0 0		70
н Н		•	- (ŝ	ŝ	-	6		1	13	15	17	19	21	23	25	27	29		- 6) I C	~	6		12	12	17	19	21	33	25	2923		31
DA								1	əq	u	19	۸0	N			-			`						19	qu	uə	29 (I					

		Latitu	de 35°	Latit	udė 40°	Latit	ude 45°	Latitu	de 50°	Latitu	d e 54°
		Morn.	Eve.	Morn	. Eve.	Morn	. Eve.	Morn.	Eve.	Morn.	Eve.
Jan. Feb.	1 11 21 31 10	5 38 5 39 5 38 5 34 5 27	6 29 6 37 6 45 6 54 7 03	5 45 5 45 5 43 5 38 5 29	$\begin{array}{c} 6 & 22 \\ 6 & 31 \\ 6 & 40 \\ 6 & 50 \\ 7 & 01 \end{array}$	552 52 552 548 541 531	$\begin{array}{c} 6 & 15 \\ 6 & 24 \\ 6 & 35 \\ 6 & 47 \\ 7 & 00 \end{array}$	$\begin{array}{c} 6 & 00 \\ 5 & 59 \\ 5 & 54 \\ 5 & 45 \\ 5 & 32 \end{array}$	6 07 6 17 6 30 6 44 6 59	6 07 6 05 5 58 5 47 5 32	6 00 6 12 6 25 6 41 6 58
Mar. Apr.	20 2 12 22 1	5 17 5 06 4 52 4 38 4 23	7 12 7 20 7 29 7 38 7 47	5 17 5 04 4 48 4 31 4 13	7 12 7 22 7 33 7 45 7 57	5 18 5 02 4 43 4 23 4 01	7 12 7 26 7 39 7 54 8 09	5 15 4 56 4 35 4 11 3 46	7 14 7 30 7 47 8 06 8 25	5 13 4 51 4 26 3 59 3 29	7 17 7 36 7 56 8 18 8 42
May	11 21 1 11 21	4 07 3 51 3 37 3 23 3 12	7 57 8 07 8 19 8 30 8 41	3 55 3 36 3 18 3 02 2 47	8 09 8 23 8 37 8 52 9 07	3 39 3 17 2 54 2 33 2 13	8 25 8 43 9 02 9 22 9 42	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 46 9 10 9 37 10 08 10 44	2 56 2 20 1 36 0 30	9 10 9 42 10 22 11 37
June July	31 10 20 30 10	3 04 2 59 3 02 3 02 3 09	8 51 8 59 9 04 9 04 9 01	2 36 2 29 2 27 2 31 2 39	9 20 9 30 9 35 9 35 9 35 9 30	$ \begin{array}{r} 1 56 \\ 1 43 \\ 1 39 \\ 1 44 \\ 1 56 \end{array} $	10 01 10 16 10 23 10 22 10 13	0 23			
Aug.	20 30 9 19 29	3 18 3 28 3 39 3 50 4 00	8 54 8 43 8 30 8 16 8 00	2 51 3 05 3 20 3 34 3 47	9 20 9 06 8 50 8 32 8 14	2 14 2 33 2 52 3 12 3 29	9 57 9 38 9 16 8 53 8 31	1 04 1 1 43 1 2 15 2 42 3 06	1 04 9 53 9 23 8 53		10 45 9 57 9 19
Sept. Oct.	8 18 28 8 18	4 10 4 19 4 28 4 35 4 43	7 44 7 28 7 13 6 59 6 46	$\begin{array}{r} 3 & 59 \\ 4 & 11 \\ 4 & 22 \\ 4 & 32 \\ 4 & 42 \end{array}$	7 55 7 36 7 18 7 02 6 47	$ \begin{array}{r} 3 & 46 \\ 4 & 01 \\ 4 & 15 \\ 4 & 28 \\ 4 & 40 \end{array} $	8 08 7 46 7 25 7 06 6 49	3 28 3 47 4 05 4 22 4 37	8 26 8 00 7 35 7 12 6 51	3 08 3 33 3 55 4 15 4 34	8 45 8 13 7 45 7 19 6 55
Nov. Dec.	28 7 17 27 7	4 51 5 00 5 08 5 16 5 24	6 36 6 27 6 21 6 18 6 18	4 52 5 02 5 12 5 22 5 31	6 34 6 24 6 17 6 13 6 12	4 53 5 05 5 17 5 28 5 38	6 34 6 21 6 12 6 06 6 04	4 53 5 07 5 21 5 34 5 45	6 34 6 19 6 07 6 00 5 57	4 52 5 09 5 25 5 39 5 51	6 35 6 17 6 04 5 55 5 51
Jan.	17 27 1	$5 \ 31 \\ 5 \ 36 \\ 5 \ 38$	$\begin{array}{c} 6 & 21 \\ 6 & 26 \\ 6 & 29 \end{array}$	$5 \ 38 \\ 5 \ 43 \\ 5 \ 45$	$\begin{array}{c} 6 & 14 \\ 6 & 19 \\ 6 & 22 \end{array}$	$5 \ 45 \ 5 \ 51 \ 5 \ 52$	$\begin{array}{c} 6 & 06 \\ 6 & 11 \\ 6 & 15 \end{array}$	5 53 59 59 6 00	5 58 6 03 6 07	6 01 6 06 6 07	551 51 56 600

BEGINNING OF MORNING AND ENDING OF EVENING TWILIGHT

The above table gives the local mean time of the beginning of morning twilight, and of the ending of evening twilight, for-various latitudes. To obtain the corresponding standard time, the method used is the same as for correcting the sunrise and sunset tables, as described on page 12. The entry — in the above table indicates that at such dates and latitudes, twilight lasts all night. This table, tak in from the American Ephemeris, is computed for astronomical twilight, i.e. for the time at which the sun is 108° from the zenith (or 18° below the horizon).

TIME OF MOONRISE AND MOONSET, 1958. (Local Mean Time)

-

DATE	Latitude 35° Moon Rise Set	Latitude 40° Moon Rise Set	Latitude 45° Moon Rise Set	Latitude 50° Moon Rise Set	Latitude 54° Moon Rise Set
Jan. 1 2 3 4 5 S	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6 7 8 9 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
11 12 @ 13 14 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
16 17 18 19 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
21 22 23 24 25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
26 27 D 28 29 30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
31	13 59 03 28	13 46 03 40	$13 \ 32 \ \ 03 \ \ 54$	13 15 04 12	12 58 04 29
Feb. 1 2 3 4 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6 7 8 9 10 ([$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
11 12 13 14 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
16 17 18 @ 19 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
21 22 23 24 25	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{smallmatrix} 7 & 46 & 21 & 01 \\ 08 & 07 & 22 & 06 \\ 08 & 29 & 23 & 10 \\ 08 & 55 & \dots & \dots \\ 09 & 25 & 00 & 14 \\ \end{smallmatrix} $
26 D 27 28	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

20

DATE	Latitude 35° Moon Rise Set	Latitude 40° Moon Rise Set	Latitude 45° Moon Rise Set	Latitude 50° Moon Rise Set	Latitude 54° Moon Rise Set
Mar. 1 2 3 4 5 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	h m h m 12 47 03 56 14 00 04 36 15 19 05 12 16 43 05 43 18 09 06 10
6 7 8 9 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
11 12 C 13 14 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
16 17 18 19 20 @	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
21 22 23 24 25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
26 27 28 ₪ 29 30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
31	14 38 03 08	14 33 03 14	14 27 03 21	14 19 03 31	14 12 03 39
Apr. 1 2 3 @ 4 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6 7 8 9 10 C	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
11 12 13 14 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
16 17 18 ® 19 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
21 22 23 24 25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
26 D 27 28 29 30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

DATE	Latitude 35° Moon	Latitude 40° Moon	Latitude 45°	Latitude 50°	Latitude 54°
	Rise Set	Rise Set	Rise Set	Rise Set	Rise Set
May 1 2 3 ® 4 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	h m h m 17 05 03 35 18 21 04 12 19 35 04 52 20 44 05 38 21 47 06 30	h m h m 17 12 03 31 18 31 04 03 19 49 04 41 21 01 05 23 22 04 06 13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6 7 8 9 10 C	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
11 12 13 14 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
16 17 18 1 19 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
21 22 23 24 25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
26 27 28 29 30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
31	17 59 03 48	18 10 03 38	$18\ 22 03\ 28$	$18\ 38\ 03\ 14$	$18 \ 53 \ 03 \ 01$
June 1 @ 2 3 4 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6 7 8 9 (10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
11 12 13 14 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
16 17 ● 18 19 20		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
21 22 23 24 25	09 12 22 25 10 16 23 03 11 21 23 40 12 27 13 33 00 18	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
26 27 28 29 30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

DATE	Latitude 35° Moon Rise Set	Latitude 40° . Moon Rise Set	Latitude 45° Moon Rise Set	Latitude 50° Moon Rise Set	Latitude 54° Moon Rise Set
July 1 (*) 2 3 4 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccc} h & m & h & m \\ 20 & 25 & 04 & 21 \\ 21 & 00 & 05 & 29 \\ 21 & 28 & 06 & 39 \\ 21 & 53 & 07 & 48 \\ 22 & 14 & 08 & 56 \end{array}$
6 7 8 C 9 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
11 12 13 14 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
16 (†) 17 18 19 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
21 22 23 24 25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
26 27 28 29 30 ⁽¹⁾	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
31	19 29 06 04	$19 \ 35 \ 05 \ 58$	19 41 05 49	19 49 05 40	19 56 05 30
Aug. 1 2 3 4 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6 7 C 8 9 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
11 12 13 14 (1) 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
16 17 18 19 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
21 22 23 24 25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
26 27 28 29 30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
31	19 40 07 39	19 37 07 41	19 34 07 42	19 30 07 45	19 27 07 47

-

DATE	Latitude 35° Moon Rise Set	Latitude 40° Moon Rise Set	Latitude 45° Moon Rise Set	Latitude 50° Moon Rise Set	Latitude 54° Moon Rise Set
Sept. 1 2 3 4 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6 () 7 8 9 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
11 12 13 (1) 14 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
16 17 18 19 ⊉ 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
21 22 23 24 25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{vmatrix} 14 & 17 & \dots & \\ 14 & 59 & 00 & 43 \\ 15 & 36 & 01 & 42 \\ 16 & 09 & 02 & 41 \\ 16 & 40 & 03 & 39 \end{vmatrix} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
26 27 28 29 30		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Oct. 1 2 3 4 5 ([$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19 39 09 27 20 18 10 22 21 02 11 16 21 51 12 07 22 48 12 54	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6 7 8 9 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
11 12 @ 13 14 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
16 17 18 19 ⊉ 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
21 22 23 24 25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
26 27 28 29 30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
31	20 12 09 39	20 01 09 50	19 47 10 03	19 31 10 20	$19 \ 15 \ 10 \ 36$

DATE	Latitude 35° Moon Rise Set	Latitude 40° Moon Rise Set	Latitude 45° Moon Rise Set	Latitude 50° Moon Rise Set	Latitude 54° Moon Rise Set	
Nov. 1 2 3 4 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
6 7 8 9 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
11 12 13 14 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
16 17 D 18 19 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
21 22 23 24 25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
26 (b) 27 28 29 30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Dec. 1 2 3 4 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
6 7 8 9 10 Ø	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
11 12 13 14 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
16 17 D 18 19 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
21 22 23 24 25 🕲	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
26 27 28 29 30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
31	22 51 10 35	22 51 10 36	22 50 10 38	22 50 10 41	$22 \ 49 \ 10 \ 43$	

THE PLANETS FOR 1958

THE SUN

The dots on the diagram represent the sun-spot activity of the current 19th cycle, as far as the final numbers are available. The present cycle began at the minimum in April 1954. For comparison, cycle 18 which began February 1944 (solid curve), and the mean of cycles 8 to 18 (dashed curve), are placed with their minima on April 1954. It is evident that the present cycle is showing much higher activity than usual. It is running ahead of the predicted values which indicate the maximum to be reached in July 1957.

A special emphasis on observations of solar activity is given by the International Geophysical Year running from July 1957 to December 1958. A combined effort in fields of solar astronomy, the upper atmosphere, meteorology and geophysics will promote a better understanding of the sun's influence on the earth as a whole.

MERCURY

Mercury is exceptional in many ways. It is the planet nearest the sun and travels fastest in its orbit, its speed varying from 23 mi. per sec. at aphelion to 35 mi. per sec. at perihelion. The amount of heat and light from the sun received by it per square mile is, on the average, 6.7 times the amount received by the earth. Its period of rotation on its axis is believed to be the same as its period of revolution about the sun, which is 88 days.

Mercury's orbit is well within that of the earth, and the planet, as seen from the earth, appears to move quickly from one side of the sun to the other several times in the year. Its quick motion earned for it the name it bears. Its greatest elongation (i.e., its maximum angular distance from the sun) varies between 18° and 28°, and on such occasions it is visible to the naked eye for about two weeks.

When the elongation of Mercury is east of the sun it is an evening star, setting soon after the sun. When the elongation is west, it is a morning star and rises shortly before the sun. Its brightness when it is treated as a star is considerable but it is always viewed in the twilight sky and one must look sharply to see it.

The most suitable times to observe Mercury are at an eastern elongation in the spring and at a western elongation in the autumn. The dates of greatest elongation this year, together with the planet's separation from the sun and its stellar magnitude, are given in the following table:

Elong. East—Evening Star			Elong. West—Morning Star		
Date	Distance	Mag.	Date	Distance	Mag.
Mar. 29		+0.1	Jan. 15	24°	0.0
July 26	27°	+0.6	May 14	26°	+0.7
Nov. 20	22°	-0.1	Sept. 9	18°	0.0
			Dec. 29	22°	-0.1

MAXIMUM ELONGATIONS OF MERCURY DURING 1958

The most favourable elongations to observe are: in the evening, Mar. 29, and in the morning, Sept. 9. At these times Mercury is over 80 million miles from the earth and in a telescope looks like a half-moon about 7'' in diameter.

VENUS

Venus is the next planet in order from the sun. In size and mass it is almost a twin of the earth. Venus being within the earth's orbit, its apparent motion is similar to Mercury's but much slower and more stately. The orbit of Venus is almost circular with radius of 67 million miles, and its orbital speed is 22 miles per sec.

On Jan. 1, 1958, Venus is in the evening sky and crosses the meridian almost $2\frac{1}{2}$ hours after the sun. Its declination is -15° and it appears rather low in the south-western sky at sunset. It is very brilliant, its stellar magnitude being -4.3. By Jan. 28 it is in inferior conjunction with the sun. It now becomes a morning star and attains greatest brilliancy, mag. -4.3, on Mar. 4. It reaches greatest elongation west, 46° 23', on Apr. 8, with magnitude -4.0. Its declination is -10° and it transits the meridian less than 3 hours before the sun. It returns to the evening sky on Nov. 11. On Dec. 31 it is in declination -23° and transits the meridian an hour after the sun.

With the exception of the sun and moon, Venus is the brightest object in the sky. Its brilliance is largely due to the dense clouds which cover the surface of the planet. They reflect well the sun's light; but they also prevent the astronomer from detecting any solid object on the surface of the body. If such could be observed it would enable him to determine the planet's rotation period. It is probably around 30 days.

MARS

The orbit of Mars is outside that of the earth and consequently its planetary phenomena are quite different from those of the two inferior planets discussed above. Its mean distance from the sun is 141 million miles and the eccentricity of its orbit is 0.093, and a simple computation shows that its distance from the sun ranges between 128 and 154 million miles. Its distance from the earth varies from 35 to 235 million miles and its brightness changes accordingly. When Mars is nearest it is conspicuous in its fiery red, but when farthest away it is no brighter than Polaris. Unlike Venus, its atmosphere is very thin, and features on the solid surface are distinctly visible. Utilizing them its rotation period of 24h. 37m. has been accurately determined.

The sidereal, or true mechanical, period of revolution of Mars is 687 days; and the synodic period (for example, the interval from one opposition to the next one) is 780 days. This is the average value; it may vary from 764 to 810 days. At the opposition on Sept. 10, 1956, the planet was closer to the earth than it will be for some years. The next opposition is on Nov. 16, 1958, although Mars is nearest the earth on Nov. 8. On that date the distance between the two bodies is 45,310,000 miles, and the planet's stellar magnitude is -1.9.

On Jan. 1, 1958, Mars is in Scorpius, crossing the meridian about $2\frac{1}{2}$ hours before the sun. Its stellar magnitude is +1.8. Mars is overtaking Saturn and is closest to it on Jan. 23. It moves eastward in the sky until Oct. 9, when it becomes stationary in R.A. Then it retrogrades through opposition and becomes stationary in R.A. on Dec. 20. Again it moves eastward, and on Dec. 31 it is in Aries. See the map for its position throughout the year.

JUPITER

Jupiter is the giant of the family of the sun. Its mean diameter is 87,000 miles and its mass is $2\frac{1}{2}$ times that of all the rest of the planets combined! Its mean distance is 483 million miles and the revolution period is 11.9 years. This planet is known to possess 12 satellites, the last discovered in 1951 (see p. 9). Not so long ago it was generally believed that the planet was still cooling down from its original high temperature, but from actual measurements of the radiation from it to the earth it has been deduced that the surface is at about -200° F. The spectroscope shows that its atmosphere is largely ammonia and methane. Jupiter is a fine object for the telescope. Many details of the surface as well as the flattening of the planet, due to its short rotation period, are visible, and the phenomena of its satellites provide a continual interest.

On Jan. 1, 1958, Jupiter is in the morning sky in the constellation Virgo, crossing the meridian about 7 a.m. Its stellar magnitude is -1.4. It comes into opposition with the sun on Apr. 17, when it moves into the evening sky. Its magnitude has brightened to -2.0. It retrogrades from Feb. 15 to June 19 (see map). It is in conjunction with the sun on Nov. 4, and is in the morning sky for the rest of the year. On Dec. 31 it is in Libra and its stellar magnitude is -1.4.

SATURN

Saturn was the outermost planet known until modern times. In size it is a good second to Jupiter. In addition to its family of nine satellites, this planet has a unique system of rings, and it is one of the finest of celestial objects in a good telescope. The plane of the rings makes an angle of 27° with the plane of the planet's orbit, and twice during the planet's revolution period of $29\frac{1}{2}$ years the rings appear to open out widest; then they slowly close in until, midway between the maxima, the rings are presented edgewise to the sun or the earth, at which times they are invisible. The rings were edgewise in 1937 and 1950, and at maximum in 1944 and will be again at maximum in 1958.

On Jan. 1, 1958, Saturn is in Ophiuchus in the morning sky (see map). Its stellar magnitude is +0.7. On Apr. 4 it reaches a stationary point and begins to move westward, or retrograde. Opposition occurs on June 13, and it will be visible most of the night with stellar magnitude +0.2. It continues to retrograde until Aug. 24, when it again begins to move eastward. Conjunction with the sun occurs on Dec. 20.

URANUS

Uranus was discovered in 1781 by Sir William Herschel by means of a 61-in. mirror-telescope made by himself. The object did not look just like a star and he observed it again four days later. It had moved amongst the stars, and he assumed it to be a comet. He could not believe that it was a new planet. However, computation later showed that it was a planet nearly twice as far from the sun as Saturn. Its period of revolution is 84 years and it rotates on its axis in about 11 hours. Its five satellites are visible only in a large telescope. The fifth satellite was discovered by G P. Kuiper in 1948 at the McDonald Observatory (see p. 9).

Uranus remains in Cancer during 1958 (see map). At the beginning of the year it is retrograding or moving westward among the stars until April 15. Opposition to the sun occurs on Jan. 29, when its apparent diameter is 3.9''. At this time its stellar magnitude is +5.8, and by conjunction it has faded to +6.0. Conjunction with the sun occurs on Aug. 4. It is in the morning sky for the rest of the year.

NEPTUNE

Neptune was discovered in 1846 after its existence in the sky had been predicted from independent calculations by Leverrier in France and Adams in England. It caused a sensation at the time. Its distance from the sun is 2791 million miles and its period of revolution is 165 years. A satellite was discovered in 1846 soon after the planet. A second satellite was discovered by G. P. Kuiper at the McDonald Observatory on May 1, 1949. Its magnitude is about 19.5, its period about a year, and diameter about 200 miles. It is named Nereid.

During 1958, Neptune is still in the constellation Virgo. It is in opposition to the sun on Apr. 23. Its stellar magnitude is then +7.68, and during the year fades slightly to +7.82. Thus it is too faint to be seen with the naked eye. In the telescope it shows a greenish tint and an apparent diameter of from 2.5" to 2.3". It is in conjunction with the sun on Oct. 28.

PLUTO

Pluto, the most distant known planet, was discovered at the Lowell Observatory in 1930. Its mean distance from the sun is 3671 million miles and its revolution period is 248 years. It appears as a 15th mag. star in the constellation Leo. It is in opposition to the sun on Feb. 20, at which its astrometric position is R.A. $10^{h} 30^{m}$, Dec. $+22^{\circ} 10'$.

THE SKY MONTH BY MONTH

By J. F. HEARD

THE SKY FOR JANUARY, 1958

Positions of the sun and planets are given for 0h Greenwich Civil Time.

The times of transit at the 75th meridian are given in local mean time, 0h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During January the sun's R.A. increases from 18h 44m to 20h 56m and its Decl. changes from $23^{\circ} 04'$ S. to $17^{\circ} 18'$ S. The equation of time changes from -3m 16s to -13m 34s. The earth is in perihelion or nearest the sun on the 3rd. For changes in the length of the day, see p. 13.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 20.

Mercury on the 15th is in R.A. 18h 02m, Decl. $21^{\circ} 48'$ S, and transits at 10h 27m. Greatest western elongation is on the 15th (mag. 0.0). At about this time it may be seen as a morning star low in the south-east just before sunrise; however, this is a poor elongation.

Venus on the 15th is in R.A. 21h 06m, Decl. 12° 18' S., mag. -3.9, and transits at 13h 26m. Early in the month it may be seen low in the south-west just after sunset, but by the 28th it is in inferior conjunction.

Mars on the 15th is in R.A. 16h 59m, Decl. $22^{\circ} 47'$ S., mag. 1.7, and transits at 9h 23m. It is in Ophiuchus and may be seen in the south-east for a few hours before sunrise. It is in conjunction with Saturn on the 23rd, Mars passing $1^{\circ} 31'$ south of Saturn.

Jupiter on the 15th is in R.A. 13h 54m, Decl. 10° 19' S., mag. -1.5, and transits at 6h 17m. Not far from Spica, it rises after midnight and is past the meridian at dawn. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 56.

Saturn on the 15th is in R.A. 17h 21m, Decl. 21° 48' S., mag. 0.8, and transits at 9h 43m. It is a morning star visible low in the south-east for an hour or two before sunrise (see Mars).

Uranus on the 15th is in R.A. 8h 52m, Decl. 18° 19' N. and transits at 1h 15m.

Neptune on the 15th is in R.A. 14h 12m, Decl. 11° 26' S. and transits at 6h 34m.

Pluto-For information in regard to this planet, see p. 31.

ASTRONOMICAL PHENOMENA MONTH BY MONTH

BY RUTH J. NORTHCOTT

				JANUARY 75th Meridian Civil Time	Min. of Algol	Config. of Jupiter's Sat 5h 30m
	d	h	m		h m	
Wed.	1				10 21	d3O42
Thu.	2	4		Ø Greatest Hel. Lat. N		24013
Fri.	3			Quadrantid meteors		
_		9		\oplus in Perihelion. Dist. from \odot , 91, 342,000 mi.		42103
Sat.	4				7 10	40123
Sun.	5	4		ξ Stationary in R.A		41032
		15	09	Full Moon		
Mon.	6	3				43201
Tue.	7	12	33	ା ଦ ଚି ଐ 💮 ଚି 5° 55′ N	3 59	4310*
Wed.	8	0		σ^{7} in \mathfrak{V}		d43O2
		19		Moon in Perigee. Dist. from \oplus , 227,600 mi.		
Thu.	9			•••••••••••		42013
Fri.	10				0 48	21043
Sat.	11					01243
Sun.	12	9	01	C Last Quarter	21 38	10324
Mon.	13	0	12	♂ 24 € 24 2° 00′ N		32014
		8	17	ϭΨ € Ψ 2° 03′ Ν		
Tue.	14					31204
Wed.	15	23		Greatest elongation W., 23° 53'	18 27	30124
Thu.	16	10	06	රට්℃ ට්3°19′S		dO34*
		17	47	♂ þ € þ 2° 09′ S		
Fri.	17	16	50	σ ⊈ Œ ⊈ 3° 00′ S		21034
Sat.	18				15 16	O4123
Sun.	19	17	08	New Moon		41032
Mon.	20	18	52	σ´♀ @ ♀ 0° 40′ N		42301
Tue.	21	0		$\square 2 \odot$ West	12 05	43120
Wed.	$\overline{22}$					43012
Thu.	23	5		σ' σ' Ϸ σ' 1° 31' S		402**
Fri.	24	19		Moon in Apogee. Dist. from ⊕. 251.800 mi.	8 55	d42O3
Sat	25	0		$\Box \Psi \odot \qquad \text{West}$		40213
Sut.	-0	15		$\beta = \frac{1}{2} + $		10-10
Sun	26	10		+ mo		41032
Mor	27	21	16	First Quarter	5 44	23041
Тие	28	15	10	$\sigma Q \odot \approx Inferior$	0 11	32104
Wed	29	19		e^{\pm} \odot Dist from \oplus 1.626 000 000 mi		30124
Thu	30	2		\circ in Perihelion	2 33	1024*
rnu. E.:	90 21	0		+ III I CHIICHOIL	<i>4</i> 00	49024
T, LI*	91			•••••••••••••••••••••••••••••••••••••••	i	u2034

Explanation of symbols and abbreviations on p. 4, of time on p. 10.

THE SKY FOR FEBRUARY, 1958

Positions of the sun and planets are given for 0h Greenwich Civil Time.

The times of transit at the 75th meridian are given in local mean time, 0h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During February the sun's R.A. increases from 20h 56m to 22h 46m and its Decl. changes from 17° 18' S. to 7° 51' S. The equation of time changes from -13m 34s to a minimum of -14m 19s on the 12th and then to -12m 36s at the end of the month. For changes in the length of the day, see p. 13.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 20.

Mercury on the 15th is in R.A. 21h 05m, Decl. $18^{\circ} 45'$ S. and transits at 11h 29m. It is too close to the sun for observation.

Venus on the 15th is in R.A. 20h 06m, Decl. $12^{\circ} 28'$ S., mag. -4.1, and transits at 10h 25m. At the beginning of the month it is too close to the sun for observation, but later in the month it may be seen as a morning star low in the south-east before sunrise.

Mars on the 15th is in R.A. 18h 35m, Decl. $23^{\circ} 40'$ S., mag. 1.5, and transits at 8h 57m. It is in Sagittarius and may be seen low in the south-east for a few hours before sunrise.

Jupiter on the 15th is in R.A. 14h 00m, Decl. 10° 44' S., mag. -1.8, and transits at 4h 20m. It is in Virgo, rising just before midnight. On the 15th it is stationary in right ascension and begins to retrograde, i.e., move westward among the stars. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 56.

Saturn on the 15th is in R.A. 17h 33m, Decl. 21° 57' S., mag. 0.8, and transits at 7h 53m. It is in Ophiuchus east of Antares and rises about three hours before sunrise.

Uranus on the 15th is in R.A. 8h 46m, Decl. 18° 41' N. and transits at 23h 03m.

Neptune on the 15th is in R.A. 14h 12m, Decl. 11° 26' S. and transits at 4h 33m.

Pluto-For information in regard to this planet, see p. 31.
				FEBRUARY	Min.	Config. of Jupiter's Sat
				75th Meridian Civil Time	Algol	4h 15m
	d	h	m		hm	1
Sat.	1				23 23	O34**
Sun.	2	1		•••••••••••••••••••••••••••••••••••••••		10234
Mon.	3	20	33	of ô € 6 5° 52′ N		23014
Tue.	4	3	05	Full Moon	20 12	32104
		21	}	ξ in Aphelion		}
Wed.	5	16	1	$ \Psi $ Stationary in R.A	}	34012
		18		Moon in Perigee. Dist. from \oplus , 224,200 mi		
Thu.	6	1		•••••••••••••••••••••••••••••••••••••••		43102
Fri.	7	2		$[\sigma' \not \xi \not \varphi \qquad \qquad \ \ \ \ \ \ \ \ \ \ \ \ $	17 01	42013
Sat.	8			•••••		403**
Sun.	9	8	45	of 24 € 24 1° 40′ N		41023
		14	11	[
Mon.	10			Aurigid meteors	$13 \ 51$	d42O1
		18	34	C Last Quarter		
Tue.	11		ł	•••••••••••••••••••••••••••••••••••••••		43210
Wed.	12					34021
Thu.	13	3	59	$\circ \flat \mathbb{Q}$ $\flat 2^{\circ} 29' S. \dots$	10 40	31042
Fri.	14	6	49	♂♂℃ ♂5°00′S		20134
Sat.	15	20		24 Stationary in R.A.		21034
Sun.	16	1	17	$\sigma \mathrel{\bigcirc} \mathbb{Q} \qquad \mathrel{\bigcirc} 2^{\circ} 36' \mathrm{N}. \ldots \ldots$	7 29	dO234
Mon.	17	13		Q Stationary in R.A.		dO314
-		16	05	σ ξ C ξ 7° 15′ S		
Tue.	18	10	38	New Moon		32104
Wed.	19				4 18	30214
Thu.	20	0		$o^{\circ} P \odot$ Dist. from \oplus 3,095,000,000 mi.		31024
	-	23		QGreatest Hel. Lat. N.		
Fri.	21	10		Moon in Apogee. Dist. from \oplus , 252,300 mi.		24031
Sat.	22			· · · · · · · · · · · · · · · · · · ·	1 08	42103
Sun.	23			· · · · · · · · · · · · · · · · · · ·		40123
Mon.	24				21 57	4023*
Fue.	25	5		Q Greatest Hel. Lat. S.		42310
Wed.	26	15	51	First Quarter		43021
Thu.	27			•••••••••••••••••	18 46	43102
Fri.	28			•••••••••••••••••	1	42031

THE SKY FOR MARCH, 1958

Positions of the sun and planets are given for 0h Greenwich Civil Time.

The times of transit at the 75th meridian are given in local mean time, 0h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During March the sun's R.A. increases from 22h 46m to 0h 40m and its Decl. changes from 7° 51' S. to 4° 16' N. The equation of time changes from -12m 36s to -4m 11s. On the 20th at 22h 06m E.S.T. the sun crosses the equator on its way north, enters the sign of Aries, and spring commences. This is the vernal equinox. For changes in the length of the day, see p. 14.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 21.

Mercury on the 15th is in R.A. 0h 17m, Decl. 1° 30' N. and transits at 12h 50m. Superior conjunction is on the 3rd and by the 29th greatest eastern elongation is reached (mag. 0.1). Thus, towards the end of the month, Mercury is a good evening star, standing about 17 degrees above the western horizon at sunset. On the 21st there is an occultation of Mercury visible in eastern Canada, see p. 60.

Venus on the 15th is in R.A. 20h 48m, Decl. $13^{\circ} 39'$ S., mag. -4.2, and transits at 9h 19m. It is a morning star, and, although it is only about 15° above the south-eastern horizon at sunrise, it is very prominent, greatest brilliancy being on the 4th of this month.

Mars on the 15th is in R.A. 20h 02m, Decl. $21^{\circ} 22'$ S., mag. 1.3, and transits at 8h 34m. It is moving from Sagittarius to Capricornus and may be seen low in the south-east for a few hours before sunrise.

Jupiter on the 15th is in R.A. 13h 56m, Decl. 10° 15' S., mag. -1.9, and transits at 2h 26m. It rises late in the evening and is visible all night not far east of Spica. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 56.

Saturn on the 15th is in R.A. 17h 40m, Decl. 21° 59' S., mag. 0.7, and transits at 6h 10m. It is in Ophiuchus and rises in the south-east an hour or so after midnight.

Uranus on the 15th is in R.A. 8h 42m, Decl. 18° 56' N. and transits at 21h 09m.

Neptune on the 15th is in R.A. 14h 11m, Decl. 11° 18' S. and transits at 2h 41m.

		M	in. of gol	Config. of Jupiter's Sat. 2h 45m			
	d	h	m		h	m	
Sat.	1			1		••••	21403
Sun.	2				15	36	01243
Mon.	3	5	47	☆ 奇 億			10234
	0	15					10201
Tue.	4	5		Q Greatest brilliancy, magnitude -4.3			d2304
Wed	5	13	28	Full Moon	12	25	3014*
Thu	6	4	20	Moon in Perigee Dist from \oplus 222 100 mi	14	20	31024
Fri	7						23014
Sat	8	16	04	~ 91 (I 91 1° 37' N	0	14	21034
Sat.	0	21	50	$\sim \text{tr} \text{c}$ $\text{tr} \text{tr} \text{s}^2 \text{r}^2 \text{N}$	5	1.1	21004
Sun	0	21	00				01492
Mon	10	{	1				41092
Tuo	10				G	09	41025
W-1	11		40	A Last Organization	0	03	42001
wea.	12	10	48				4501
T	10	12	44	o p @ p 22 402 S	1		49100
Inu.	13						43102
Fri.	14		00		Z.	53	43201
Sat.	15	6	20	σ σ' @ σ' 6° Π' S			42103
Sun.	16	6		φ in $\delta \delta$	23	42	40213
		6	00				
		7		$\square p \odot \qquad \text{West} \dots \dots$			
Mon.	17						41023
Tue.	18						23041
Wed.	19			•••••	20 :	31	3204*
Thu.	20	4	50	New Moon			31024
		14		Moon in Apogee. Dist. from \oplus , 252,600 mi			
		21		ξ in Perihelion			
		22	06	\odot enters Υ . Spring commences. Long. of \odot , 0°			
Fri.	21	16	58	୪ ଅ 🕼 🛱 0° 12′ S			d3O14
Sat.	22				17 2	21	21034
Sun.	23						O2134
Mon.	24						10234
Tue.	25				14	10	23014
Wed.	26						32401
Thu.	27					{	d34O2
Fri.	28	6	18	First Quarter	10 8	59	43021
Sat.	29	2		8 Greatest elongation E., 18° 52'		-	42103
Sun.	30	14	31				40213
Mon.	31	3	_	۵ Greatest Hel. Lat. N.	7 4	18	41023

Explanations of symbols and abbreviations on p. 4, of time on p. 10

THE SKY FOR APRIL, 1958

Positions of the sun and planets are given for 0h Greenwich Civil Time.

The times of transit at the 75th meridian are given in local mean time, 0h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During April the sun's R.A. increases from 0h 40m to 2h 31m and its Decl. changes from 4° 16' N. to 14° 51' N. The equation of time changes from -4m 11s to +2m 50s, being zero on the 16th; that is, the apparent sun moves from east to west of the mean sun on that date. There is an annular eclipse of the sun on the 19th invisible in North America. For changes in the length of the day, see p. 14.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 21.

Mercury on the 15th is in R.A. 1h 39m, Decl. $12^{\circ} 45'$ N. and transits at 12h 04m. At the very beginning of the month it may be seen as an evening star low in the west just after sunset. Later it is too close to the sun to be seen, inferior conjunction being on the 16th.

Venus on the 15th is in R.A. 22h 39m, Decl. 8° 12' S., mag. -3.9, and transits at 9h 09m. It is a brilliant object low in the east before sunrise. Although greatest western elongation is on the 8th, the planet is only about 14° above the horizon at sunrise.

Mars on the 15th is in R.A. 21h 36m, Decl. $15^{\circ} 45'$ S., mag. 1.0, and transits at 8h 04m. It is in Capricornus and may be seen low in the south-east for a few hours before sunrise.

Jupiter on the 15th is in R.A. 13h 43m, Decl. 9° 00' S., mag. -2.0, and transits at 0h 11m. Just east of Spica, it rises about at sunset and is visible all night. It is in opposition on the 17th. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 56.

Saturn on the 15th is in R.A. 17h 41m, Decl. 21° 57′ S., mag. 0.6, and transits at 4h 09m. It is in Ophiuchus, rising at about midnight. On the 4th it is stationary in right ascension and commences to retrograde, i.e., move westward among the stars.

Uranus on the 15th is in R.A. 8h 40m, Decl. 19° 01' N. and transits at 19h 06m.

Neptune on the 15th is in R.A. 14h 08m, Decl. 11° 02' S. and transits at 0h 37m.

			APRIL 75th Meridian Civil Time	Min. of Algol	Config. of Jupiter's Sat. 1h 00m	
· · · · · · · · · · · · · · · · · · ·	d	h	m		h m	
Tue.	1					42031
Wed.	2	1				43210
Thu.	3	16		Moon in Perigee. Dist. from ⊕, 221,800 mi	4 37	34012
		22	45	Full Moon		
Fri.	4	16		b Stationary in R.A.		3024*
		22	39	σ 24 0 24 1° 52′ N		
Sat.	5	7	23	σΨ Φ Ψ 1° 37′ N		21034
Sun.	6	10		8 Stationary in R.A.	1 27	0134*
Mon.	7			·····		10234
Tue.	8	18		$\label{eq:generalized}$ Greatest elongation W., 46° 23'	22 16	20314
	-	21	10	♂ b @ b 2° 53′ S.		
Wed.	9		1			32104
Thu.	10	18	50	C Last Quarter		30124
Fri.	11				19 05	31024
Sat.	12					d2403
Sun.	13	7	53	♂♂♂ € ♂ 6° 37′ S		42013
Mon.	14	19	26	σ ♀ Φ ♀ 4° 09′ S	15 54	41023
Tue.	15	7		♠ Stationary in R.A.		42031
Wed.	16	14		$\delta \otimes \Omega$ Inferior		42310
·····		18		Moon in Apogee. Dist. from \oplus . 252.500 mi.		
Thu.	17	2		$c^{\circ} 21 \odot$ Dist. from \oplus , 413,000,000 mi.	12 43	43012
Fri.	18	0		φ in \Im		43102
	10	14	10	α 8 0° 49' Ν.		
		22	23	New Moon		
Sat.	19			Annular eclipse of \bigcirc . See p. 59		4201*
Sun.	20				9 32	24013
Mon.	21				0.02	10423
Tue.	22			Lyrid meteors		dO134
Wed.	23	14		β in β	6 21	23104
ai		21		$e^{\oplus} \Psi \odot$ Dist. from \oplus 2.724.000.000 mi.		
Thu.	24					30214
Fri.	25					31024
Sat.	26	16	36	First Ouarter	3 10	23014
		21	55	ά δ 6° 06' Ν.		
Sun.	27					2034*
Mon.	28	5		\Box \Diamond \bigcirc East	23 59	10423
		22		§ Stationary in R.A.		
Tue.	2 9					40213
Wed.	30					42130

THE SKY FOR MAY, 1958

Positions of the sun and planets are given for 0h Greenwich Civil Time.

The times of transit at the 75th meridian are given in local mean time, 0h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During May the sun's R.A. increases from $2h \ 31m$ to $4h \ 33m$ and its Decl. changes from $14^{\circ} \ 51'$ N. to $21^{\circ} \ 57'$ N. The equation of time changes from $+2m \ 50s$ to a maximum of $+3m \ 45s$ on the 15th and then to $+2m \ 25s$ at the end of the month. For changes in the length of the day, see p. 15.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 22. There is a partial eclipse of the moon on the night of the 2nd-3rd visible in the western part of North America.

Mercury on the 15th is in R.A. 1h 48m, Decl. 7° 39' N. and transits at 10h 19m. Greatest western elongation is on the 14th (mag. 0.7). However, it will be difficult to see Mercury at that time since it will be only about ten degrees above the eastern horizon at sunrise.

Venus on the 15th is in R.A. 0h 41m, Decl. $2^{\circ} 35'$ N., mag. -3.6, and transits at 9h 13m. It is a morning star rising about an hour before the sun.

Mars on the 15th is in R.A. 23h 01m, Decl. 8° 17' S., mag. 0.8, and transits at 7h 31m. It is in Aquarius, and it rises only about two hours before the sun.

Jupiter on the 15th is in R.A. 13h 29m, Decl. 7° 46' S., mag. -2.0, and transits at 21h 56m. Now approaching very close to Spica it is already risen at sunset and sets before dawn. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 56.

Saturn on the 15th is in R.A. 17h 36m, Decl. 21° 53' S., mag. 0.4, and transits at 2h 06m. It is in Ophiuchus, rising about two hours before midnight and visible for the rest of the night.

Uranus on the 15th is in R.A. 8h 42m, Decl. 18° 55' N. and transits at 17h 10m.

Neptune on the 15th is in R.A. 14h 05m, Decl. 10° 46' S. and transits at 22h 32m.

	MAY Min 75th Meridian Civil Time Algo						
	d	h	m		h m		
Thu.	1				20 48	43021	
Fri.	2	1		Moon in Perigee. Dist. from \oplus , 223,400 mi.		43102	
		4	21	♂ 2↓ € 2↓ 2° 11′ N			
		17	14	σ Ψ € Ψ 1° 41′ N			
Sat.	3			Partial eclipse of (. See p. 59		42301	
		7	23	Full Moon			
		21		§ in Aphelion			
Sun.	4				17 37	42103	
Mon.	5	{	1	η Aquarid meteors		d4O23	
Tues.	6	5	22			40123	
Wed.	7			••••••	14 26	21304	
Thu.	8			••••••		3014*	
Fri.	9	1				31024	
Sat.	10	9	37	Last Quarter	11 15	32014	
Sun.	11					21034	
Mon.	12	9	58	ୁ ଟ ଟି ଐ ଟି 6° 07′ S		01234	
Tue.	13				8 04	O234*	
Wed.	14	6		Moon in Apogee. Dist. from \oplus , 252,000 mi			
		9		§ Greatest elongation W., 26° 01'		d2104	
		19	25	σ ♀ ① ♀ 3° 46′ S			
Thu.	15					32041	
Fri.	16	9	16	୪ ଅ ଏ ଓ ଅ 3° 33′ S	4 53	34102	
Sat.	17					43201	
Sun.	18	14	00	New Moon		42103	
Mon.	19				1 42	40123	
Tue.	20					4023*	
Wed.	21				22 31	42103	
Thu.	22	8		♀ in Aphelion		43201	
Fri.	23					31402	
Sat.	24	4		8 Greatest Hel. Lat. S	19 20	32014	
		4	38	ර ී ଐ ී 6° 00′ N			
Sun.	25	23	38	First Quarter		21034	
Mon.	26					01234	
Tue.	27				16 09	10234	
Wed.	28					d2O34	
Thu.	29	9	25	୪ ଅ ଏ ଥି 2° 17′ N		32014	
Fri.	30	1	38	σΨ. Ψ. 1° 42′ Ν	12 58	31024	
		2		Moon in Perigee. Dist. from \oplus , 226,300 mi.			
Sat.	31					d3O14	

Explanations of symbols and abbreviations on p. 4, of time on p. 10.

THE SKY FOR JUNE, 1958

Positions of the sun and planets are given for 0h Greenwich Civil Time.

The times of transit at the 75th meridian are given in local mean time, 0h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During June the sun's R.A. increases from 4h 33m to 6h 38m and its Decl. changes from 21° 57' N. to 23° 27' N. at the solstice on the 21st at 16h 57m E.S.T. and then to 23° 10' N. at the end of the month. The equation of time changes from +2m 25s to zero on the 14th and then to -3m 33s at the end of the month. For changes in the length of the day, see p. 15.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 22.

Mercury on the 15th is in R.A. 5h 11m, Decl. $23^{\circ} 25'$ N. and transits at 11h 44m. It is too close to the sun for observation, superior conjunction being on the 18th.

Venus on the 15th is in R.A. 2h 57m, Decl. 14° 39' N., mag. -3.5, and transits at 9h 26m. It is a morning star, rising about two hours before the sun.

Mars on the 15th is in R.A. 0h 24m, Decl. 0° 11' N., mag. 0.4, and transits at 6h 52m. It is in Pisces and rises about three hours before the sun.

Jupiter on the 15th is in R.A. 13h 23m, Decl. 7° 14' S., mag. -1.8, and transits at 19h 47m. A few degrees north of Spica, it is about on the meridian at sunset and sets soon after midnight. On the 19th it is stationary in right ascension and resumes direct, i.e., eastward, motion among the stars. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 57.

Saturn on the 15th is in R.A. 17h 27m, Decl. $21^{\circ} 48'$ S., mag. 0.2, and transits at 23h 51m. It rises about at sunset and sets about at sunrise. Opposition is on the 13th.

Uranus on the 15th is in R.A. 8h 47m, Decl. 18° 36' N. and transits at 15h 12m.

Neptune on the 15th is in R.A. 14h 03m, Decl. 10° 34' S. and transits at 20h 27m.

		Min. of Algol	Config. of Jupiter's Sat. 23h 15m			
	d	h	m		h m	1
Sun.	1	15	55	Full Moon		40213
Mon.	2	12	35	♂ 𝔥 𝔄	9 47	41023
Tue.	3					42013
Wed.	4					4320*
Thu.	5			••••••••	6 35	43102
Fri.	6			•••••••••••••••••••••••••••••••••••••••		43021
Sat.	7			••••••		4210*
Sun.	8			•••••••••••••••••	3 24	4013*
Mon.	9	1	59	C Last Quarter		10243
Tue.	10	11	08	ර් ර් ℃ ් 4° 47′ S		20134
Wed.	11	0		Moon in Apogee. Dist. from \oplus , 251,300 mi.	0 13	23104
Thu.	12	5		ម្ in Ω		31024
Fri.	13	18		$\mathcal{O} \mathfrak{b} \odot$ Dist. from \oplus , 839,900,000 mi.	21 02	30124
		21		Q Greatest Hel. Lat. S	l	
		21	31	ସ ହ 0° 47′ S		
Sat.	14	2		o ⁷ Greatest Hel. Lat. S		21304
Sun.	15		1	••••		20134
Mon.	16	20	}	\emptyset in Perihelion	17 51	10423
		22	40	σ ϕ ϕ ϕ 4° 54′ Ν		
Tue.	17	2	59	New Moon		42013
Wed.	18	12				42310
Thu.	19	11		24 Stationary in R.A.	14 39	d4302
Fri.	20	12	14	ơ ð € 5° 49′ N		43012
Sat.	21	16	57	\odot enters \odot , Summer commences. Long. of \odot , 90°		42310
Sun.	22			•••••••••••••••••••••••••••••••••••••••	11 28	42013
Mon.	23					41023
Tue.	24	4	44	First Quarter		42013
Wed.	25	14	59	♂ 24 € 24 2° 02′ N	8 17	21304
Thu.	2 6	4		Moon in Perigee. Dist. from \oplus , 229,200 mi.		30124
		7	57	$\sigma \Psi \mathbb{C} \qquad \Psi 1^{\circ} 34' \mathrm{N}. \ldots \ldots$		
Fri.	27	3		Ø Greatest Hel. Lat. N.		3024*
Sat.	28				5 05	23104
Sun.	29	18	10	σ Ϸ C		20134
Mon.	30			·····		10234

THE SKY FOR JULY, 1958

Positions of the sun and planets are given for 0h Greenwich Civil Time.

The times of transit at the 75th meridian are given in local mean time, 0h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During July the sun's R.A. increases from 6h 38m to 8h 43m and its Decl. changes from 23° 10′ N. to 18° 12′ N. The equation of time changes from -3m 33s to a minimum of -6m 26s on the 27th and then to -6m 17s at the end of the month. On the 5th the earth is in aphelion or farthest from the sun. For changes in the length of the day, see p. 16.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 23.

Mercury on the 15th is in R.A. 9h 15m, Decl. $16^{\circ} 51'$ N. and transits at 13h 47m. On the 26th it is at greatest eastern elongation (mag. 0.6) and thus visible as an evening star, though only about ten degrees above the western horizon at sunset. It passes just south of Regulus at this time.

Venus on the 15th is in R.A. 5h 23m, Decl. 22° 00' N., mag. -3.3, and transits at 9h 54m. It is a morning star rising in the north-east about two hours before the sun.

Mars on the 15th is in R.A. 1h 40m, Decl. 7° 48' N., mag. 0.1, and transits at 6h 10m. It is in Pisces, rising about at midnight and visible in the east during the morning hours.

Jupiter on the 15th is in R.A. 13h 26m, Decl. 7° 43' S., mag. -1.6, and transits at 17h 53m. Still close to Spica, it is well past the meridian at sunset and sets before midnight. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 57.

Saturn on the 15th is in R.A. 17h 18m, Decl. $21^{\circ} 44'$ S., mag. 0.4, and transits at 21h 44m. It is in Ophiuchus not far east of Antares and it is well up in the south-east at sunset and is visible most of the night.

Uranus on the 15th is in R.A. 8h 53m, Decl. 18° 09' N. and transits at 13h 21m.

Neptune on the 15th is in R.A. 14h 02m, Decl. 10° 31' S. and transits at 18h 29m.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			JULY 75th Meridian Civil Time.	Min. of Algol	Config. of Jupiter's Sat. 22h 00m		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		d	h	m		h m	1
Wed. 2 2 21034 Thu. 3 Fri. 4 22 43 3041* Sat. 5 15 \oplus in Aphelion. Dist. from \bigcirc , 94,449,000 mi. 24 33 3041* Mon. 7 \oplus in Aphelion. Dist. from \bigcirc , 94,449,000 mi. 19 31 42013 Mon. 7 \oplus in Aphelion. Dist. from \oplus , 251,100 mi 40213 Wed. 9 10 00 $\sigma' \sigma' \bigcirc \sigma' ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? $	Tue.	1	1	04	Full Moon	1 54	O2134
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Wed.	2					21034
Fri. 4 34102 Sat. 5 15 \oplus in Aphelion. Dist. from \bigcirc , 94,449,000 mi. 19 31 42013 Mon. 7 19 21 \bigoplus Last Quarter 19 31 40213 Wed. 9 10 00 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 2° 58' S. 16 20 42013 Thu. 10 22 \bigcirc \bigcirc \bigcirc \bigcirc 2° 49' N. 4301* 34102 Sat. 12 \bigcirc \bigcirc \bigcirc \bigcirc 2° 49' N. 16 20 4203 Sat. 12 \bigcirc \bigcirc \bigcirc \bigcirc 2° 49' N. 13 09 32014 Sun. 18 ψ Stationary in R.A. 13 09 32014 Sun. 18 ψ Stationary in R.A. 10234 2034* Tue. 15 \bigcirc	Thu.	3				22 43	3041*
Sat. 5 15 \oplus in Aphelion. Dist. from \bigcirc , 94,449,000 mi. 19 31 42013 Sun. 6 19 21 \bigcirc Last Quarter 1000 1000 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 2°58'S. 16 20 Wed. 9 10 00 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 2° 58'S. 16 20 42013 Thu. 10 22 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 2° 44'N. 4301* 43102 Sat. 12 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 2° 49'N. 13 09 32014 Sun. 13 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 2° 49'N. 10320 32014 Sun. 13 \bigcirc \bigcirc New Moon 13 09 57 Tue. 15 15 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \circ \bigcirc \bigcirc \bigcirc $2^{\circ} 05'N.$ 6 46 Yed. 16 13 33 \bigcirc New Moon 21034 32014 Sun. 20 13 \bigcirc	Fri.	4					34102
Sun. 6 Mon. 7 19 31 42013 41023 Tue. 8 18 Moon in Apogee. Dist. from \oplus , 251,100 mi 40213 Wed. 9 10 00 $\sigma' \ C$ $\sigma' \ 2^\circ 58' S$. 16 20 42103 Thu. 10 22 $\sigma' \ C$ $\sigma' \ 2^\circ 68' S$. 16 20 4301* Sun. 13 $\sigma' \ C$ $\varphi' \ 2^\circ 49' N$. 13 09 32014 Sun. 13 $\sigma' \ C$ $\varphi' \ 2^\circ 49' N$. 13 09 32014 Wed. 16 13 33 \oplus New Moon 21034 32014 Tue. 15 15 $\sigma' \ C$ $\varphi' \ 5^\circ 65' M' N$. 6 64 61024 Sat. 19 $\Box' \ C \ Q' \ Q' \ Q' \ Q' \ Q' \ Q' \ Q'$	Sat.	5	15		in Aphelion. Dist. from \odot , 94,449,000 mi.		d432O
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sun.	6			· · · · · · · · · · · · · · · · · · ·	19 31	42013
Tue. 8 18 Moon in Apogee. Dist. from \oplus , 251,100 mi 40213 Wed. 9 10 00 $\sigma' \sigma' \mathbb{C}$ $\sigma' 2^\circ 58' S.$ 16 20 42103 Thu. 10 22 $\sigma' Q \oplus A^\circ Q^\circ Q \oplus A^\circ A^\circ N.$ 16 20 42013 Thu. 10 22 $\sigma' Q \oplus A^\circ Q^\circ Q^\circ A^\circ N.$ 16 20 42103 Sat. 12 $\sigma' Q \oplus Q^\circ Q^\circ Q^\circ A^\circ N.$ 13 09 32014 Sun. 13 0 Sati A 13 09 32014 Sun. 13 33 Sati A New Moon 10234 10234 Tue. 15 12 $\sigma' \oplus G^\circ \oplus G^\circ \Phi^\circ N.$ 6 46 31024 Sun. 12 55 $\sigma' \oplus G^\circ \oplus G^\circ \Phi^\circ N.$ 6 46 3104 Your 13 33 Sup New Moon 32014 32014 32014 32014 Sun. 21 6 $\phi \oplus G^\circ \oplus G^\circ \oplus G^\circ \oplus G^\circ H^\circ N.$ 6 46 31024 32014 32014 32014 32014 32014 32014 32014	Mon.	7					41023
Wed.91021 $($	Tue.	8	18		Moon in Apogee. Dist. from \oplus , 251,100 mi		40213
Wed.91000of σ^{1} (f) σ^{7} 2° 58' S.162042103Thu.1022of $?$ (f)			19	21	Last Quarter		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Wed.	9	10	00	ර ට් ℃ ට 2° 58′ S	16 20	42103
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			14		o ⁷ in Perihelion		
Fri.11 Sat.12 Sat. 34102 $2034*$ Sun.1309 32014 $2034*$ Mon.14121 $\circ \circ \ensuremath{ \circ \ensuremath$	Thu.	10	22		σ ⊈ δ		4301*
Sat. 12	Fri.	11					34102
Sun. 13	Sat.	12				13 09	32014
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sun.	13					2034*
18 Ψ Stationary in R.A. 9 57 O2134 Tue. 15 15 \Box 24 \odot East. 9 57 O2134 Wed. 16 13 33 \textcircled{m} New Moon 21034 Thu. 17 21 55 $\sigma' \otimes \mathbb{C}$ $\Leftrightarrow 5^{\circ} 40' N.$ 32014 Fri. 18 15 55 $\sigma' \otimes \mathbb{C}$ $\oiint 5^{\circ} 05' N.$ 6 46 31024 Sat. 19 $\sigma' \otimes \mathbb{C}$ $\oiint 5^{\circ} 05' N.$ 6 46 31024 Sun. 20 13 \oiint in $??$ 240** Mon. 21 6 Moon in Perigee. Dist. from \oplus , 229,100 mi. 3 34 41023 Tue. 22 22 43 $\sigma' 2 \mathbb{C}$ $24 1^{\circ} 31' N.$ 40123 Wed. 23 9 19 First Quarter 42103 Thu. 24	Mon.	14	1	21	σ ♀ (♀ 2° 49′ N		10234
Tue. 15 15 \Box 24 \odot East. 9 57 02134 Wed. 16 13 33 New Moon 21034 21034 Thu. 17 21 55 $\sigma' \otimes \mathbb{C}$ $\delta 5^{\circ} 40' N.$ 32014 Fri. 18 15 55 $\sigma' \otimes \mathbb{C}$ $\xi 5^{\circ} 05' N.$ 6 46 31024 Sat. 19			18		Ψ Stationary in R.A.		
Wed. 161333 \textcircled{O} New Moon21034Thu. 172155 $\sigma' \otimes @$ $\Leftrightarrow 5^{\circ} 40' N.$ 32014Fri. 181555 $\sigma' \& @$ $\oiint 5^{\circ} 05' N.$ 66Sat. 19	Tue.	15	15		$\Box 2 \odot$ East	9 57	02134
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Wed.	16	13	33	New Moon		21034
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Thu.	17	21	55	♂ Ĝ € 5° 40′ N		32014
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fri.	18	15	55	σ Ϩ Ϥ Ϩ 5° 05′ Ν	6 46	31024
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sat.	19					32014
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sun.	20	13		ਊ in የያ		240**
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mon.	21	6		Moon in Perigee. Dist. from \oplus , 229,100 mi.	3 34	41023
Wed. 23 9 19 Image: First Quarter for the product of the product	Tue.	22	22	43	ơ 24 € 24 1° 31′ N		40123
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Wed.	23	9	19	First Quarter		42103
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			13	11	σΨ € Ψ 1° 19′ Ν		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Thu.	24				0 23	43201
Sat. 26 16 $\begin{smallmatrix} $\bent{smallmatrix} \\ \bent{smallmatrix} \\ \bent{smallmatrix} \\ \bed$	Fri.	25	7		$\Box \Psi \odot$ East		43102
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sat.	26	16		§ Greatest elongation E., 27° 06'	21 12	d43O1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			22	23	♂ b @ b 2° 43′ S		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sun.	27	2		$\Box $		42310
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mon.	28					d4O23
Wed. 30 11 47 10 Full Moon 21034 21034 20 20 2 in Aphelion 23014 23014	Tue.	29			δ Aquarid meteors	18 00	01423
20 Ø in Aphelion 23014 Thu. 31	Wed.	30	11	47	Full Moon		21034
Thu. 31 23014			20		۵ in Aphelion		
	Thu.	31			·····		23014

THE SKY FOR AUGUST, 1958

Positions of the sun and planets are given for 0h Greenwich Civil Time.

The times of transit at the 75th meridian are given in local mean time, 0h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During August the sun's R.A. increases from 8h 43m to 10h 39m and its Decl. changes from $18^{\circ} 12'$ N. to $8^{\circ} 33'$ N. The equation of time changes from -6m 17s to -0m 15s. For changes in the length of the day, see p. 16.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 23.

Mercury on the 15th is in R.A. 10h 26m, Decl. 4° 53' N. and transits at 12h 50m. Inferior conjunction is on the 23rd and Mercury is thus too close to the sun for observation this month.

Venus on the 15th is in R.A. 8h 04m, Decl. $20^{\circ} 40'$ N., mag. -3.3, and transits at 10h 33m. It is a morning star rising in the north-east about an hour before the sun. Venus passes to the north of Uranus, within 7', on the 26th.

Mars on the 15th is in R.A. 2h 51m, Decl. 13° 56' N., mag. -0.3, and transits at 5h 19m. It rises before midnight and is a prominent object in Aries for the rest of the night. On the night of the 6th-7th there is a close conjunction of Mars with the moon.

Jupiter on the 15th is in R.A. 13h 39m, Decl. 9° 05' S., mag. -1.4, and transits at 16h 04m. It is a few degrees east of Spica and it is well down in the west by sunset, setting within two hours. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 57.

Saturn on the 15th is in R.A. 17h 13m, Decl. $21^{\circ} 44'$ S., mag. 0.6, and transits at 19h 38m. It is in Ophiuchus not far east of Antares. It is nearly to the meridian at sunset and sets about midnight. On the 24th it is stationary in right ascension and thereafter resumes direct or eastward motion among the stars.

Uranus on the 15th is in R.A. 9h 01m, Decl. 17° 38' N. and transits at 11h 27m. (See Venus.)

Neptune on the 15th is in R.A. 14h 03m, Decl. 10° 38'S., and transits at 16h 28m.

		AUGUST 75th Meridian Civil Time	Min. of	Config. of Jupiter's Sat.		
					Algoi	2011 4511
	d	h	m		hm	
Fri.	1				14 49	31024
Sat.	2				-	30214
Sun.	3					23104
Mon.	4	17		♂ ै ⊙	11 37	0134*
Tue.	5	13		Moon in Apogee. Dist. from \oplus , 251,300 mi		0423*
Wed.	6					24103
Thu.	7	4	45	of o [™] € o [™] 1° 05′ S	8 26	d4201
		12	49	C Last Quarter		
Fri.	8	18		§ Stationary in R.A.		43102
Sat.	9	3		φ in 😲		43021
Sun.	10				5 14	42310
Mon.	11					4013*
Tue.	12			Perseid meteors		41023
Wed.	13	6	02	σ ♀ € ♀ 5° 20′ N	2 03	d42O3
Thu	14	9	47	ά δ 5° 37′ Ν		24013
2		22	33	New Moon		
Fri	15	21	16	α 8 (f) 8 0° 55′ S	22 52	31024
Sat	16	~	10			30214
Sun	17	10		Moon in Perigee, Dist. from \oplus , 226,200 mi		32104
Mon	18	10			19 40	2014*
Tuo	10	10	06	$\sim 21 \text{ (I)} = 210^{\circ} 51' \text{ N}$		10234
I ue.	19	10	22	$\alpha \Psi \Phi \Psi 1^{\circ} 01' N$		_
Wed	90	15	22	8 Greatest Hel Lat S		20134
Thu	20 01	14	45	First Quarter	16 29	2034*
Thu.	21 00	14	40		10 -0	31024
F F F F F F F F F F	44 00	9	47	√h € b 2° 58′ S		34012
Sat.	23	10	41	- / 8 () Inform		01012
c		10		\mathbf{b} Stationary in \mathbf{P} A	13 17	43210
Sun.	24	10		$\sim P \odot$	10 11	4201*
Mon.	25	13		$ \begin{array}{c} \sigma \in \bigcirc \\ \circ \circ$		41023
Tue.	20	18		$\begin{bmatrix} 0 & \downarrow & 0 & 0 & 1 \\ 0 & \downarrow & 0 & 0 & 1 \\ \end{bmatrix}$	10.06	44013
Wed.	27				10 00	4902*
Thu.	28		-	Θ Γ 11 M \sim		42109
Fri.	29	0	53		6 54	24012
Sat.	30		[0 94	20104
Sun.	31				l	1 32104

THE SKY FOR SEPTEMBER, 1958

Positions of the sun and planets are given for 0h Greenwich Civil Time.

The times of transit at the 75th meridian are given in local mean time, 0h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During September the sun's R.A. increases from 10h 39m to 12h 27m and its Decl. changes from 8° 33' N. to 2° 54' S. The equation of time changes from -0m 15s to +10m 02s, the apparent sun passing to the west of the mean sun on the 1st. On the 23rd at 8h 10m E.S.T. the sun crosses the equator moving southward, enters the sign of Libra, and autumn commences. For changes in the length of the day, see p. 17.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 24.

Mercury on the 15th is in R.A. 10h 31m, Decl. 10° 46'N. and transits at 10h 58m. Greatest western elongation is on the 9th (mag. 0.0) and so about this time it is a good morning star, standing some 16 degrees above the eastern horizon at sunrise. On the morning of the 10th it will be seen as a very close companion to Regulus, and on the evening of the 17th it will be close to Venus.

Venus on the 15th is in R.A. 10h 36m, Decl. 10° 13 N., mag. -3.3, and transits at 11h 03m. It is a morning star, rising in the east about an hour before the sun. On the 9th it passes quite close to Regulus.

Mars on the 15th is in R.A. 3h 46m, Decl. 17° 46' N. mag. -0.8, and transits at 4h 11m. It rises a few hours after sunset and is a prominent object in Taurus during the rest of the night.

Jupiter on the 15th is in R.A. 13h 58m, Decl. $11^{\circ} 01'$ S., mag. -1.3, and transits at 14h 22m. It is only about ten degrees above the horizon in the south-west at sunset. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 57.

Saturn on the 15th is in R.A. 17h 15m, Decl. 21° 51′ S., mag. 0.7, and transits at 17h 37m. Still in Ophiuchus not far east of Antares, it is now past the meridian at sunset and sets before midnight.

Uranus on the 15th is in R.A. 9h 08m, Decl. 17° 07' N. and transits at 9h 32m.

Neptune on the 15th is in R.A. 14h 06m, Decl. $10^{\circ} 54'$ S. and transits at 14h 29m. Towards the end of the month it will be within a degree of Jupiter, Jupiter passing south of it.

		Min. of	Config. of Jupiter's Sat.			
				Toth Mendian elvir Time	Algol	19h 15m
	d	h	m		h m	
Mon.	1	8		ØStationary in R.A.		23014
Tue.	2	6		Moon in Apogee. Dist. from \oplus , 251,900 mi.	3 43	10234
Wed.	3					02134
Thu.	4	15 21	56			21034
Fri.	5				0 32	3014*
Sat.	6	5	24	Last Quarter		3024*
Sun.	7			~	21 20	31204
Mon.	8	5		ਊ in		23041
Tue.	9	4		ξ Greatest elongation W., 17° 59′		14023
Wed.	10	22	48	σ δ € 5° 40′ N	18 09	40213
Thu.	11	16		φ in Perihelion		42103
Fri.	12	4	03	σ 𝔅 𝔅 🖞 𝔅 5° 10′ Ν		d42O1
		7	36	σ ♀ € ♀ 5° 24′ N		
		12		$\Box b \odot$ East		
		20		§ in Perihelion		
Sat.	13	7	02	New Moon	14 57	4302*
Sun.	14	12		Moon in Perigee. Dist. from \oplus , 223,400 mi.		43210
Mon.	15					42301
Tue.	16	1	37	♂ 24 € 24 0° 11′ N	$11 \ 46$	41023
		4	11	ϭΨ (Ψ 0° 47′ N		
Wed.	17					O4213
Thu.	18	1		중 월 Q 월 Q° 21' Ν		21043
Fri.	19	9	33	♂ ♭ ℂ	8 34	20314
		22	17	First Quarter		
Sat.	20					31024
Sun.	21					dd3O4
Mon.	22				5 23	
Tue.	23	2		§ Greatest Hel. Lat. N.		
		8	10	\bigcirc enters $≏$, Autumn commences. Long. of \bigcirc , 180°		
Wed.	24					
Thu.	25				2 12	
Fri.	26	1		σ 24 Ψ 24 0° 46′ S		
Sat.	27	16	43	Full Moon. Harvest Moon	23 00	
Sun.	28					
Mon.	2 9	17		Moon in Apogee. Dist. from \oplus , 252,400 mi.		
Tue.	30				$19 \ 49$	

Jupiter being near the sun, configurations of the satellites are not given from September 23 to November 22.

THE SKY FOR OCTOBER, 1958

Positions of the sun and planets are given for 0h Greenwich Civil Time.

The times of transit at the 75th meridian are given in local mean time, 0h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During October the sun's R.A. increases from 12h 27m to 14h 23m and its Decl. changes from $2^{\circ} 54'$ S. to $14^{\circ} 12'$ S. The equation of time changes from +10m 02s to +16m 20s. There is a total eclipse of the sun on the 12th invisible in North America. For changes in the length of the day, see p. 17.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 24.

Mercury on the 15th is in R.A. 13h 43m, Decl. $10^{\circ} 30'$ S. and transits at 12h 13m. On the 5th it is in superior conjunction and it remains all month too close to the sun for observation.

Venus on the 15th is in R.A. 12h 54m, Decl. 4° 18' S., mag. -3.4, and transits at 11h 22m. It is too close to the sun for easy observation.

Mars on the 15th is in R.A. 4h 02m, Decl. $19^{\circ} 27'$ N., mag. -1.4, and transits at 2h 29m. It is a brilliant object in Taurus visible during the whole night. On the 9th it is stationary in right ascension and begins to retrograde, i.e., move westward among the stars.

Jupiter on the 15th is in R.A. 14h 22m, Decl. $13^{\circ} 07'$ S. and transits at 12h 48m. It is too close to the sun for easy observation.

Saturn on the 15th is in R.A. 17h 22m, Decl. $22^{\circ} 04'$ S., mag. 0.8, and transits at 15h 47m. In Ophiuchus, it is well past the meridian at sunset and sets about three hours later.

Uranus on the 15th is in R.A. 9h 13m, Decl. 16° 45' N. and transits at 7h 39m.

Neptune on the 15th is in R.A. 14h 09m, Decl. 11° 15' S. and transits at 12h 35m.

		м	in.				
				75th Meridian Civil Time	of Algol		
		h	m		h	m	
Wed.	1						
Thu.	2	13	23	ଟ ଟ¹ € ଟ¹ 1° 46′ N			
Fri.	3	15	1	♀ Greatest Hel.Lat.N.	16	38	
Sat.	4						
Sun.	5	7		$\sigma \notin \odot$ Superior			
		20	20	Last Quarter			
Mon.	6				13	26	
Tue.	7			· · · • • · · · · · · · · · · · · · · ·			
Wed.	8	11	02	ර ô € ô 5° 43′ N			
Thu.	9	17		Stationary in R.A.	10	15	
Fri.	10						
Sat.	11						
Sun.	12			Total eclipse of \bigcirc . See p. 59 ⁻	7	04	
		4	34	σ ♀ € ♀ 2°34′ N			
		15	52	New Moon			
		21		Moon in Perigee. Dist. from \oplus , 221,900 mi.	l		
Mon.	13	1	15	σ₿Œ₿0°09′N			
		15	49	$\sigma \Psi \mathbb{G} \qquad \Psi 0^{\circ} 39' \text{ N.} \dots \dots \dots$			
		20	34	♂ 24 € 24 0° 26′ S			
Tue.	14						
Wed.	15				3	52	
Thu.	16	12		ਊ in የን			
		20	12				
Fri.	17						
Sat.	18				0	41	
Sun.	19	5		$\sigma \notin \Psi \qquad \forall 2^{\circ} 08' S. \dots$			
		9	07	First Quarter		_	
Mon.	20			Orionid meteors	21	30	
Tue.	21						
Wed.	22	7		σ ⊈ 24	10	10	
Thu.	23				18	19	
Fri.	24			• • • • • • • • • • • • • • • • • • • •			
Sat.	25				1.5	07	
Sun.	26	19		Moon in Apogee. Dist. from \oplus , 252,500 mi.	15	07	
	~-	19		ϕ in Aphelion			
Mon.	27	10	41	Bull Moon. Hunter's Moon			
Tue.	28	6			11	56	
Wed.	29 00	14	14	$[\sigma \sigma' u $	11	00	
Thu.	30			Taurid meteom			
Fri.	31			$\begin{array}{c} 1 \text{ aurid meteors } \dots $			
		9	1	Ο ¥ ¥ ¥ U 44 3,	(1	

Jupiter being near the sun, configurations of the satellites are not given from September 23 to November 22.

THE SKY FOR NOVEMBER, 1958

Positions of the sun and planets are given for 0h Greenwich Civil Time.

The times of transit at the 75th meridian are given in local mean time, 0h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During November the sun's R.A. increases from 14h 23m to 16h 26m and its Decl. changes from $14^{\circ} 12'$ S. to $21^{\circ} 41'$ S. The equation of time changes from +16m 20s to a maximum of +16m 23s on the 4th and then to +11m 14s at the end of the month. For changes in the length of the day, see p. 18.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 25.

Mercury on the 15th is in R.A. 16h 47m, Decl. 24°58'S. and transits at 13h 13m. On the 20th it is at greatest eastern elongation (mag. -0.1) and so an evening star at this time. However, this elongation is particularly unfavourable, Mercury being less than 10 degrees above the horizon in the south-west at sunset.

Venus on the 15th is in R.A. 15h 23m. Decl. $18^{\circ}00'$ S., mag. -3.5, and transits at 11h 49m. It is too close to the sun for observation. Superior conjunction is on the 11th.

Mars on the 15th is in R.A. 3h 27m, Decl. $19^{\circ} 12' N$., mag. -2.0 and transits at 23h 47m. Still in Taurus, it rises at about sunset and is very prominent for the whole night. On the 8th it is nearest the earth and on the 16th it is in opposition.

Jupiter on the 15th is in R.A. 14h 48m, Decl. 15° 15' S. and transits at 11h 12m. It is too close to the sun for observation, conjunction being on the 4th.

Saturn on the 15th is in R.A. 17h 34m, Decl. 22° 18' S., mag. 0.7, and transits at 13h 57m. It is well down in the south-west at sunset and sets within two hours thereafter.

Uranus on the 15th is in R.A. 9h 16m, Decl. 16° 35' N. and transits at 5h 40m.

Neptune on the 15th is in R.A. 14h 14m, Decl. 11° 38' S. and transits at 10h 37m.

		Min. of Algol	Config. of Jupiter's Sat. 7h 45m			
	d	h	m		 h m	1
Sat.	1				8 45	
Sun.	2					
Mon.	3					
Tue.	4	9	19	Last Quarter	$5 \ 34$	
		20		४ २4 ⊙		
		20	33	ර Ŝ ℂ Ŝ 5° 40′ N		
Wed.	5			Taurid meteors		
Thur.	6	11		σ ♀ 24 ♀ 0° 06′ S		
Fri.	7				$2 \ 23$	
Sat.	8	7		σ^1 in Ω		
		8		σ nearest \oplus . Dist. from \oplus , 45,310,000 mi		
Sun.	9	0		$\square $ $\bigcirc $ West	$23 \ 12$	1
Mon.	10	4	42	ϭΨ € Ψ 0° 33′ Ν		
		9		Moon in Perigee. Dist. from \oplus , 222,300 mi.		
		17	14	σ 24 € 24 0° 59′ S		
Tue.	11	0	40	σ ♀ € ♀ 1° 40′ S		
		1	34	New Moon		
		7				
Wed.	12	11	13	σ ⊈ € 6° 25′ S	20 00	
Thu.	13	10	32	♂ b € b 3° 36′ S		
Fri.	14					
Sat.	15				16 49	
Sun.	16			Leonid meteors		
		3		§ Greatest Hel. Lat. S.		
		9		$\circ \circ \circ \circ \circ$ Dist. from \oplus , 45,860,000 mi.		
Mon.	17	23	59	First Quarter		
Tue.	18				13 38	
Wed.	19					
Thu.	20	14		ξ Greatest elongation E., 22° 13'		
Fri.	21				10 27	
Sat.	22	7		Stationary in R.A.		42013
Sun.	23	0		Moon in Apogee. Dist. from \oplus , 252,200 mi.		41032
Mon.	24				7 16	30412
Tue.	25	1	40	໔ ♂ ີ (♂ 3° 25′ N		32104
Wed.	26	5	16	Full Moon		d32O4
Thu.	27				4 05	O3124
Fri.	28	17		φ in 𝔅		10234
Sat.	29					20134
Sun.	30	3		ξ Stationary in R.A.	0 54	10234

Jupiter being near the sun, configurations of the satellites are not given from September 23 to November 22.

Positions of the sun and planets are given for 0h Greenwich Civil Time.

The times of transit at the 75th meridian are given in local mean time, 0h at midnight; to change to Standard Time, see p. 10. Estimates of altitude are for an observer in latitude 45° N.

The Sun—During December the sun's R.A. increases from 16h 26m to 18h 43m and its Decl. changes from 21° 41′ S. to 23° 26′ S. at the solstice on the 22nd at 3h 40m E.S.T. and then to 23° 05′ S. at the end of the month. The equation of time changes from +11m 14s to zero on the 25th and then to -3m 08s at the end of the month. For changes in the length of the day, see p. 18.

The Moon—For its phases, perigee and apogee times and distances, and its conjunctions with the planets, see opposite page. Times of moonrise and moonset are given on p. 25.

Mercury on the 15th is in R.A. 16h 42m, Decl. 19° 32' S. and transits at 11h 05m. Early in the month it is too close to the sun for observation, inferior conjunction being on the 9th. However, by the 29th it is at greatest western elongation (mag. -0.1) and so at the end of the month Mercury may be seen low in the south-east just before sunrise.

Venus on the 15th is in R.A. 18h 03m, Decl. 24° 04' S., mag. -3.4, and transits at 12h 32m. It is an evening star now, but until late in the month it is too low at sunset for easy observation.

Mars on the 15th is in R.A. 2h 55m, Decl. $18^{\circ} 21'$ N., mag. -1.1, and transits at 21h 18m. It is in Aries now. It is already well up in the east at sunset and, although fading now, remains a prominent object visible all night. On the 20th it resumes direct, i.e. eastward, motion among the stars.

Jupiter on the 15th is in R.A. 15h 14m, Decl. $17^{\circ} 02'$ S., mag. -1.3, and transits at 9h 40m. It is now a morning star and may be seen very low in the south-east just before sunrise. For the configurations of Jupiter's satellites see opposite page, and for their eclipses, etc., see p. 57.

Saturn on the 15th is in R.A. 17h 49m, Decl. 22° 27' S. and transits at 12h 14m. It is too close to the sun for observation, conjunction being on the 20th.

Uranus on the 15th is in R.A. 9h 15m, Decl. 16° 40' N. and transits at 3h 41m.

Neptune on the 15th is in R.A. 14h 18m, Decl. 11° 57' S. and transits at 8h 43m.

		Min. of Algol	Config. of Jupiter's Sat. 7h 30m			
	b	h	m		hm	
Mon	1					30124
Tue	2	2	41	ά δ° 31′ N	21 43	32104
Wod	2	20	24	a Last Quarter	-1 10	34201
Thu	4	20	21			402**
Fri	5	4		β in Ω	18 32	41023
Sat	6	т		¥ moo	10 0-	42013
Sun	7	6				4103*
Sun.	•	16	22	$\swarrow \psi \varphi = \psi \varphi = \psi \varphi = \psi \varphi$		1100
Mon	0	10	16	$\sim 0 $ α $\sim 1 $ $1^{\circ} 32' $ S	15 21	43012
wion.	0	10	10	Moon in Perigee Dist from \oplus 224 600 mi	10 21	10012
т	0	19		3 in Parihelian		43120
i ue.	9	19				10120
337 1	10	22		-28π 8 $-291/S$		22401
wea.	10	9	00			52401
T 1		12	23		19 10	21049
Ihu.	11	0	52	$\begin{array}{cccc} O \neq 0 & \varphi &$	12 10	31042
.		2	45	$\begin{array}{ccc} \sigma P \\ \hline \phi \end{array} \qquad \begin{array}{c} P & 3^{\circ} & 41^{\circ} \\ S & \dots \\ S & 1^{\circ} & 20^{\circ} \\ \end{array}$		10004
Fri.	12	0		$\begin{array}{ccc} \sigma \neq p & \varphi = 30^{\circ} \text{ S. } \dots \dots \dots \end{array}$		00234
Sat.	13			Geminid meteors	0.50	20134
Sun.	14			······································	8 59	12034
Mon.	15					30124
Tue.	16					31204
Wed.	17	18	52	D First Quarter	5 48	32014
Thu.	18			••••••		31024
Fri.	19	21		ξ Stationary in R.A.		dO423
Sat.	20	1		§Greatest Hel. Lat. N	2 38	42013
		7		σ΄ Ϸ ⊙		
		13		♂ ¹ Stationary in R.A.		
		16		Moon in Apogee. Dist. from \oplus , 251,600 mi.		
Sun.	21	23	56	of o ⁷ € o ⁷ 4° 05′ N		42103
Mon.	22			Ursid meteors	23 27	40312
		3	40	\bigcirc enters \bigcirc . Winter commences. Long. of \bigcirc , 270°		
Tue.	23					d4310
Wed.	24					43201
Thu.	25	22	54	Full Moon	20 16	43102
Fri.	26					40132
Sat	27				1	2403*
Sun	 28		1		17 05	21043
Mon	20	7	02	α δ 5° 21′ N		03124
111011.	-0	0		8 Greatest elongation W., 22° 25'		
Тла	30			* Createst clongation (11, 22 20		31024
Wed	31				13 54	32014
weu.	01	1	1		1 20 01	,

PHENOMENA OF JUPITER'S SATELLITES, 1958

	JANUARY	d	h m Sat. Phen.	d	h m Sat.	Phen.	d	h m Sat.	Phen.
d	h m Sat. Phen.	10	2 42 III TI	20	147 I	Te	20	022 I	ER
1	3 20 I TI		4 42 III Te	1	22 56 I	OR	}	19 27 I	TI
	4 21 I Se	15	5 39 II ED	21	102 II 1 02 II	TI			Te
2	2 48 I OR	16	2 27 I SI)	2 05 II	Se	91	21 42 I	Se
5	4 29 III Se		3 35 1 11 4 38 I Se	22	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OR	21	23 17 II	SI
7	3 23 II ED		544 I Te	24	21 35 III	SI	22	1 20 II	Te
	548 II ER	17	23 40 I ED 0 17 II SI	25	$\begin{array}{c} 23 \ 57 \ 111 \\ 0 \ 00 \ 111 \end{array}$	TI	23	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	ER
	6 52 I ED		1 46 III SI		1 50 III	Te	26	2 35 111	OD
8	4 04 I SI		2 31 11 11 2 39 11 Se	26	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	SI		$245 1 \\ 257 1$	SI
	6 15 I Se		2 56 I OR		1 22 I	ŤĪ	07	23 52 I	OD
9	2 59 II Te		4 11 111 Se 4 44 11 Te		3 03 1 3 32 1	Se Te	27	216 1 2111 I	
10	4 42 I OR 1 54 I Te		6 27 III TI		22 02 I	ED		21 26 I	SI
12	5 59 111 SI	18	0 11 1 Te 23 30 U OR	28	0 40 1 2 19 11	SI		23 20 1 23 37 I	Se
$\frac{14}{15}$	5 58 H ED 5 57 J SI	23	4 21 I SI		3 18 II	ŤÎ	28	20 45 I	ER
16	3 08 111 OR	24	5 24 I TI 1 33 I ED		4 39 11 21 32 1	Se Se	29	$1 20 11 \\ 1 52 II$	SI
	3 13 1 ED 3 13 11 Se		2 50 II SI		21 58 Î	Ťe		3 35 11	Te
	3 17 II TI		4 44 I OR 4 55 U TI	29 30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OR		4 12 11 19 46 III	Se Se
	5 33 11 Te 6 36 I OR		5 11 II Se				30	20 20 II	OD
17	1 39 I TI		5 44 111 SI 23 51 J TI	А	APRIL h m Sat	Dhon		23 18 11	EK
	2 36 1 Se 3 49 I Te	25	1 00 I Se	1	1 33 III	SI		MAY	
23	2 17 111 ER		2 00 I Te	•	3 19 111	ŤÎ	d	h m Sat.	Phen.
	3 23 11 SI 4 56 UL OD	26	1 55 II OR		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Se	4	1 36 I 22 56 I	OD
	5 06 1 ED	27	23 46 III OD 1 41 III OR	3	246 I	SĨ		23 20 I	ŝi
	5 46 II Se 5 50 II TI	20			$\begin{array}{cccc} 3 & 07 & 1 \\ 4 & 57 & 1 \end{array}$	TI	5	1 05 I 1 31 I	Te
24	2 19 I SI		MARCH		5 16 I	Te		20 03 1	OD
	3 33 I TI 4 30 I Se	D 2	n m Sat. Pnen.	4	23 56 I	ED	6	22 39 I 3 35 U	ER
	542 Î Te	1	5 23 II SI		4 52 II	SI	Ŭ	19 41 III	ŤÎ
25	2 43 11 OR 2 57 1 OR	4	0 43 I SI 1 30 I TI		21 15 I 21 33 I	SI		19 59 I 21 26 III	Se
30	3 45 III ED		2 54 I Se		23 26 I	Se		$\tilde{21}$ $\tilde{44}$ III	Te
	5 56 11 SI 6 13 111 FR	5	3 47 I Te	5	23 42 I 20 50 I	Te OR	7	23 44 III 22 36 II	Se
31	4 12 I SI	5	0 58 I OR	0	23 50 11	ĔĎ	8	1 54 II	ER
	5 25 I TI 6 23 I Se	6	4 18 II OR	67	2 40 11 20 30 11	OR Se	9	20 04 II 3 21 I	Se
	020 1 50	0	23 32 III ED		20 52 II	Te	12^{11}	0 41 I	ΤI
	FEDDUADY	7	1 56 III ER 3 18 III OD	10	4 40 I 4 51 I	SI TI		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SI Te
đ	h m Sat Phon		5 12 III OR	11	1 50 Î	ED		3 25 I	Se
1	0 27 II ED	10	5 19 I ED 2 36 I SI		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OR	13	21 48 1 0 33 1	ER
	1 26 I ED	1	3 25 Î TÎ		23 09 I	SI	-0	19 43 I	SI
	2 52 11 ER 3 00 11 OD		4 47 1 Se 5 34 I Te	12	23 17 1 1 20 I	Se		21 17 1 21 54 I	Se
	4 49 I OR		23 48 I ED	~-	1 26 I	Te		23 00 111	ŤĨ
2	5 16 11 OR 0 51 I Se	12	2 44 I OR 2 45 U FD		20 18 1 22 34 1	OR	14	$1 07 111 \\ 1 24 111$	Te SI
-	2 02 I Te		21 52 I TI	13	2 27 11	ĔĎ	15	0 53 11	OD
3	0 55 111 Te 6 06 I SI	13	23 16 I Se 0 01 I Te		4 56 II 19 48 I	OR	16	20 19 11 21 17 11	Te
8	3 03 II ED	10	22 45 II TI		19 52 I	Te		22 38 II	Se
	3 19 1 ED 5 28 11 FR	14	23 33 II Se 0 57 II Te	14	20.43 II 20.52 II		19	2 27 I 23 33 I	0D
~	5 31 11 OD	17	3 29 III ED		23 04 II	Se	20	2 28 I	ĒR
9	034 I SI 145 I TI	17	22 28 III Te	18	23 06 II 3 42 I	OD		20 53 I 21 38 I	TI SI
	2 45 I Se	10	5 11 I TI	10	23 19 111	ĔĎ		23 03 I	Ťe
10	353 I Te 005 II TI	19	141 I ED 429 I OR	19	1 01 I 1 03 I	TI SI	$\frac{20}{21}$	23 48 1 2 23 111	Se TI
	0 06 II Se		5 21 II ED		1 40 III	ER		20 56 I	ER
	0 13 111 Se 1 07 I OR	10	22 58 I SI 23 38 I TI		3 10 I 3 14 I	Te Se	23	21 19 II 22 54 II	TI SI
	2 18 II Te	20	1 10 I Se		22 08 I	OD		23 37 II	Ťe

-							_				_							
đ	h m S	at. I	Phen.	đ	h	m	Sat.	Phen.	d	h	m	Sat.	Phen.		SEP	те	MB	ER
<u>.</u>	1 14	ис. 1 тт	So.	12		00	т	FD	10	24	54	П	FD	b	h	m	Sat.	Phen.
24	01 01 1	Π.	E D	15	22	33	ъt	ŐD	12	22	44	Ť	TI	, u	10		TTT	E.
95	21 31 1	TT	FD	17	20	18	ŤŤ	Se	13	20	21	ΠŤ		Э	19	20	111	
20	1 20	1	0D	10	21	20	τŤ	Sĭ	10	23	ถึง	ŤŤŤ	ĔĎ	19	19	00	÷	011
21	22 41	÷	TI	10	23	34	ΠŤ	Se	14	20	36	Ť	Se	10	10	03	τt	00
	22 33	Ť	ŝi	10	22	37	ŤŤ	ŤĬ	17	$\tilde{2}\tilde{2}$	55	ΤÎ	OĎ	14	10	10	11	Se
28	0 51	Ť	Te	10	23	46	Ť	ŝî	19	22	ŏ3	ŤŤ	Se		19	19	1	50
20	1 43	Ť	Se	20	- ñ	46	Ť	Ťe	20	$\overline{21}$	46	Ĩ	OĎ					
	22 51	î	ER	20	23	$\hat{0}$	Î	ĒŘ		$\overline{21}$	$\tilde{51}$	ШĨ	ŌD	Tur	iter	h	eino	near
29	20 11	î	Se	21	$\overline{20}$	$\tilde{24}$	Ĩ	Se	21	20	$\overline{22}$	I	SI	the	S111	1 1	hend	mena
3ŏ	23 39	ΠÎ	ŤĬ	$\overline{24}$	$\overline{20}$	$\overline{10}$	IĪ	ΤÎ		21	17	I	Te	of	the	sat	ellite	s are
31	1 30	ĪĨ	ŠĪ		22	32	II	Te		22	31	I	Se	not	giv	en	from	Sept.
	1 58	ĪĪ	Te		22	37	II	SI	26	22	11	II	Te	23	to N	lov.	22.	
	21 41 I	III	OR	25	20	21	III	TI		22	22	II	SI					
	23 12 I	II	ED		22	44	III	Te	28	21	03	I	TI					
				27	21	35	I	OD		22	17	I	SI		NO	VE]	MBF	R
	JUN	Е		28	20	09	I	SI	29	21	37	I	ER	A	h	m	Sat	Phen
đ	hmS	at. I	Phen.		21	06	I	Te	31	21	15	ш	SI	a			Jat.	00
1	1 90 1		ED		22	18	I	Se	1			TION	.	27	0	30	TTT	
1	1 29 1	TT .	ED							Α	UG	USI			0	33	111	0K
4	22 38	Ť				JU	LY		d	h	m	Sat.	Phen.		DE	CEI	MBE	D
4	1 28	Ť	ST	d	h	m	Sat.	Phen.	4	19	53	Τſ	OR		DE		MDE	
	21 25	Ť	on	1	22	42	П	ΤI	^	19	57	ÎÎ	ĔD	d	h	m	Sat.	Phen.
5	0 46	Ť	ER	3	$\tilde{20}$	10	ÎÎ	OR	5	$\tilde{20}$	09	Ī	ŌD	4	5	51	Ι	ED
0	21 06	Ť	Te	Ŭ	$\overline{20}$	ĩğ.	ÎÎ	ĔD	6	$\overline{20}$	49	Ī	Se	12	5	30	I	ΤI
	22 06	Î	Se		$\overline{22}$	37	ĪĪ	ER	7	20	16	III	ΤI	15	5	36	III	Te
7	22 57 1	пî	OĎ	4	$\overline{23}$	28	Ī	ŌD	11	20	10	II	OD	16	6	14	II	Te
8	1 16 1	Π	ŎŔ	5	$\overline{20}$	50	Ī	TI	13	20	35	I	SI	19	6	47	I	SI
, etc.	21 07	II	ÓD	-	22	04	I	SI	14	19	56	I	ER	22	6	51	III	Se
11	$23 \ 25$	Ι	ÓD		23	00	I	Te	20	19	33	II	SI	23	5	12	II	SI
12	20 46	I	ΤI	6	21	23	ш	ER		. 19	41	II	Te		6	45	11	TI
	21 51	Ι	SI		21	23	I	\mathbf{ER}	27	20	03	II	ΤI	27	6	01	Î	ED
	22 56	I	Te	10	20	20	II	OD	29	19	15	п	ER	28	5	18	ţ	Se
13	0 00	I	Se		22	43	II	OD		20	04	I	Te		6	08	1	<u>1'e</u>
E	-eclinse	0-	-occul	ation.	Т-	-tr	ansit	. S—st	adow	. D)d	lisap	pearance	e, R	-rea	арр	earai	ıce,

-eclipse, O—occulation, T—transit, S—snadow, D—disappearance, R—reappearance I—ingress, e—egress; 75th Meridian Civil Time. (For other times see p. 10.)

EPHEMERIS FOR PHYSICAL OBSERVATION OF THE MOON, 1958

The Sun's Selenographic Co-ordinates for Oh Greenwich Civil Time

	Colong.	Lat.		Colong.	Lat.		Colong.	Lat.
Jan. 1 Feb. 1 Mar. 1 Apr. 1	$35.9 \\ 52.8 \\ 33.5 \\ 51.0$	+1.4 +1.5 +1.3 +0.6	May 1 June 1 July 1 Aug. 1	57.0 75.5 82.1 100.9	-0.2 -1.0 -1.5 -1.5	Sept. 1 Oct. 1 Nov. 1 Dec. 1	$119.5 \\ 125.6 \\ 143.3 \\ 148.3$	-1.1 -0.4 +0.5 +1.2

The average *daily* change in the sun's selenographic colongitude is +12.2.

EPHEMERIS FOR THE PHYSICAL OBSERVATION OF THE SUN, 1958

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Date	Р	\mathbf{B}_{0}	L_0	Date	Р	\mathbf{B}_{0}	L_0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} Jate \\ \hline \\ Jan. 1 \\ 6 \\ 11 \\ 16 \\ 21 \\ 26 \\ 31 \\ Feb. 5 \\ 10 \\ 25 \\ Mar. 2 \\ 7 \\ 12 \\ 27 \\ Apr. 1 \\ 6 \\ 11 \\ 16 \\ 21 \\ 26 \\ May 1 \\ 6 \\ 11 \\ 16 \\ 21 \\ 26 \\ 31 \\ June 5 \\ 10 \\ 15 \\ 20 \\ \end{array}$	$\begin{array}{c} F \\ & \circ $	$\begin{array}{c} \textbf{B}_{0} \\ \hline \\ & -3.05 \\ -3.62 \\ -4.16 \\ -4.67 \\ -5.14 \\ -5.58 \\ -5.97 \\ -6.31 \\ -6.60 \\ -6.84 \\ -7.02 \\ -7.15 \\ -7.23 \\ -7.25 \\ -7.21 \\ -7.25 \\ -7.21 \\ -7.25 \\ -7.21 \\ -7.5 \\ -7.5 \\ -7.21 \\ -7.25 \\ -7.25 \\ -7.21 \\ -7.25 \\ -7.25 \\ -7.21 \\ -7.25 \\ $	$\begin{array}{c} \textbf{L}_{0} \\ & \circ \\ 157.49 \\ 91.64 \\ 25.79 \\ 319.96 \\ 254.12 \\ 188.29 \\ 122.46 \\ 56.62 \\ 350.79 \\ 284.95 \\ 219.11 \\ 153.26 \\ 87.40 \\ 21.52 \\ 315.64 \\ 249.74 \\ 153.26 \\ 87.40 \\ 21.52 \\ 315.64 \\ 249.74 \\ 183.82 \\ 117.89 \\ 51.94 \\ 345.96 \\ 279.97 \\ 213.96 \\ 147.92 \\ 81.87 \\ 15.80 \\ 309.71 \\ 243.60 \\ 177.47 \\ 111.34 \\ 45.18 \\ 339.02 \\ 272.85 \\ 206.68 \\ 140.49 \\ 74.31 \\ \end{array}$	July 5 10 25 30 Aug. 4 9 14 19 24 9 Sept. 3 8 13 18 23 28 Oct. 3 8 13 18 23 28 Oct. 3 8 13 18 23 28 Nov. 2 7 12 17 22 Dec. 2 7 12 17 22	$\begin{array}{c} & & & \\$	$\begin{array}{c} \textbf{B}_{0} \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	$\begin{array}{c} \texttt{L}_0\\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$

For 0h Greenwich Civil Time

P — The position angle of the axis of rotation, measured eastward from the north point of the disk.
 B₀— The heliographic latitude of the centre of the disk.
 L₀— The heliographic longitude of the centre of the disk, from Carrington's solar meridian.

Carrington's Rotation Numbers-Greenwich date of commencement of synodic rotations, 1958

No.	Commences	No.	Commences	No.	Commences
1396	Jan. 12.96	1401	May 29.42	1406	Oct. 12.58
1397	Feb. 9.30	1402	June 25.61	1407	Nov. 8.87
1398	Mar. 8.64	1403	July 22.82	1408	Dec. 6.18
1399	Apr. 4.94	1404	Aug. 19.04		
1400	May 2.20	1405	Sept. 15.30		

ECLIPSES, 1958

In the year 1958 there will be three eclipses, two of the sun and one of the moon.

I. An Annular Eclipse of the Sun, April 19, 1958. The path of this eclipse is across the Indian Ocean, Indo China, Formosa, and into the Pacific.

II. A Partial Eclipse of the Moon, May 3, 1958. This eclipse is visible just before moonset on the morning of the 3rd in Western Canada, but in the east the moon will have already set before the eclipse takes place.

Circumstances of the Lunar Eclipse, May 3, 1958 (E.S.T.)

enters penumbra	5h 09.9m	leaves umbra	7h 2 6.1m
enters umbra	6 59.6	leaves penumbra	$9 \ 15.9$
middle of eclipse	7 12.9		

III. A Total Eclipse of the Sun, October 12, 1958. The path of this eclipse is almost wholly in the South Pacific Ocean, beginning near New Guinea and ending in Argentina.

LUNAR OCCULTATIONS

When the moon passes between the observer and a star that star is said to be occulted by the moon and the phenomenon is known as a lunar occultation. The passage of the star behind the east limb of the moon is called the immersion and its appearance from behind the west limb the emersion. As in the case of eclipses, the times of immersion and emersion and the duration of the occultation are different for different places on the earth's surface. The tables given below, adapted from the 1958 Nautical Almanac, give the times of immersion or emersion or both for occultations of stars of magnitude 5.0 or brighter visible at Toronto and at Montreal at night. The terms a and b are for determining corrections to the times of the phenomena for stations within 300 miles of the standard stations. Thus if λ_0 , ϕ_0 , be the longitude and latitude of the standard station and λ , ϕ , the longitude and latitude of the neighbouring station then for the neighbouring station we have—

Standard Time of phenomenon = Standard Time of phenomenon at the standard station $+ a(\lambda - \lambda_0) + b(\phi - \phi_0)$

where $\lambda - \lambda_0$ and $\phi - \phi_0$ are expressed in degrees. The quantity *P* in the table is the position angle of the point of contact on the moon's disk reckoned from the north point towards the east. The table of occultations visible at Vancouver is adapted from the American Ephemeris for 1958.

			I	Age		Toror	ito			Mont	real	
Date	Star	Mag.	or E	of Moon	E.S.T.	a	b	Р	E.S.T.	a	b	Р
Feb. 10 Feb. 10 Mar. 21 Mar. 25 Apr. 5 May 9 May 9 May 9 May 30 Oct. 2 Oct. 30 Oct. 30 Oct. 23 Dec. 27	$\begin{array}{c} \alpha \text{ Lib} \\ \alpha \text{ Lib} \\ \text{Mercury} \\ \text{Mercury} \\ 68 \text{ Tau} \\ \alpha \text{ Lib} \\ \alpha \text{ Lib} \\ \beta \text{ Cap} \\ \beta \text{ Cap} \\ \alpha \text{ Lib} \\ 64 \text{ Tau} \\ \delta \text{ Tau} \\ \delta \text{ Tau} \\ \delta \text{ Tau} \\ \delta \text{ Cap} \\ \delta \text{ Cap} \\ \alpha \text{ Lib} \\ \delta \text{ Cap} \\ \delta Ca$	$\begin{array}{c} 2.9\\ -0.8\\ -0.8\\ 4.29\\ 2.9\\ 3.2\\ 2.9\\ 3.2\\ 3.29\\ 4.8\\ 3.9\\ 4.8\\ 3.9\\ 3.8\\ 3.6\end{array}$	I E I E I E I E E I E I I E I I	$\begin{array}{c} d\\ 21.5\\ \cdot\ 21.5\\ 1.5\\ 1.5\\ 5.7\\ 16.8\\ 16.8\\ 20.2\\ 20.2\\ 12.2\\ 19.7\\ 17.5\\ 17.5\\ 13.2\\ 16.6 \end{array}$	$\begin{array}{c} & h & m \\ 5 & 07.3 \\ 5 & 34.6 \\ 18 & 17.2 \\ 18 & 57.8 \\ 21 & 59.1 \\ Low \\ 22 & 29.7 \\ 1 & 54.8 \\ 2 & 56.2 \\ Sun \\ 21 & 58.0 \\ 5 & 01.3 \\ 6 & 07.3 \\ Sun \\ 1 & 30.0 \end{array}$	$\begin{array}{c} m \\ - & \\ - & \\ 0.0 \\ 0.0 \\ - & \\ -$	$\begin{array}{c} m \\ +2.3 \\ -4.2 \\ -1.9 \\ \vdots \\ +2.4 \\ +0.5 \\ \vdots \\ +0.1 \\ -2.3 \\ \vdots \\ -3.1 \end{array}$	° 38 358 19 314 113 225 41 294 340 59 298 148	h m No occ 18 27.4 18 46.2 21 55.7 21 59.2 22 244.3 2 06.4 3 06.5 19 36.5 22 03.4 5 10.0 Sun 16 49.5 1 33.5	$\begin{array}{c} m\\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	$\begin{array}{c} m \\ & \ddots \\ & -1.7 \\ -0.7 \\ +2.0 \\ +2.4 \\ +0.3 \\ +1.9 \\ -0.3 \\ & \cdot \\ +3.1 \\ -2.3 \end{array}$	$\begin{array}{c} \circ \\ & \ddots \\ & 2 \\ 332 \\ 103 \\ 154 \\ 244 \\ 366 \\ 297 \\ 245 \\ 335 \\ 49 \\ & \ddots \\ 24 \\ 136 \\ \end{array}$
Dec. 27 Dec. 28 Dec. 28	λ Gem α Cnc α Cnc	${3.6 \atop 4.3 \atop 4.3}$	E I E	$ \begin{array}{r} 16.6 \\ 18.4 \\ 18.4 \end{array} $	$ \begin{array}{cccc} 2 & 28.4 \\ 21 & 23.2 \\ 22 & 22.6 \end{array} $	-2.4 - 0.4 - 0.6	$^{+1.1}_{+0.4}_{+1.7}$	$237 \\ 122 \\ 261$	$ \begin{array}{c} 2 & 41.4 \\ 21 & 26.6 \\ 22 & 29.7 \end{array} $	-1.8 - 0.5 - 0.8	-0.1 +0.5 +1.5	$\frac{250}{118}$ 266

LUNAR OCCULATIONS VISIBLE AT TORONTO AND MONTREAL, 1958

LUNAR OCCULATIONS VISIBLE AT EDMONTON AND VANCOUVER, 1958

			T	Аде	EI	OMON	ITON		VA	ANCO	UVER	
Date	Star	Mag.	or E	of Moon	M.S.T.	a	b	Р	P.S.T.	a	b	P
Jan. 12 Jan. 12 Jan. 15 Feb. 10 Mar. 14 Mar. 25 Mar. 28 Apr. 22 July 29 Aug. 9 Oct. 6 Oct. 18 Oct. 19 Oct. 30 Oct. 30 Dec. 26	α Vir α Vir y Sco λ Gem α Lib ρ Sgr 68 Tau λ Gem 104 Tau ρ Sgr δ Tau λ Gem β Sgr β Cap β Cap β Cap β Tau δ Gem β Cap β Tau δ Gem β Cap β Tau δ Gem β Cap β Cap β Cap	$\begin{array}{c} 1.2\\ 1.2\\ 4.3\\ 3.6\\ 2.90\\ 4.2\\ 3.6\\ 5.0\\ 4.0\\ 4.2\\ 3.6\\ 5.0\\ 4.0\\ 3.2\\ 3.9\\ 3.6\\ 6\\ 3.6\\ 8\\ 3.6\\ 8\\ 3.6\\ 6\end{array}$	I E I I E I I E I E E I E E I E	$\begin{array}{c} d\\ 22.4\\ 25.4\\ 13.6\\ 21.5\\ 23.9\\ 5.7\\ 8.9\\ 4.0\\ 12.6\\ 23.8\\ 23.0\\ 6.2\\ 7.3\\ 7.3\\ 17.5\\ 17.5\\ 17.5\\ 17.6\\ 16.6\\ 16.6\end{array}$	$\begin{array}{c} & h & m \\ 9 & 02.0 \\ 10 & 01.4 \\ -5 & 20.3 \\ 3 & 07.3 \\ 19 & 21.4 \\ -20 & 49.3 \\ 0 & 45.7 \\ -4 & 13.6 \\ 5 & 04.9 \\ 18 & 49.1 \\ 22 & 11.8 \\ 2 & 24.1 \\ 2 & 59.2 \\ 4 & 01.3 \\ 22 & 28.7 \\ 22 & 28$	$\begin{array}{c} m \\ -1.1 \\ -0.7 \\ +0.1 \\ -0.3 \\ -1.0 \\ -1.0 \\ -1.1 \\ -1.0 \\ -1.1 \\ -1.4 $	$\begin{array}{c} & \\ & \\ & \\ -1.0 \\ -1.9 \\ -1.4 \\ -0.4 \\ -1.8 \\ +0.7 \\ -0.2 \\ +2.9 \\ -1.5 \\ -1.3 \\ -0.5 \\ -1.5 \\ +0.5 \\ +1.5 \end{array}$	$\begin{array}{c} & & & \\ & & 80 \\ & & 317 \\ & & - \\ & & 97 \\ & & 334 \\ & & - \\ & & 107 \\ & & & - \\ & & 30 \\ & & & - \\ & & 30 \\ & & & - \\ & & & 30 \\ & & & - \\ & & & 50 \\ & & & - \\ & & & 50 \\ & & & - \\ & & & 50 \\ & & & - \\ & & & 50 \\ & & & - \\ & & & 50 \\ & & & - \\ & & & 50 \\ & & & - \\ & & & 50 \\ & & & - \\ & & & 50 \\ & & & - \\ & & & 50 \\ & & & - \\ & & & 50 \\ & & & - \\ & & & 50 \\ & & & & - \\ & & & 50 \\ & & & & - \\ & & & & 50 \\ & & & & & 50 \\ & & & & & 50 \\ & & & & & 50 \\ & & & & & 50 \\ & & & & & 50 \\ & & & & & 50 \\ & & & & & & 50 \\ & & & & & & 50 \\ & & & & & & 50 \\ & & & & & & & 50 \\ & & & & & & & 50 \\ & & & & & & & & 50 \\ & & & & & & & & & 50 \\ & & & & & & & & & & & & \\ & & & & & $	$\begin{array}{c} & h & m \\ 7 & 52.6 \\ 9 & 00.1 \\ 7 & 06.8 \\ 4 & 27.4 \\ Low \\ 4 & 54.8 \\ 23 & 34.9 \\ 19 & 41.0 \\ 23 & 32.5 \\ 3 & 54.9 \\ 17 & 33.9 \\ 25 & 44.5 \\ 3 & 54.9 \\ 17 & 33.9 \\ 21 & 06.1 \\ 22 & 13.4 \\ 0 & 57.4 \\ 1 & 52.4 \\ 2 & 50.0 \\ 0 & 21 & 16.9 \\ 2 & 90.10 \\ 6 & 16.9 \\ \end{array}$	$\begin{array}{c} m \\ -1.5 \\ -1.0 \\ +0.1 \\ -1.1 \\ -1.0 \\ -0.9 \\ -1.4 \\ -0.6 \\ -0.7 \\ -1.3 \\ -2.0 \\ -0.9 \\ -0.9 \\ -1.1 \\ -2.1 \\ -1.7 \\ -0.9 \\ -0.9 \\ -0.9 \\ -1.1 \\ -1.7 \\ -0.9 \\ -1.1 \\ -1.7 \\ -0.9 \\ -1 \\ -1 \\ -1.7 \\ -0.9 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -$	$\begin{array}{c} m \\ -0.8 \\ -1.6 \\ \cdot \\ +1.6 \\ -0.4 \\ -0.5 \\ +0.3 \\ +0.3 \\ +1.7 \\ +2.4 \\ -0.9 \\ -0.2 \\ -1.4 \\ +3.4 \\ -2.26 \\ +0.3 \\ +9.1 \end{array}$	$\begin{array}{c} & \circ & \\ & 90 \\ & 310 \\ & 40 \\ & 109 \\ & & \\ & 72 \\ & & \\ & 53 \\ & 55 \\ & & \\ $
Dec. 26	λ Gem	3.6	Е	16.6	23 38.6	-1.3	+1.3	258	22 19.6	-1.1	+2.1	246

Two Important Volumes on ... ASTROPHYSICS-

The Atmospheres of the Sun and Stars

L. H. ALLER. Treats all major astrophysical principles — atomic structure and spectra, gas laws and velocity distribution, ionization, etc. — and applies them to the radiation of the sun and stars, their continuous and dark-line spectra, to solar phenomena, and to solar-terrestrial relationships. "...excellent." PHYSICS TODAY. 160 ills., tables. \$12.

Nuclear Transformations, Stellar Interiors, and Nebulae

L. H. ALLER. Pioneering study of thermal nuclear reactions, interiors of stars, stellar evolution and the origin of elements, pulsating variable stars, stellar energy generation, etc. Stresses procedures for obtaining data. "... succeeds brilliantly." SKY AND TELESCOPE. 68 ills., tables.

__THE RONALD PRESS COMPANY • 15 E. 26th St., New York 10-

METEORS, FIREBALLS AND METEORITES

By Peter M. Millman

Meteoroids are small solid particles moving in orbits about the sun. On entering the earth's atmosphere at velocities ranging from 10 to 45 miles per second they become luminous and appear as meteors or fireballs and, if large enough to avoid complete vapourization, in rare cases they may fall to the earth as meteorites.

Meteors are visible on any night of the year. At certain times of the year the earth encounters large numbers of meteors all moving together along the same orbit. Such a group is known as a meteor shower and the accompanying list gives the most important showers visible in 1958.

On the average an observer sees 7 meteors per hour which are not associated with any recognized shower. These have been included in the hourly rates listed in the table. The radiant is the position among the stars from which the meteors of a given shower seem to radiate. The appearance of any very bright fireball should be reported immediately to the nearest astronomical group or organization. If sounds are heard accompanying such a phenomenon there is a possibility that a meteorite may have fallen and the astronomers must rely on observations made by the general public to track it down.

During 1958 a special programme of visual meteor observation is being carried out in connection with the International Geophysical Year. Instructions and report forms are available, free of charge, to those interested in this work. For information write to

Meteor Centre, I.G.Y., National Research Council, Ottawa, Ontario.

	Showe	r Maxi	mum		Rac	liant		Single	Normal
Shower	Date	EST	Moon	Pos	ition	Da	ailv	Observer Hour'v	Duration to $\frac{1}{4}$
	Date	L .S. 11	linoon	at	Max.	Mo	tion	Rate	strength
				α	δ	α	δ		of Max.
									(days)
Ouadrantids	Jan. 3	11 ^h	F.M.	230°	$+50^{\circ}$			35	1
Aurigids	Feb. 10	04	L.Q.	75	+42			12	
Lyrids	Apr. 22	01	N.M.	273	+34			12	2
η Aquarids	May 5	05	F.M.	336	00	+53'	+22'	12	16
δ Aquarids	Jul. 29	13	F.M.	339	-17	+51	+10	20	10
Perseids	Aug. 12	08	N.M.	46	+58	+81	+07	50	4
Orionids	Oct. 20	20	F.Q.	95	+15	+74	+08	20	9
Taurids	Nov. 5	20	L.Q.	53	+14	+40	+08	12	40
Leonids	Nov. 16	19	F.Q.	152	+22	+42	-25	2 0	3
Geminids	Dec. 13	13	N.M.	113	+32	+63	-04	40	6
Ursids	Dec. 22	18	F.Q.	217	+76			15	1

Meteor Showers for 1958

THE BRIGHTEST STARS By Donald A. MacRae

The 286 stars brighter than apparent magnitude 3.55.

Star. If the star is a visual double the letter A indicates that the data are for the brighter component. The brightness and separation of the second component B are given in the last column. Sometimes the double is too close to be conveniently resolved and the data refer to the combined light, AB; in interpreting such data the magnitudes of the two components must be considered.

Visual Magnitude (V). These magnitudes are based on photoelectric observations, with a few exceptions, which have been adjusted to match the yellow colour-sensitivity of the eye. The photometric system is that of Johnson and Morgan in Ap. J., vol. 117, p. 313, 1953. It is as likely as not that the true magnitude is within 0.03 mag. of the quoted figure, on the average. Variable stars are indicated with a "v". The type of variability, range, R, in magnitudes, and period in days are given.

Colour index (B-V). The blue magnitude, B, is the brightness of a star as observed photoelectrically through a blue filter. The difference B-V is therefore a measure of the colour of a star. The table reveals a close relaton between B-V and spectral type. Some of the stars are slightly reddened by interstellar dust. The probable error of a value of B-V is only 0.01 or 0.02 mag.

Type. The customary spectral (temperature) classification is given first. The Roman numerals are indicators of *luminosity class*. They are to be interpreted as follows: Ia—most luminous supergiants; Ib—less luminous supergiants; II—bright giants; III—normal giants; IV—subgiants; V—main sequence stars. Intermediate classes are sometimes used, e.g. Iab. Approximate absolute magnitudes can be assigned to the various spectral and luminosity class combinations. Other symbols used in this column are: p—a peculiarity; e—emission lines; v—the spectrum is variable; m—lines due to metallic elements are abnormally strong; f—the O-type spectrum has several broad emission lines; n or nn—unusually wide or diffuse lines. A composite spectrum, e.g. M1 Ib+B, shows up when a star is composed of two nearly equal but unresolved components. In the far southern sky, spectral types in italics were provided through the kindness of Prof. R. v. d. R. Woolley, Australian Commonwealth Observatory. Types in parentheses are less accurately defined (g—giant, d—dwarf, c-exceptionally high luminosity). All other types were very kindly provided especially for this table by Dr. W. W. Morgan, Yerkes Observatory.

Parallax (π). From "General Catalogue of Trigonometric Stellar Parallaxes" by Louise F. Jenkins, Yale Univ. Obs., 1952.

Absolute visual magnitude (M_V) , and distance in light-years (D). If π is greater than 0.030'' the distance corresponds to this trigonometric parallax and the absolute magnitude was computed from the formula $M_V = V + 5 + 5 \log \pi$. Otherwise a generally more accurate absolute magnitude was obtained from the luminosity class. In this case the formula was used to compute π and the distance corresponds to this "spectroscopic" parallax. The formula is an expression of the inverse square law for decrease in light intensity with increasing distance. The effect of absorption of light by interstellar dust was neglected, except for three stars, ζ Per, ρ Sco and ζ Oph, which are significantly reddened and would therefore be about a magnitude brighter if they were in the clear.—

Annual proper motion (μ) , and radial velocity (R). From "General Catalogue of Stellar Radial Velocities" by R. E. Wilson, Carnegie Inst. Pub. 601, 1953. Italics indicate an average value of a variable radial velocity.

The star names are given for all the officially designated navigation stars and a few others. Throughout the table, a *colon* (:) indicates an uncertainty.

We are indebted to Dr. Daniel L. Harris, Yerkes Observatory, particularly for his compilation of the photometric data from numerous sources.

		Sun	Rances star Alpheratz Caph a type, R in V 2.83–2.85, 0.15d a type, R in V 2.83–2.85, 0.15d Ankaa Ankaa $a^{n}Raa'$ B 8.18m 2'' m B 4.1m 2'' Mirach R 0.08:m 759d Achernar
			Manu β CN β β 12 <th12< th=""> <th12< th=""> 12</th12<></th12<>
Radial Velocity	R	km./se	$\begin{array}{c} -11.7\\ +11.8\\ +11.8\\ +22.8\\ +22.8\\ +22.8\\ +22.8\\ -10.3\\ -03.8\\ -03.8\\ +13.1\\ +13.1\\ +13.1\\ +11.5\\ +10.5\\ +11.5\\ +10.5\\ +1$
Proper Motion	Ħ	:	$\begin{array}{c} 0.209\\ 0.555\\ 0.555\\ 0.2610\\ 0.255\\ 0.161\\ 0.058\\ 0.234\\ 1.221\\ 1.221\\ 0.026\\ 0.035\\ 0.250\\ 0.035\\ 0.026\\ 0.098\\ 0.098\\ 0.098\\ 0.098\end{array}$
Distance light-years	D	1.y.	$\begin{array}{c} & 9 \\ 570 \\ 570 \\ 21 \\ 93 \\ 150 \\ 150 \\ 150 \\ 150 \\ 160 \\ 120 \\ 120 \\ 110 \\ 110 \\ 110 \\ 110 \\ 120 \\ 1$
Absolute Magnitude	Μ	+4.68	$\begin{array}{c} -0.1 \\ -0.1 \\ -3.4 \\ -3.4 \\ -0.1 \\ -0.2 \\ -0.3 \\ -0.3 \\ -1.0 \\ -0.3 \\ -1.0 \\ -0.3 \\ -1.0 \\ -1$
Parallax	4	:	$\begin{array}{c} 0.024\\ 0.072\\ 0.072\\ 0.035\\ 0.025\\ 0.025\\ 0.025\\ 0.032\\ 0.032\\ 0.032\\ 0.032\\ 0.032\\ 0.023\\ 0.$
Spectral Classification	Type	Ν	VP Vp
		G2	$ \begin{array}{c} \mathbb{B}_{1}^{\mathrm{B}} \mathbb{B}_{2}^{\mathrm{B}} \mathbb{B}^{\mathrm{B}} \mathbb{B}^{\mathrm{B}} \mathbb{B}_{2}^{\mathrm{B}} \mathbb{B}_{2}^{\mathrm{B}$
Colour Index	B-V	+0.63	$\begin{array}{c} -0.08\\ -0.23\\ -0.23\\ +1.08\\ +1.08\\ +1.08\\ +1.03\\ +0.56\\ +1.157\\ +1.03\\ +1.157\\ $
Visual Magnitude	14	-26.89	$\begin{array}{c} 22206\\ 22206\\ 22206\\ 22202\\ 22$
Declination	60 Dec.	•	$\begin{array}{c} ++++\\ +++\\ +++\\ +++\\ ++\\ ++\\ ++\\ ++\\ +$
Right Ascension	R.A. 19(h m	$\begin{array}{c} 00 & 06.3 \\ 076.3 \\ 011.2 \\ 011.2 \\ 010.3 \\ 010.5 \\ 010$
	Star	Sun	α And β Cas β Hyi β Hyi β Hyi α Phe α Phe β Cas β Cas β Cas β Cas β Cas β Cas γ

	Star	R.A. 19	60 Dec.	А	B^-V	H	ype	H	$\mathrm{M}_{\boldsymbol{V}}$	D	Ħ	R	
ושלשי	t Tri Cas	$\begin{smallmatrix} h & m \\ 01 & 50.8 \\ 51.5 \\ 1.5 \\$	+29 23 +63 28	3.45	+0.46 -0.15	F6 B3	IV IV: p	" 0.050 0.007	+2.0	1.y. 65 65	" 0.230 0.038	km./sec. -12.6 -08.1	
0.08	Ari v UMi A í Hyi	52.4 55.5 57.5	+20 37 +89 05 -61 46	$\frac{2.68}{1.99}$ 2.84	+0.14 +0.60v +0.28	F0	>₫⊳	0.003	+1.7 -4.6 +2.9	$680 \\ 31 \\ 31 \\ 31 \\ 31 \\ 31 \\ 31 \\ 31 \\ 3$	$\begin{array}{c} 0.147 \\ 0.046 \\ 0.265 \end{array}$	-01.9 -17.4 +07	Cep., R 0.11m 4.0 ^d , B 8.9m 18'' Polaris
64	And A	02 01.4 04.9	+42 08 +23 16	2.14: 2.00	+1.16; +1.15	K3 K2	III	0.005	-2.4	260 76	0.068	-11.7 -14.3	$B 5.4^{m} C 6.2^{m} A - BC 10'' B - C 0.7''$ Hamal
0 ~ 0 4	Cet A Cet A Cet AB Eri AB	07.2 17.3 41.2 56.7	+34 + 34 + 34 + 34 + 34 + 34 + 34 + 34	3.00 2.0v 3.48 2.92	+0.13 +0.11 +0.13	$ \begin{vmatrix} A5 \\ A2 \\ A3 \end{vmatrix} $	$_{V}^{M6e)}$	$\begin{array}{c} 0.012\\ 0.013\\ 0.048\\ 0.028\end{array}$	-0.1 -0.5 +2.0 +1.7	$140 \\ 103 \\ 68 \\ 65 \\ 65 \\ 65 \\ 103 \\ 10$	$\begin{array}{c} 0.150\\ 0.232\\ 0.203\\ 0.061\end{array}$	+09.9 +63.8 -05.1 +11.9	LP, R 2.0-10.1, 332 ^d , B 10 ^m 1'' Mira A 3.57 ^m B 6.23 ^m 3'' A 3.25 ^m B 4.36 ^m 8'' Acamar
ح م 6	× Cet , Per	03 00.2 01.9 01.9	+0356 +5321	2.54 2.91:	+1.63+0.72:	M2 G8III	III :+A3:	0.003	-0.5 + 0.3	130 113	0.075	-25.9 +02.5	Menkar 1 20000
4 4	Per Per	05.6 05.6 21.5	+40 $+40$ $+49$ $+49$ $+49$ $+49$ $+49$ $+43$	2.06v	-0.07+0.48	Н4 Н5 П5		0.031	0.5 - 4.4 - 2.5	202 210 210 200	0.006	+04.0 -02.4	Ecl. R 2.06–3.28, 2.87 ^d Algol Mirfak
-	, Tau Hyi	45.1 47.8	+2359	5989 53089 53080 530	-0.09 +1.61	$M_{Z}^{\rm B7}$		001		241 300 300	0.050 0.125 0.125	+10.1	in Pleiades Alcyone
~ • ~	Fer A Fer A Feri	51.0 55.2 56.2	+31 + 31 + 31 + 39 + 39 + 39 + 39 + 39 +	2.88 3.01 3.01	+0.13 -0.17 +1.58	B1 B0.5 M0		001 001 0.003	-6.1 -3.7 -0.5	160 160 160	$0.015 \\ 0.036 \\ 0.12$	+20.0 -01 +61.7	B 7.99m 9" B 7.99m 9"
σψά	x Ret A : Tau 2 Tau	$\begin{array}{c} 04 & 13.9 \\ 26.3 \\ 26.4 \\ 26.4 \end{array}$	-62 34 + 19 06 + 15 47	3.33 3.54 3.42	+0.91 +1.02	66 K0 A7		$\begin{array}{c} 0.008\\ 0.018\\ 0.018\end{array}$	+0.1	390 160 140	$\begin{array}{c} 0.064 \\ 0.118 \\ 0.108 \end{array}$	+35.6 +38.6 +39.6	B 12m 49''
006-	x Dor x Tau A r ³ Ori Aur	33.1 33.6 33.6 54.4	+33 06	3.28 0.86v 3.17 2.64:	-0.08 +1.52 +0.45 +1.49	A0 K5 K3 K3		$\begin{array}{c} 0.011\\ 0.048\\ 0.125\\ 0.015\end{array}$	-1.2 -0.7 +3.65 -2.4	260 260 330 330 330	$\begin{array}{c} 0.051\\ 0.202\\ 0.468\\ 0.021\end{array}$	+25.6 +54.1 +24.3 +17.5	Silicon star Irr.? R0.78-0.93, B13 ^m 31'' Aldebaran
i e	UMi, Polaris:	R.A. 1 h 5:	3.6 m; Dec	. +89° 04′	(1957).	_							

	Ecl. R 0.81 ^m 9886 ^d	Manganese star Irr.? R 0.08–0.20, B 6.65¤ 9'' Rigel Ecl. R 3.32–3.50, 8.0ª, A3.59¤ B4.98¤ 1'' Bellatrix	B 9.4 ^m 3'' Ecl. R 2.20-2.35 5.7 ^d , B 6.74 ^m 53'' A 3.56 ^m B 5.54 ^m 4'' C 10.92 ^m 29'' A 2.78 ^m B 7.31 ^m 11'' Alvilam	Data 12. B 12. 12. A 1.91 m B 4.05 m 3'' Irr.? R 0.06:-0.75:m Betelgeuse Silicon star A 2.67 m B 7.14 m 3''	R 0.27m, B 6.70m 1" R 0.14m B CMa type variable Canopus
R	km./sec. -02.5	+07.4 +07.4 +07.4 +08.0 +19.8 +19.8 +19.8 +18.2 +19.8	++24.7	+235 + $+35$ + $+280.6$ + -18.1 + -29.3 + -29.3	+12.0 +52.2 +54.8 +23.7 -12.5
7	0.008	$\begin{array}{c} 0.077\\ 0.077\\ 0.122\\ 0.049\\ 0.001\\ 0.435\\ 0.008\\ 0.015\\ 0.008\\ 0.$	0.000 0	$\begin{array}{c} 0.026\\ 0.026\\ 0.004\\ 0.402\\ 0.028\\ 0.051\\ 0.097 \end{array}$	$\begin{array}{c} 0.066\\ 0.004\\ 0.129\\ 0.004\\ 0.025\\ 0.066\end{array}$
D	1.y. 3400	$\begin{array}{c} 370\\ 170\\ 78\\ 990\\ 940\\ 940\\ 300\\ 300\\ 300\\ 300\\ 300\\ 300\\ 300\\ 3$	$\begin{array}{c}113\\1500\\900\\1600\\1600\\1600\\040\end{array}$	140 140 140 140 140 520 88 108	$\begin{array}{c} 200\\ 390\\ 750\\ 98\\ 105\end{array}$
Mr	-7.1	-+2.1	+0.1 +0.1 +0.1 -6.1 -6.1 -6.1 -6.1	+ 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	-0.6 -2.4 -4.8 -3.1 -0.6
4	" 0.004	$\begin{array}{c} 0.013\\ 0.006\\ 0.018\\ 0.018\\ 0.073\\ 0.026\\ 0.026\\ 0.018\\ 0.026\end{array}$	$\begin{array}{c} 0.014\\ 0.004\\ 0.002\\ 0.021\\007\\ 0.021\\ 0.$	$\begin{array}{c} - 0.02 \\ - 0.022 \\ 0.009 \\ 0.005 \\ 0.005 \\ 0.018 \\ 0.018 \end{array}$	$\begin{array}{c} 0.013\\ -0.03\\ 0.021\\ 0.014\\ 0.018\\ 0.031\end{array}$
Type	F0 Iap	$ \begin{array}{c} & \text{B3} & \text{V} \\ & K & \text{III} \\ & \text{A3} & \text{III} \\ & \text{B9} & \text{III} \\ & \text{B8} & \text{Ia} \\ & \text{B8} & \text{Ia} \\ & \text{B90.5} & \text{II} \\ & \text{B7} & \text{III} \\ & \text{III} & \text{III} \\ & \text{III} & \text{III} \\ & \text{III} & \text{III} \\ & \text{IIII} & \text{III} \\ & \text{IIII} & \text{IIII} \\ & \text{IIII} & \text{IIII \\ & \text{IIII} \\ & \text{IIII \\ & \text{IIIII \\ & \text{IIII} \\ & IIII \\ $	G55 III 09.5 II 008 Ib 009 III B0 Ia B1 II	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M3 III B2.5 V M3 III B1 II-III F0 Ib-II A0 IV
B^-V	+0.50:	-0.18 -0.18 -0.09 -0.09 -0.18 -0.09 -0.13 -0.13 -0.13	+0.82 +0.20 +0.22 -0.18 -0.19 -0.13 -0.19	-0.11 -0.22 -0.17 +1.16 +0.06 -0.07	+1.58 -0.18 +1.63 -0.24 -0.24 0.00
А	3.0v	3.17 3.21 3.29 0.14v 0.05 3.32v 1.65 1.64	$2.20_{\rm V}$ $2.20_{\rm V}$ 2.58 3.40 1.70 3.76	2.64 1.79 3.12 0.41v 2.65 2.65	$\begin{array}{c} 3.33v\\ 3.04\\ 3.04\\ 2.92v\\ 1.96\\ 1.93\end{array}$
60 Dec.	$^{\circ}$ / +43 46	$\begin{array}{c} + \\ + \\ + \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	-20 47 -00 20 +09 55 -01 14 +21 07	$-34 \ 06$ $-34 \ 06$ $-01 \ 58$ $-01 \ 58$ $-03 \ 41$ $-03 \ 41$ $-03 \ 41$ $+07 \ 24$ $+44 \ 57$ $+37 \ 13$	$\begin{array}{c} +22 & 31 \\ -30 & 03 \\ +22 & 32 \\ -17 & 56 \\ -52 & 40 \\ +16 & 26 \end{array}$
R.A. 19	$\begin{smallmatrix} h & m \\ 04 & 59.1 \end{smallmatrix}$	05 03.7 05.9 05.9 05.9 11.1 13.7 22.5 23.0 23.8 23.0 23.8	26.5 30.0 32.9 33.5 33.5 32.9 32.5 32.5 32.5 32.5 32.5 32.5 32.5 32.5	55.0 57.0 57.0	06 12.5 18.8 20.5 20.9 23.1 35.4
Star	e Aur	n Aur ε Lep β Eri μ Lep α Aur α Aur η Ori AB γ Ori 1 au	$\begin{array}{c} \mathbb{B} \ \operatorname{Lep} A \\ \mathbb{S} \ \operatorname{Ori} A \\ \mathbb{A} \ \operatorname{Ori} A \\ \mathbb{A} \ \operatorname{Ori} A \\ \mathbb{A} \ \operatorname{Ori} A \\ \mathbb{C} \ \operatorname{Ori} A \ \mathbb{C} \ \operatorname{Ori} A \ \mathbb{C} \ \operatorname{Ori} A \ \mathbb{C} \ $	c Col 4 ξ Ori AB κ Ori β Col α Ori β Aur β Aur AB	$\begin{array}{c} \eta & \operatorname{Gem} A \\ \xi & \operatorname{CMa} \\ \mu & \operatorname{Gem} \\ \beta & \operatorname{CMa} \\ \alpha & \operatorname{Car} \\ \gamma & \operatorname{Gem} \end{array}$

	B 8.66 ^m 1960: 9 ^ν , θ = 90° Sirius B 7.5 ^m 8 ^ν Adhara	LP, R 3.4-6.2, 141 ^d B 9.4 ^m 22'' $\int 5'', B-V+0.02, C$ 9.08v ^m 73'' Castor B 10.7 ^m 5'' Procyon	Var. R 2.72-2.87 B 4.31m 41'' Avior B 15m 7'' A 2.0m B 5.1m 3'' CD 10m 69'' A3.7mB5.2m0.2''15y, C6.8m3''D12m20'' BC 10.8m 7''
К	km./sec. $+28.2$ $+29.9$ $+25.3$ -07.6 $+26.4$ $+26.4$	$\begin{array}{c} + 48. \\ + 34.3 \\ + 34.3 \\ + 15.8 \\ + 15.8 \\ + 15.8 \\ + 12.8 \\ + 22 \\ - 01.2 \\ - 01.2 \\ + 03.3 \\ + 19.1 \\ + 19.1 \end{array}$	$\begin{array}{c} -24 \\ +46.6 \\ +35 \\ +11.5 \\ +19.8 \\ +22.8 \\ +12.2 \end{array}$
Ħ	$^{\prime\prime}_{0.016}$ 0.016 0.224 1.324 0.272 0.079 0.004	$\begin{array}{c} 0.000\\ 0.005\\ 0.008\\ 0.008\\ 0.008\\ 0.008\\ 0.195\\ 0.199\\ 0.199\\ 0.199\\ 0.005\\ 0.$	$\begin{array}{c} 0.033\\ 0.098\\ 0.011\\ 0.030\\ 0.171\\ 0.086\\ 0.198\\ 0.101\\ 0.101\\ 0.505\end{array}$
D	$\begin{array}{c} 1.y.\\ 620\\ 64\\ 64\\ 8.7\\ 57\\ 124\\ 680\end{array}$	$\begin{array}{c} 3400\\ 2100\\ 650\\ 650\\ 140\\ 180\\ 180\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 12.40\\$	$\begin{array}{c} 2400\\ 105:\\ 520\\ 340\\ 150\\ 150\\ 140\\ 220\\ 220\\ 49\end{array}$
${\rm M}_{F}$	-3.2 -4.6 +1.9 +2.1 -5.1	-7.1	+2.1
4	", 0.009 0.051 0.375	$\begin{array}{c}018\\ 0.016\\ 0.023\\ 0.022\\ 0.072\\ 0.072\\ 0.093\\ 0.072\\ 0.093\\003\end{array}$	$\begin{array}{c} 0.031\\ 0.004\\ 0.010\\ 0.029\\ 0.066\end{array}$
Type	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} B3 & Ia \\ F8 & Ia \\ gM5e \\ B5 & gM5e \\ B5 & gK4 \\ B7 & V \\ T2 & V \\ B5 & IV \\ A5m \\ A5m \\ F0 & III \\ G3 & ID \\ G3 & ID \\ B3 \end{array}$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $
B^-V	-0.10 +1.39 +0.43 +1.17 +1.17 -0.18:	$\begin{array}{c} -0.09\\ +0.65\\ +0.65\\ +1.56\\ +0.09\\ +1.49\\ +0.01\\ +1.23\\ -0.18\end{array}$	$\begin{array}{c} -0.26\\ +0.42\\ +1.14:\\ +0.26\\ +0.05\\ +0.05\\ +1.00\\ +1.00\\ +0.19\end{array}$
Δ	$\begin{array}{c} 3.19\\ 3.00\\ 3.38\\ 3.38\\ 3.38\\ 2.97\\ 2.97\\ 1.48: \end{array}$	$\begin{array}{c} 3.02\\ 1.85\\ 1.85\\ 1.97\\ 1.16\\ 3.34\\ 3.34\\ 3.34\\ 3.34\\ 3.48\\$	$\begin{array}{c} 2.23\\ 2.80\\ 1.97\\ 3.37\\ 3.39\\ 3.11\\ 3.12\\ 3.12 \end{array}$
0 Dec.	$\begin{array}{c}\circ\\\circ\\+25&10\\+12&56\\-16&40\\-61&54\\-28&55\end{array}$	$\begin{array}{c} -23 \\ -23 \\ -23 \\ -23 \\ -23 \\ -29 \\ -29 \\ -37 \\ 01 \\ -29 \\ 13 \\ 53 \\ -24 \\ 45 \\ -24 \\ 45 \\ -24 \\ 45 \\ -24 \\ 45 \\ -22 \\ 52 \\ 52 \\ 52 \\ -24 \\ 45 \\ -24 \\ 45 \\ -24 \\ 45 \\ -24 \\ 45 \\ -24 \\ 45 \\ -24 \\ 45 \\ -24 \\ 45 \\ -24 \\ 45 \\ -24 \\ 45 \\ -24 \\ $	-3953 -2411 -4714 -5923 +6051 +6034 +4812 +4812
R.A. 196	h m 06 36.5 41.5 43.0 43.0 43.4 47.8 48.9 57.1	07 01.4 06.8 15.7 15.7 15.7 25.0 25.0 3220 25.0 3220 3320 37.2 47.6 47.6 55.8	08 02.2 05.8 05.8 08.3 08.3 08.3 21.7 21.7 55.5 56.5 56.5
Star	γ Pup ε Gem ξ Gem α Pic τ Pup ε CMa A	o ² CMa S CMa L₂ Pup A CMa A CMa A CMa A CMa A Gem A A Gem A A Car X Car	<pre>% Pup p Pup p Vel % Car % Car % UMa A % Vel AB % Vel AB % Hya % UMa A</pre>

	Suhail	lacidus		lphard		2d	sniug						Merak	Dubhe		enebola	
		Miap		Υ		4.8 ^m , 35.55	Re									De	
					$B 14^{ m m} 5^{\prime\prime}$	Cep. max. 3.4 ^m min. 4 A 3.02 ^m B 6.03 ^m 5''	B 8.1m 177"		Vor D 2 20 2 11	ALL N 9.00-9.11 A 2.29m B 3.54m 4''	Var. R 3.22–3.39	A 2.7m B 7.2m 2''		A 1.88" B 4.82" 1"			
К	km./sec. +18.4	+ 20.0	+13.3 +37.6	+21.9	+15.9	+05.0 +04.0 +13.6	+03.5	+04 - 15.0	+18.3	-36.6	-20.5 $+26.0$	+24 + 06.9	-01.0 -12.0	-08.9	-20.6	+07.9	
=	" 0.026	0.183	0.217	0.034	1.094	$0.016 \\ 0.016 \\ 0.012 $	0.248	$0.029 \\ 0.023$	0.170	0.350	$0.086 \\ 0.021$	$0.018 \\ 0.085$	$0.221 \\ 0.087$	0.138	0.201	0.039	
<u> </u>	1.y. 750		001 001 001		283	$2700 \\ 340 \\ 340 $	84	300 130	150	06 06	$105 \\ 430$	710	150 78	105 130	888	370 43	
M	-4.6	- 0.4	- 0.5 - 0.5	- 0.3 - 0.3	+1.8	-2.1 -5.5 -2.1	-0.7	+0.5	+0.1		$^{+0.5}$	$+ \frac{-4.0}{0.1}$	+0.2 $+0.5$	-0.7	+0.6	+1.5	
4		0.038	0.021	0.017	0.052	$0.002 \\ 0.019 \\ 0.020 \\ 0.000 \\ 0.020 \\ 0.00$	0.039	0.009	010	0.019	0.031		$0.022 \\ 0.042$	0.031	$0.040 \\ 0.019$	0.076	
Type					NI VI	(cG0)	$\sum_{i=1}^{n}$	AT o		lilip	III IVpe	$\frac{111}{d_A}$			>>		
	: K5	A0 A0	Na	K4	F6	A7	B7 B2	E0.	$A2 \\ K5$	N N N	B6 B6	22 22	A1 A1	K0 K1	A4 A2	B9 A3	_
B-V	+1.64	+0.01	+1.54	+1.44	+0.46	+0.26	-0.11	+0.30	+0.03 +1.55	+1.13	-0.11	-0.27 +0.89	+1.23 -0.03	+1.06 +1.14	+0.13 0.00	+0.05	
4	2.24 3.43	1.67	3.17	1.98	3.19	2.95 2.95	1.36	3.46	3.45 $3.41_{ m V}$	1.99	3.30v	2.67	3.12 2.37	$1.81 \\ 3.00$	2 .57 3.34	3.15 2.14	
60 Dec.	。 / -43 16 -58 48	- 69 33	+34 34 -54 50	-6829	+5152	-62 19 -64 53	+12 10	+23 37	+43 07 -61 08	+20 03	+41 + 42 - 61 - 61 - 29 + 23 + 23 + 23 + 23 + 23 + 23 + 23 +	-04 11 -49 12	+56 36	+6158 +4443	+20 45 +15 39	-62 48 +14 48	-
R.A. 19	h m 09 06.5 09.9	12.8	18.6	25.6 30.0	30.2 43.6	44.1 46.1	10 06.2 12.8	14.5	14.7	17.8	30.6	41.0 45.0	59.4	11 01.3 07.4	12.0 12.1	33.9 47.0	
Star	λ Vel a Car	β Car L Car	α Lyn κ Vel	α Hya N Vel	0 UMa A	l Car v Car AB	α Leo A ω Car	č Leo	A UMa q Car	γ Leo AB	p Car	μ Vel AB	β UMa	α UMa AB ψ UMa	ð Leo	λ Cen β Leo	

	Phecda		Megrez Gienah	Acru x Gacrux		a Crucis Alioth 1 ^m 20''	Mizar	Spica Albaid	
		Var. R 2.56–2.62 Var. R 9.78–9.84		у от, с 4.90 ^т 89 ^т В 8.26 ^т 24 ^{′′}	Var. R 2.66-2.73 A 2.9m B 2.9m 1"	A $3.7^{m}B4.0^{m}1''$ A $3.7^{m}B4.0^{m}1''$ Chromium-europium star Silicon-europium star. B 5.6'	B 3.94m 14"	ECI. K 0.91-1.01, 4.0	Var. R 3.08-3.17
R	km./sec. -12.9	+09 + 04.9 + 26.4	-12.9 -04.2 -11.2	$^{+00.6}_{+21.3}$	+18 -07.5 -07.5	+42 + 42 - 09.3 - 03.3	-14.0 + 00.1 - 09.0	+01.0 -13.2 +05.6 -10.9	+09.0 +12.6 +00.1 +06.5
Ħ	" 0.094	$\begin{array}{c} 0.042 \\ 0.069 \\ 0.041 \end{array}$	$0.106 \\ 0.163 \\ 0.042 $	$\begin{array}{c} 0.042 \\ 0.255 \\ 0.274 \end{array}$	0.059 0.037 0.197	$\begin{array}{c} 0.041\\ 0.041\\ 0.049\\ 0.113\\ 0.238\end{array}$	$\begin{array}{c} 0.274 \\ 0.086 \\ 0.351 \\ 0.127 \\ 0.127 \end{array}$	0.054 0.287 0.033 0.033	0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.036 0.036 0.036 0.076 0
D	$^{1.y.}_{90}$	$370 \\ 140 \\ 570$	450 370	$370 \\ 124 \\ 220$	$108 \\ 160 \\ 160 \\ 160 \\ 160 \\ 160 \\ 100 $	470 490 118	90 71 88 88	220 93 570	
Μŗ	+0.2	-2.7 -0.2 -3.4	+1.9 -3.1 -3.1	$+ \frac{-3.4}{0.1}$	+0.1	+0.2 + -2.1 + $-$	+++0.6	+1.1 -3.3 -3.9 -3.9 -3.9	-3.4 -3.4 -3.4 -3.4
μ	,, 0.020		0.052	0.018	0.027	0.008 0.023	$\begin{array}{c} 0.036\\ 0.021\\ 0.046\\ 0.037\\ 0.037\end{array}$	0.021	0.102
Type	Λ			(B3) V: n				$^{\rm u}_{\rm AI}^{\rm N}$	V: pne IV IV
	A0	B2 K3 R9	$\frac{A3}{B4}$	B9.5 M3	A0 B3 A0	B0 B0 B0.1 B0.1 B0.1 B0.1 B0.1 B0.1 B0.1 B	A2 A2 A2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2	$\begin{array}{c} B1\\ B1\\ B1\\ B2\\ B2\\ B2\\ B2\\ B2\\ B2\\ B2\\ B2\\ B2\\ B2$:
B-V	0.00	-0.15: +1.33 -0.23	+0.07 -0.10 -0.25	-0.25 + 0.04	+0.00	+0.34 -0.17: -0.25 -0.03 -0.10	+0.93 +0.05 +0.05	-0.24 -0.23 -0.23 -0.23	-0.20 -0.22 -0.13 +0.59 -0.23
4	2.44	2.59v 3.04 2.81v	2.59 2.59 1.39	$1.86 \\ 2.97 \\ 1.69 \\ $	2.17 2.17 2.17	2.00 3.06 1.79 2.90	2.86 2.98 2.76 2.26	$\begin{array}{c} 0.91v\\ 3.40\\ 2.33$	2.69 2.69 2.56
0 Dec.	$^{\circ}$ / +53 55	$-50\ 30$ $-22\ 24$ $-58\ 39$	+57 15 -17 19 -62 53	-6253 -1618 -5653	-23 11 -68 55 -48 44	-01 14 -67 53 -59 28 +56 11 +38 32	$\begin{array}{c} +11 & 10 \\ -22 & 58 \\ -36 & 30 \\ +55 & 08 \end{array}$	-1057 -0024 -5316 -6326	+41 29 -41 29 -42 17 +18 36 -47 06
R.A. 196	h m 11 51.7	$\begin{array}{c} 12 & 06.3 \\ 08.1 \\ 13 & 0 \end{array}$	13.5 13.7 24.4	$\begin{array}{c} 24.4\\ 27.8\\ 28.9\end{array}$	32.3 34.8 39.3	59.0 45.4 52.3 54.2	$13 & 00.2 \\ 16.7 \\ 18.3 \\ 22$	23.1 32.7 37.3	47.1 47.2 52.8 53.0
Star	γ UMa	å Cen e Crv	δ UMa γ Crv α Cru A	å Cru B å Crv A	$ \begin{array}{c} \beta & \text{Crv} \\ \alpha & \text{Mus} \\ \gamma & \text{Cen } AB \\ \gamma & \text{Cen } AB \end{array} $	$ \begin{array}{c} \gamma \text{Vir} AB \\ \beta \text{Mus} AB \\ \beta \text{Cru} \\ \epsilon \text{UMa} \\ \alpha \text{CVn} A \end{array} $	ε Vir γ Hya ι Cen ζ UMa A	α Vir č Vir ε Cen	ν Cen ν Cen γ Boo γ Cen
						68			

	Hadar	Menkent	Arcturus		gil Kentaurus	Эт <i>В</i> 8.61 т 16′′		Zubenelgenubi	V OC WAD									Alphecca	•			
	A 0.7m B 3.9m 1″			Var. R 2.33–2.45	18'' Ri Ri	Strontium star. A 3.1	A 2.47m B 5.04m 3''	B 5.15 ^m 231''				B 7.8m 71"	B 7.84m 105"	Furonium star	mic minidome		135m R37m 1 "	Ecl. R 0.11 ^m , 17.4 ^d			A 2 A7m R 7 70m 16/	01 _01'1 7 _110 V
Я	km./sec. -12	+27.2	-05.2	-00.2	-24.0	+07.4	-16.5	-10	+10.9 -00.3	+09.1	-19.9	-04.3	-12.2	- 35.2	+03	-03.9	- 11.0	+01.7	+02.9	-00.3	 202 202	-14 14
Ħ	0.035	0.150	$2.284 \\ 0.186$	0.049	3.676	0.308	0.051	0.130	0.066	0.033	0.059	0.089	0.148	0.101	0.032	0.026	0.012	0.154	0.139	0.448	0.034	0.032
D	1.y. 490	55 55	36 118	390	4.0 4.3	66	103 103	99	540	470	140	:20 60	140	140	680	270	102 700	76	71	42	570 570	590
Μ	-5.2	+0.9	+0.3	-3.0	+5.8	+1.6	+0.0	+1.2	-0.0 -3.4	-2.7	+0.3	+2.0: +1.2	+0.3	9.0 + 0.6	- 3.4	-1.5	4 0 1 1 1 1 1	+0+	+1.0	+ 2.3	- 0 - 0 - 0	-4.0
Ħ	" 0.016	0.059	0.016		} .751	0.049	0.013	0.049	Ten.u		0.022	0.036	0.028	012	000.0	005	0.032	0.043	0.046	0.078	cuu.u	
Type	:11:			5 V:ne	dK1)	d_{Λ}^{Λ}	: III: + A	n 111	NI	>			III	4A \	IV	111-11	Λn	Ν	III	21	>7	Ň
	: B1	228	A7	B1.	2% 5 	FO	ΞY	A31	B2	B2	89	: K0	80 0	B8 40	B2	A3	22	P02	K2	: F2	164	Ba
B-V	-0.23	+1.03	+1.23 +0.19	-0.21	+0.03+0.73	+0.25	+0.96	+0.15	+1.4 -0.23	-0.21	+0.95	+1.00	+0.95	-0.11	-0.23	+0.06	+1.13	-0.02	+1.17	+0.28	-0.13	-0.13
Δ	0.63	2.04	-0.06 3.05	2.39v	1.40:	3.18	2.37	2.76	2.69 2.69	3.15	3.48	3.42	3.47	2.61	3.24	3.08	2.20 2.80 2.80	2.23v	2.65	2.87	2.9Z 2.45	2.34
0 Dec.	。 、 60_11	-36 10	+19 23 +38 29	-4159	- 60 40 - 60 40	-64 48	+27 14	-1550	+14 19 -42 58	-41 57	+40 33	-20 08 -51 57	+33 28	-68 32	-4030	+7159	+09 00	+2651	+06 33	-63 19	-20 00 17	-22 51
R.A. 196	$\begin{smallmatrix} h & m \\ 14 & 01.0 \\ 04.1 \\$	04.1	30.5	33.0	36.9	39.2 20.2	43.2	48.5	55.9	56.5	15 00.4	01.7	13.9	14.8	18.7	20.8	24.0	33.0	42.3	51.6	50.4 7.7 л	58.0
Star	Cen AB	Cen Cen	k Boo	Cen	v Cen <i>B</i>	v Cir AB	Boo AB	k Lib A	Lup	c Cen	Boo Boo	r Lub A	Boo A	tra Tra	Lup	, UMi	Ura I un 4R	CrB	v Ser	8 TrA	r Sco 1 1 R	Sco
I	. 4	6 9	5	7	50	5	U U	99	44	- 69	4	5.0			.0	C	- (. 0	0	~	~ 1	~~~

	3m 14'' B 8.49m 20''	Antares	Atria	Sabik	Ras-Algethi	Shaula Rasalhague
	A 2.78m <i>B</i> 5.04m 1'', <i>C</i> 4.9 8 CMa <i>R</i> 2.82–2.90, 0.25 ^d ,	B 8.7m 6'' A 0.86m–1.02m B 5.07m 3'' A 2.91m B 5.46m 1''	Ecl. R 2.99–3.09, 1.4 ^d	4 3.0m <i>B</i> 3.4m 1″	4 3.2™ ± 0.3 <i>B</i> 5.4™ 5″ B 10™ 18″	В 11.49≖ 4″
Я	km./sec. - 06.6 - 19.9 - 10.3	$\begin{array}{c} -14.3 \\ -03.2 \\ -03.2 \\ -00.7 \\ -19 \\ -69.9 \\ +08.3 \end{array}$	-03.6 -02.5 -55.6 -55.6	-00.9 -14.1 -28.4	$\begin{array}{c} -33.1\\ -41\\ -25.7\\ -00.4\\ +18\\ +18\end{array}$	-02 - 02 - 02 - 02 - 00 - 00 + 12.7 + 12.7 + 01.4
Ŧ	$^{\prime\prime}_{0.027}$ 0.027 0.156 0.089 0.030	$\begin{array}{c} 0.062\\ 0.029\\ 0.030\\ 0.030\\ 0.608\\ 0.097 \end{array}$	$\begin{array}{c} 0.044\\ 0.664\\ 0.033\\ 0.042\\ 0.293\\ 0.293\\ \end{array}$	$\begin{array}{c} 0.097\\ 0.026\\ 0.293\end{array}$	$\begin{array}{c} 0.032\\ 0.164\\ 0.029\\ 0.025\\ 0.035\\ 0.017\\ 0.039\end{array}$	$\begin{array}{c} 0.083\\ 0.019\\ 0.031\\ 0.260\\ 0.012\\ 0.012 \end{array}$
D	$\begin{array}{c} 1.y. \\ 650 \\ 140 \\ 90 \\ 570 \end{array}$	$\begin{array}{c} 76 \\ 520 \\ 103 \\ 750 \\ 520 \\ 30 \\ 62 \end{array}$	520 520 150 150	69 620 52	$\begin{array}{c} 410\\ 96\\ 710\\ 680\\ 680\\ 540\end{array}$	$390 \\ 310 \\ 310 \\ 58 \\ 650 \\ 650 $
4Μ	-3.7 -0.5 +1.0 -4.4	++1.4	-0.1 +0.7 -3.0 -0.1 -0.1	$^{+1.4}_{-3.2}$	-1 -1 -1 -1 -1 -1 -1 -1	-2.4 -2.1 -4.0.8 -4.6
Ħ	0.004 0.029 0.036	$\begin{array}{c} 0.043\\ 0.019\\ 0.017\\ 0.017\\ 0.110\\ 0.110\\ 0.053\end{array}$	$\begin{array}{c} 0.024\\ 0.049\\ 0.036\\ 0.026\end{array}$	0.047 0.017 0.063	007 0.034 0.020 0.020 0.026	$\begin{array}{c} 0.009\\ 0.056\\ 0.020\end{array}$
Type	0.5 V 1 11111 1 1111	8 III 1 Ib+B 8 III 0 V 0.5 V 1V 7 III-IV	$ \begin{array}{c} & 111\\ e & 111-IV\\ 1.5 & V\\ (gK5) \\ 2 & 111 \end{array} $	2.5 V 3 III 111		
4	0002 <u>00</u> 000	<u>02020220</u>	N BKK	8 5 9 4 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		8 9 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
B-	+++1	×	+++++	0.01		0.000
4	2.65 2.72 2.22 2.86	2.71 2.85 2.85 2.81 2.81 2.81 2.81 2.81	$\begin{array}{c} 1.93\\ 2.28\\ 3.16\\ 3.18\\ 3.18\end{array}$	$2.46 \\ 3.20 \\ 3.33 \\ 3.33 \\$	3.10 3.13 3.29 3.23 3.33	2.95 2.77 2.09 2.09 1.86
60 Dec.	-19 42 -03 36 -04 36 -25 30	$+61 \ 36$ + $-26 \ 21$ + $-28 \ 23$ + $-10 \ 29$ + $-31 \ 40$ + $33 \ 40$	-6857 -3413 -3755 -5556 +0926	-15 41 +65 46 -43 11	+14 26 +24 53 +36 51 -24 58 -24 58 -55 30 -56 21 -37 16	-49 51 +52 20 +12 35 -42 58
R.A. 19	h m 16 03.1 12.2 16.2 18.8	23.4 26.9 33.4.5 33.6.6 41.5 8 3.5 .5 41.5 8 3.5 .5 41.5 8 3.5 .5 41.5 8 3.5 .5 41.5 8 5 .5 41.5 8 5 .5 41.5 8 5 .5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	44.4 47.6 55.3 55.8	17 08.1 08.7 09.3	12.8 13.4 13.7 222.0 222.0 222.0	28.7 29.5 30.9 33.1 34.4
Star	 B Sco AB Oph Oph Sco A 	$\begin{array}{c} n \\ Dra A \\ \alpha \\ c \\ \beta \\ c \\ c$	α IrA ε Sco β Ara κ Oph	$\begin{array}{c} \eta & \operatorname{Oph} AB \\ \xi & \operatorname{Dra} \\ \eta & \operatorname{Sco} \end{array}$	$ \begin{array}{c} \alpha & \text{Her } AB \\ \delta & \text{Her } \\ \pi & \text{Her } \\ \theta & \text{Oph } \\ \beta & \text{Ara } \\ \gamma & \text{Ara } A \\ \nu & \text{Sco } \end{array} $	$ \begin{array}{c} \alpha & \text{Ara} \\ \beta & \text{Dra} & A \\ \lambda & \text{Sco} \\ \alpha & \text{Oph} \\ \theta & \text{Sco} \end{array} $
	33'' Eltanin	Kaus Australis	Vega 3-4.36, 12.9 ^d , B 7.8 ^m 46'' - Nunki	3.5¤ 1″ 3.8¤ <i>C</i> 6.0≖ < 1″	6.44m 2'' Albireo Altaireo Altair	
---------	---	---	--	---	---	
	BC 9.78 ^m 5	B 10 ^m 4''	Ecl. R 3.3	A 3.3 ^m B (B 12 ^m 5'' A 3.7 ^m B (B 5.11 ^m 3f A 2.91 ^m B	
R	$\begin{array}{c} \mathrm{km./sec.}\\ -120\\ -27.6\\ +24.7\\ +24.7\\ +12.4\end{array}$	+ 20.0 + - 20.0 + - 11 - 11	-75.5 -13.9 -19.2 -119.2 -119.2 -119.9 -119.9	+22 +	-24.0 -24.0 -21 -02.1 -26.3	
z	\sim 0.031 0.160 0.004 0.004 0.064 0.064 0.026 0.118	$\begin{array}{c} 0.200\\ 0.218\\ 0.050\\ 0.894\\ 0.135\\ 0.135 \end{array}$	$\begin{array}{c} 0.154\\ 0.345\\ 0.052\\ 0.059\\ 0.035\\ 0.035\\ 0.007 \end{array}$	$\begin{array}{c} 0.020\\ 0.101\\ 0.092\\ 0.261\\ 0.040\\ 0.130\end{array}$	$\begin{array}{c} 0.267 \\ 0.009 \\ 0.060 \\ 0.012 \\ 0.658 \end{array}$	
D	$\begin{array}{c} 1.y.\\ 470\\ 124\\ 30\\ 30\\ 102\\ 108\\ 140\end{array}$	$124\\86:\\124\\124\\124$	26.5 590 1300 300 160 370 370	$140 \\ 90 \\ 160 \\ 86 \\ 124 \\ 124$	$\begin{array}{c} 53 \\ 410 \\ 270 \\ 340 \\ 16.5 \end{array}$	
M_{P}	-3.4 -3.4 -7.1 -0.1 -0.1 -0.4 -0.2 -0.2	+0.1 +1.1: +1.9 +1.1 +1.1	++0.5 +-2.7 +-2.7 +-2.1	+0.1 + 0.1 + 0.1 + 0.2 + 0.2 + 0.2	+2.2 +	
Ħ	,, 0.023 0.013 0.013 0.013 0.012 0.032 0.017 0.017 0.015 0.005 0.	$\begin{array}{c} 0.018\\ 0.038\\ 0.039\\ 0.054\\ 0.015\\ 0.015\end{array}$	0.123 0.123 011 0.006 0.011	$\begin{array}{c} 0.020\\ 0.036\\ 0.036\\ 0.038\\ 0.016\\ 0.016\\ 0.028\end{array}$	$\begin{array}{c} 0.062\\ 0.004\\ 0.021\\ 0.006\\ 0.198\end{array}$	
Type	$\begin{array}{c} B \\ B \\ K \\ K \\ K \\ F \\ G \\ G \\ I \\ K \\ I \\ K \\ I \\ K \\ I \\ I \\ K \\ I \\ I$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A A0 V BB Bp (gK1) B9 III B9 III	$\begin{array}{ccc} A & IV \\ A & V: nn \\ B9: & V: n \\ B9: & V: n \\ g K1 \\ G & III \\ G9 & III \\ G9 & III \\ G1 & IIII \\ G1 & IIII \\ G1 & IIII \\ G$	F0 IV K3 II:+B: B9.5 III K3 IV, V	
B-V	$\begin{array}{c} -0.21 \\ +1.16 \\ +0.49 \\ +0.75 \\ +1.18 \\ +1.52 \\ +1.00 \end{array}$	+1.00 +1.55 +1.39 +0.94 -0.02	+1.00 -0.11 -0.05: +1.18: -0.05	+0.08 +0.01 +0.07 +1.18 +1.18 +1.00	+0.31 +1.12 +1.48 +1.48 +0.03 +0.22	
2	$\begin{array}{c} 2.39 \\ 2.77 \\ 2.99 \\ 3.21 \\ 3.32 \\ 3.32 \\ 3.32 \end{array}$	2.97 3.17 2.71 3.23 3.23 1.81 1.81	$\begin{array}{c} 2.20\\ 2.20\\ 2.12\\ 3.51\\ 3.51\\ 3.55\\$	2.61 3.44 3.30 3.06	3.38 3.07 2.87 2.67 0.77	
60 Dec.	$\begin{array}{c} & \circ \\ & -39 & 01 \\ & -404 & 35 \\ & -40 & 07 \\ & -37 & 02 \\ & -37 & 02 \\ & -51 & 30 \\ & -09 & 46 \end{array}$	$\begin{array}{c} -30 \ 26 \\ -36 \ 47 \\ -29 \ 51 \\ -02 \ 55 \\ -34 \ 24 \\ -34 \ 24 \\ -35 \ 97 \end{array}$	+38 + 528 + 538	$\begin{array}{c} -29 56 \\ +13 48 \\ -04 57 \\ -27 44 \\ -21 05 \\ +67 35 \end{array}$	$\begin{array}{c} +03 \ 02 \\ +27 \ 52 \\ +45 \ 02 \\ +10 \ 31 \\ +08 \ 46 \end{array}$	
R.A. 19	h m 17 39.7 41.5 44.8 44.9 44.9 55.7 56.8	18 03.2 14.9 18.4 19.2 21.5	552.8 572.4 572.4 572.4 572.3	$\begin{array}{c} 19 & 00.1 \\ 03.6 \\ 04.1 \\ 04.4 \\ 07.4 \\ 12.6 \end{array}$	23.5 29.1 43.7 48.8 48.8	
Star	κ Sco β Oph ι ^ι Sco G Sco γ Dra ν Oph	× Sgr sgr sgr sgr Sgr sgr	× Sgr sgr γ Lyr Lyr Lyr	$\begin{cases} \operatorname{Sgr} AB \\ \operatorname{Sgr} Ad \\ \operatorname{Adl} \\ \operatorname{Sgr} \\ \operatorname{Sgr} ABC \\ \operatorname{Dra} $	$ \begin{array}{c} \mbox{s} \ \mbox{Aql} \\ \mbox{b} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	

	B 5.97m 205" Peacock Deneb).19 ^d Alderamin Enif	Al Na'ir d, B 6.19m 41" Formalhaut	Scheat Markab
	Type gK0: + late B;	β CMa R 3.14-3.16, (B 11¤ 82'' Var. R 2.88-2.95	Cep. <i>R</i> 3.51–4.42, 5.4 Var. <i>R</i> 2.11–2.23	Var. R 2.4-2.7
R	km./sec. - 27.3 - 18.9 - 18.9 - 07.5 + 02.0 - 01.1 - 04.6 + 09.8 - 87.3 - 87.3	+17.4 -10 -08.2 +06.5 -06.3 -06.3	$\begin{array}{c} + 07.5 \\ + 107.5 \\ - 181.8 \\ - 16.8 \\ - 16.8 \\ + 01.6 \\ + 01.6 \\ + 06.5 \\ - 06.5 \\ \end{array}$	+08.7 -03.5 -42.4
7	$^{\prime\prime}_{0.034}$ 0.034 0.001 0.087 0.082 0.082 0.082 0.082 0.082 0.082 0.046 0.825 0.481	$\begin{array}{c} 0.056\\ 0.156\\ 0.014\\ 0.017\\ 0.025\\ 0.392\\ 0.102\end{array}$	$\begin{array}{c} 0.016\\ 0.194\\ 0.015\\ 0.079\\ 0.077\\ 0.027\\ 0.027\\ 0.047\\ 0.367\end{array}$	$\begin{array}{c} 0.234 \\ 0.071 \\ 0.168 \end{array}$
D	$\begin{array}{c}1.y.\\330\\130\\750\\310\\84\\160\\160\\160\\74\end{array}$	$390 \\ 52 \\ 980 \\ 1030 \\ 780 \\ 50 \\ 540 $	$\begin{array}{c} 1080\\ 64:\\ 64:\\ 62\\ 1240\\ 280\\ 280\\ 360\\ 84\\ 84\\ 84\end{array}$	$\begin{array}{c} 210\\109\\51\end{array}$
MF	++0.1	+2.2 +1.4 +2.0 +2.0 -3.1	+++++.6	$^{-1.5}_{-0.1}$
4	$\begin{array}{c} & & \\ & & 0.008 \\ & 0.005 \\006 \\003 \\ & 0.039 \\013 \\ & 0.026 \\ 0.071 \\ & 0.044 \end{array}$	$\begin{array}{c} 0.021\\ 0.063\\ 0.005\\ 0.005\\ 0.065\\ 0.065\\ 0.008\end{array}$	$\begin{array}{c} 0.003\\ 0.051\\ 0.019\\ 0.019\\ 0.019\\ 0.005\\004\\ 0.003\\ 0.003\\ 0.039\\ 0.144\end{array}$	$\begin{array}{c} 0.015 \\ 0.030 \\ 0.064 \end{array}$
Type	$\begin{array}{c} \text{B9.5} & \text{III} \\ \text{B9.5} & \text{III} \\ \text{comp.} \\ \text{B8} & \text{IIV} \\ \text{B8} & \text{IIV} \\ \text{A6} & \text{III} \\ \text{A5} & \text{III} \\ \text{A6} & \text{IIV} \\ \text{K0} & \text{IIV} \\ \text{K0} & \text{III} \\ \text{K0} & \text{III} \\ \end{array}$	$\begin{bmatrix} G8 & I1 \\ A7 & IV, V \\ B2 & I11 \\ G0 & Ib \\ K2 & Ib \\ B8 & III \\ B8 & III \\ \end{bmatrix}$	$ \begin{array}{c} \begin{array}{c} {\rm G2} & {\rm Ib} \\ {\rm B5} & V \\ {\rm K1} & {\rm Ib} \\ {\rm K3} & {\rm III-IV} \\ {\rm F5-G2} & {\rm Ib} \\ {\rm B3} & V \\ {\rm M3} & {\rm M3} \\ {\rm M3} & {\rm III} : + {\rm F}? \\ {\rm A3} & V \\ {\rm A3} & V \end{array} $	M2 II-III B9.5 III K1 IV
B-V	$\begin{array}{c} -0.07\\ -0.07\\ +0.66\\ +1.00\\ +1.00\\ +1.03\\ +1.03\\ \end{array}$	+0.24 -0.22v +0.82 +1.55 +0.29 -0.10	$\begin{array}{c} + 0.96 \\ - 0.14 \\ - 0.14 \\ + 1.55 \\ + 0.08 \\ + 0.08 \\ + 0.08 \\ + 0.08 \\ + 0.08 \\ + 0.08 \\ + 0.10 \\ \end{array}$	$^{+1.67}_{-0.03}$
4	$\begin{array}{c} 3.31\\ 3.31\\ 3.06\\ 2.22\\ 3.11\\ 1.95\\ 3.45\\ 3.45\\ 3.45\\ 2.46\end{array}$	$\begin{array}{c} 3.25:\\ 2.44\\ 3.15v\\ 2.86\\ 2.31\\ 2.31\\ 3.03\\ 3.03\end{array}$	$\begin{array}{c} 2.96\\ 1.76\\ 3.31\\ 3.96v\\ 3.40v\\ 2.17v\\ 2.95\\ 3.28\\ 1.19\\ 1.19\end{array}$	$2.5 \ v$ 2.50 3.20
60 Dec.	$ \begin{array}{c} \circ \\ -0056 \\ -1455 \\ +4008 \\ -5652 \\ -4726 \\ +4508 \\ -6621 \\ +6141 \\ +6141 \\ +3349 \\ -6621 \\ +3349 \\ -6621 \\ +3349 \\ -6621 \\ +3349 \\ -6621 \\ +3349 \\ -6621 \\ -6$	$\begin{array}{c} +30 \\ +52 \\ +70 \\ -05 \\ +50 \\ +09 \\ +10 \\ +10 \\ -16 \\ 19 \\ -37 \\ 33 \end{array}$	$\begin{array}{c} -00 & 31 \\ +58 & 00 \\ +58 & 00 \\ +58 & 13 \\ +10 & 37 \\ +30 & 01 \\ +30 & 01 \\ -16 & 02 \\ -29 & 50 \end{array}$	+27529 +1459 +7725
R.A. 19	$\begin{smallmatrix} h & m \\ 20 & 09.2 \\ 18.8 \\ 20.8 \\ 20.8 \\ 34.8 \\ 34.8 \\ 40.1 \\ 41.4 \\ 41.4 \\ 44.6 \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 22 & 03.7 \\ 05.7 & 05.7 \\ 09.5 & 09.5 \\ 09.5 & 15.8 \\ 27.7 & 39.5 \\ 39.5 & 39.5 \\ 41.1 & 14.1 \\ 55.4 \\ 55.4 \end{array}$	$\begin{array}{c} 23 & 01.8 \\ 02.8 \\ 37.7 \\ \end{array}$
Star	 θ Aql β Cap A γ Cyg α Pav α Cyg θ Pav € Cyg 	 ζ Cyg α Cep β Aqr β Aqr δ Cep δ Cap γ Gru 	α Aqr γ Cep α Cep α Tuc β Cep A β Geu α PsA α PsA	$eta \ {\rm Peg} \ lpha \ {\rm Peg} \ lpha \ {\rm Vep} \ \gamma \ {\rm Cep} \$

YEARS
50
FOR
PRECESSION
OF
TABLE

	R.A.	h m	12 00	11 30	11 00	10 30	10 00	9 30		00 6	8 30	8 00	7 30	7 00	6 30	6 00	24 00	$23 \ 30$	$23 \ 00$	22 30	22 00	$21 \ 30$	21 00	$20 \ 30$	20 00	19 30	19 00	18 30	18 00
Prec.	Dec.		-16.7	-16.6	-16.1	-154	- 14.5	-13.2		-11.8	-10.2	- 8.3	- 6.4	- 4.3	- 2.2	0.0	+16.7	+16.6	+16.1	+15.4	+14.5	+13.2	+11.8	+10.2	+ 8.3	+ 6.4	+ 4.3	+ 2.2	+ 0.0
	-30°	E	+2.56	2.48	2.39	13.6	10.7	2.17		2.11	2.05	2.00	1.97	1.94	1.92	1.92	+2.56	2.64	2.73	2.81	2.88	2.95	3.02	3.07	3.12	3.16	3.18	3.20	3.20
	-20°	E	+2.56	2.51	2.45	9 40	2.36	2.31		2.27	2.24	2.21	2.19	2.17	2.16	2.16	+2.56	2.61	2.67	2.72	2.76	2.81	2.85	2.88	2.91	2.93	2.95	2.96	2.97
	-10°	E	+2.56	2.53	2.51	9 40	9.46	2.44		2.42	2.40	2.39	2.38	2.37	2.37	2.36	+2.56	2.59	2.61	2.64	2.66	2.68	2.70	2.72	2.73	2.74	2.75	2.75	2.76
	00	E	+2.56	2.56	2.56	9 56	9 56	2.56		2.56	2.56	2.56	2.56	2.56	2.56	2.56	+2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56
	$+10^{\circ}$	E	+2.56	2.59	2.61	9 64	2007 2010	2.68		2.70	2.72	2.73	2.74	2.75	2.75	2.76	+2.56	2.53	2.51	2.49	2.46	2.44	2.42	2.40	2.39	2.38	2.37	2.37	2.36
ension	$+20^{\circ}$	E	+2.56	2.61	2.67	979	9.76	2.81		2.85	2.88	2.91	2.93	2.95	2.96	2.97	+2.56	2.51	2.45	2.40	2.36	2.31	2.27	2.24	2.21	2.19	2.17	2.16	2.16
ght Asce	+30°	E	+2.56	2.64	2.73	9.81	988.6	2.95		3.02	3.07	3.12	3.16	3.18	3.20	3.20	+2.56	2.48	2.39	2.31	2.24	2.17	2.11	2.05	2.00	1.97	1.94	1.92	1.92
n in Rig	$+40^{\circ}$	E	+2.56	2.68	2.80	006	3 03	3.13		3.22	3.30	3.37	3.42	3.46	3.49	3.50	+2.56	2.44	2.32	2.20	2.09	1.99	1.90	1.81	1.75	1.70	1.66	1.63	1.62
recessio	$+50^{\circ}$	H	+2.56	2.73	2.90	3 07	3 99	3.37		3.50	3.61	3.71	3.79	3.84	3.88	3.89	+2.56	2.39	2.22	2.05	1.90	1.75	1.62	1.51	1.41	1.33	1.28	1.25	1.23
<u>А</u>	+60°	E	+2.56	2.81	3.06	3 30	3.52	3.73		3.92	4.09	4.23	4.34	4.42	4.47	4.49	+2.56	2.31	2.06	1.82	1.60	1.39	1.20	1.03	+0.89	+0.78	+0.70	+0.65	+0.63
	+70°	E	+2.56	2.96	3.36	3 73	4.09	4.42		4.73	4.99	5.21	5.39	5.52	5.60	5.62	+2.56	2.16	1.77	1.39	1.03	0.70	+0.40	+0.13	-0.09	-0.27	-0.40	-0.47	-0.50
	+75°	E	+2.56	3.10	3.64	4 15	4.64	5.09		5.50	5.86	6.16	6.40	6.58	6.68	6.72	+2.56	2.02	1.48	0.97	+0.46	+0.03	-0.38	-0.74	-1.04	-1.28	-1.45	-1.56	-1.60
	$+80^{\circ}$	E	+2.56	3.38	4.19	4 98	5.72	6.40		7.02	7.57	8.03	8.40	8.66	8.82	8.88	+2.56	1.82	+0.93	+0.14	-0.60	-1.28	-1.90	-2.45	-2.91	-3.27	-3.54	-3.70	-3.75
	$\delta = +85^{\circ}$	Е	+ 2.56	+ 4.22	+ 5.85	+ 7.43	+ 8.92	+10.31	_	+11.56	+12.66	+13.58	+14.32	+14.85	+15.18	+15.29	+ 2.56	+ 0.90	- 0.73	- 2.31	- 3.80	- 5.19	- 6.44	- 7.54	- 8.46	- 9.20	- 9.73	-10.06	-10.17
Prec. in	Dec.		+16.7	+16.6	+16.1	+15.4	+14.5	+13.2		+11.8	+10.2	+ 8.3	+ 6.4	+ 4.3	+ 2.2	+ 0.0	-16.7	-16.6	-16.1	-15.4	-14.5	- 13.2	-11.8	-10.2	- 8.3	- 6.4	- 4.3	- 2.2	- 0.0
	R.A.	h m	00 0	0 30	1 00	1 30	2 00	2 30		3 00	3 30	4 00	4 30	5 00	5 30	6 00	12 00	12 30	13 00	13 30	14 00	14 30	15 00	15 30	16 00	16 30	17 00	17 30	18 00

A number of the stars which appear as single to the unaided eye may be separated into two or more components by field glasses or a small telescope. Such objects are spoken of as *double or multiple stars*. With larger telescopes pairs which are still closer together may be resolved, and it is found that, up to the limits of modern telescopes, over ten per cent. of all the stars down to the ninth magnitude are members of double stars.

The possibility of resolving a double star of any given separation depends on the diameter of the telescope objective. Dawes' simple formula for this relation is d''=4.5/A, where d is the separation, in seconds of arc, of a double star that can be just resolved, and A is the diameter of the objective in inches. Thus a one-inch telescope should resolve a double star with a distance of 4''.5 between its components, while a ten-inch telescope should resolve a pair 0''.45 apart. It should be noted that this applies only to stars of comparable brightness. If one star is markedly brighter than its companion, the glare from the brighter makes it impossible to separate stars as close as the formula indicates. This formula may be applied to the observation of double stars to test the quality of the seeing and telescope.

It is obvious that a star may appear double in one of two ways. If the components are at quite different distances from the observer, and merely appear close together in the sky the stars form an *optical* double. If, however, they are in the same region of space, and have common proper motion, or orbital motion about one another, they form a *physical* double. An examination of the probability of stars being situated sufficiently close together in the sky to appear as double shows immediately that almost all double stars must be physical rather than optical.

Double stars which show orbital motion are of great astrophysical importance, in that a careful determination of their elliptical orbits and parallaxes furnishes a measure of the gravitational attraction between the two components, and hence the mass of the system.

In the case of many unresolvable close doubles, the orbital motion may be determined by means of the spectroscope. In still other doubles, the observer is situated in the orbital plane of the binary, and the orbital motion is shown by the fluctuations in light due to the periodic eclipsing of the components. Such doubles are designated as *spectroscopic* binaries and *eclipsing* variables.

The accompanying table provides a list of double stars, selected on account of their brightness, suitability for small telescopes, or particular astrophysical interest. The data are taken chiefly from Aitken's New General Catalogue of Double Stars, and from the Yale Catalogue of Bright Stars. Successive columns give the star, its 1950 equatorial coordinates, the magnitudes and spectral classes of its components, their separation, in seconds of arc, and the approximate distance of the double star in light years. The last column gives, for binary stars of well determined orbits, the period in years, and the mean separation of the components in astronomical units. For stars sufficiently bright to show colour differences in the telescope used, the spectral classes furnish an indication of the colour. Thus O and B stars are bluish white, A and F white, G yellow, K orange and M stars reddish.

A good reference work in the historical, general, and mathematical study of double stars is Aitken's *The Binary Stars*.

REPRESENTATIVE DOUBLE STARS

	Star	a 19	50 δ		Mag. and Spect.	d	D	Remarks
$\pi \eta a \gamma a$	And Cas UMi Ari Pis	h m 00 34.2 00 46.0 01 48.8 01 50.8 01 59.4	\circ +33 +57 +89 +19 +02	, 27 33 02 03 31	4.4B3; 8.5 3.6F8; 7.2M0 var. F8; 8.8 4.8A0; 4.8A0 5.2A2; 4.3A2	"36 8 19 8.3 2.4	L.Y. 470 18 407 150 130	† 526y; 6 6AU Polaris ††
γ 6 η 32 β	And Tri Per Eri Ori	$\begin{array}{cccc} 02 & 00.8 \\ 02 & 09.5 \\ 02 & 47.0 \\ 03 & 51.8 \\ 05 & 12.1 \end{array}$	+42 + 30 + 55 - 03 - 08	05 04 41 06 15	2.3K0; 5.4A0; 6.6 5.4G4; 7.0F3 3.9K0; 8.5 5.0G5; 6.3A 0.3B8; 7.0	10, 0.7 3.6 28 6.7 9	410 330 540 300 540	56y; 23AU †† †
θ β 12 a δ	Ori Mon Lyn CMa G e m	$\begin{array}{c} 05 & 32.8 \\ 06 & 26.4 \\ 06 & 41.8 \\ 06 & 43.0 \\ 07 & 17.1 \end{array}$	$-05 \\ -07 \\ +59 \\ -16 \\ +22$	25 00 30 39 05	5.4;6.8; 6.8; 7.9; O 4.7B2; 5.2; 5.6 5.3A2; 6.2; 7.4 -1.6A0; 8.5F 3.5F0; 8.0M0	$\begin{vmatrix} 13, 17 \\ 7, 25 \\ 1.7, 8 \\ 11 \\ 6.8 \end{vmatrix}$	540 470 180 9 58	Trapezium † 50y; 20AU †
αζ _γ γ _{λγγ} ι	Gem Cnc Leo UMa Leo	$\begin{array}{c} 07 & 31.4 \\ 08 & 09.3 \\ 10 & 17.2 \\ 11 & 15.5 \\ 11 & 21.3 \end{array}$	+32 +17 +20 +31 +10	00 48 06 48 48	2.0A0; 2.8A0; 9M10 5.6G0; 6.0; 6.2 2.6K0; 3.8G5 4.4G0; 4.9G0 4.1F3; 6.8F3	$\begin{array}{c} 4,70\ 1,5\ 4\ 2\ 2\ 2\ \end{array}$	$47 \\ 78 \\ 160 \\ 25 \\ 69$	340y; 79AU 60y; 21AU 400y ††60y; 20AU
γ αζ π ε	Vir CVn UMa Boo Boo	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-01 + 38 + 55 + 16 + 27	10 35 11 38 17	3.6F0; 3.7F0 2.9A0; 5.4A0 2.4A2; 4.0A2 4.9A0; 5.1A0 2.7K0; 5.1A0		34 140 78 360 220	171y; 42AU †† †† †
thothe aro	Boo Ser Sco Her Her	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+19 +10 -11 +14 +24	18 42 14 27 54	4.8G5; 6.7 4.2F0; 5.2F0 5.1F3; 4.8; 7G7 var.M5; 5.4G 3.2A0; 8.1G2	$3 \\ 4 \\ 1, 7 \\ 5 \\ 11$	22 170 84 540 100	151y; 31AU 44.7y; 19AU † † Optical
ε β α γ 61	Lyr Cyg Cap Del Cyg	18 42.7 19 28.7 20 14.9 20 44.3 21 04.6	+39 +27 -12 +15 +38	37 51 40 57 30	5.1, 6.0A3; 5.1, 5.4A5 3.2K0; 5.4B9 3.8G5; 4.6G0 4.5G5; 5.5F8 5.6K5; 6.3K5	3, 2 34 376 10 23	200 410 110 11	Pairs 207" † Optical
β5588 5	Cep Aqr Cep Lac Cas	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$+70 \\ -00 \\ +58 \\ +39 \\ +55$	20 17 10 23 29	var.B1; 8.0A3 4.4F2; 4.6F1 var.G0; 7.5A0 5.8B3; 6.5B5 5.1B2; 7.2B3	14 3 41 22 3	540 140 650 1100 820	† †

t or th, one, or two of the components are themselves very close visual double or more generally, spectroscopic binaries.

Maps of the fields of four bright variable stars are given below. In each case the magnitudes of several suitable comparison stars are given. Note that the decimal points are omitted: a star 362 is of mag. 3.62. Use two comparison stars, one brighter and one fainter than the variable, and estimate the brightness of the variable in terms of these two stars. Record the date and time of observation. When a number of observations have been made, a graph may be plotted showing the magnitude estimate as ordinates against the date (days and tenths of a day) as abscissae. Each type of variable has a distinctive shape of light curve.

In the tables the first column, the Harvard designation of the star, gives the 1900 position: the first four figures give the hours and minutes of R.A., the last two figures give the Dec. in degrees, italicised for southern declinations. The column headed Max. gives the mean maximum magnitude. The Period is in days. The Epoch gives the predicted date of the earliest maximum occurring this year; by adding the period to this epoch other dates of maximum may be found. The list of long-period variables has been prepared by the American Association of Variable Star Observers and includes the variables with maxima brighter than mag. 8.0, and north of Dec. -20° . These variables may reach maximum for several weeks. The second table contains stars which are representative of other types of variable. The data are taken from "The General Catalogue of Variable Stars" by Kukarkin and Parenago.

LONG-PERIOD	VARIABLE	STARS
-------------	----------	-------

Variable		Max. m	Per. d	Epoch 1958	Variable		Max. m	Per. d	Epoch 1958
$\begin{array}{c} 001755\\ 0021143\\ 022813\\ 022813\\ 023133\\ 045514\\ 050953\\ 054920a\\ 065355\\ 070122a\\ 072708\\ 072820b\\ 081112\\ 081617\\ 084803\\ 085008\\ 093934\\ 094211\\ 103769\\ 115158\\ 122001\\ 123160\\ 123307\\ 123961\\ 132706 \end{array}$	T Cas W And o Cet U Cet R Tri R Lep R Aur U Ori V Mon R Gem S CMi Z Pup R Cnc V Cnc S Hya T Hya R LMi R Leo R UMa Z UMa R Crv SS Vir T UMa R Vir S UMa S Vir	$\begin{array}{c} 7.8\\ 7.5\\ 3.7\\ 7.5\\ 6.3\\ 6.7\\ 7.9\\ 7.9\\ 7.9\\ 7.9\\ 6.8\\ 8.09\\ 7.7\\ 7.2\\ 5.9\\ 6.6\\ 6.6\\ 6.9\\ 7.9\\ 7.1\\ \end{array}$	$\begin{array}{r} 445\\ 397\\ 332\\ 235\\ 266\\ 428\\ 372\\ 334\\ 378\\ 370\\ 335\\ 512\\ 361\\ 272\\ 258\\ 289\\ 372\\ 313\\ 301\\ 198\\ 317\\ 358\\ 257\\ 145\\ 226\\ 377\\ \end{array}$	Nov. 22 Aug. 21 Sept. 25 Mar. 2 July 17 Oct. 14 Apr. 29 Apr. 29 Apr. 29 Feb. 25 Sept. 17 Mar. 27 Nov. 22 Sept. 11 Apr. 5 July 29 May 2 June 22 Dec. 6 July 23 Feb. 18 Mar. 23 July 17 Aug. 12 Aug. 16 Jan. 23 Mar. 24 Mar. 26 Mar. 26 Mar. 26 Mar. 27 Mar. 23 Mar. 24 Mar. 24 Mar. 20 Mar. 23 Mar. 23	$\begin{array}{r} 142539\\ 143227\\ 151731\\ 154639\\ 154615\\ 162119\\ 162112\\ 163266\\ 164715\\ 170215\\ 170215\\ 171723\\ 180531\\ 181136\\ 183308\\ 190108\\ 191019\\ 193449\\ 194048\\ 194632\\ 200938\\ 204405\\ 210868\\ 230110\\ 230759\\ 231508\\ 233451\\ 235350\\ \end{array}$	V Boo R Boo S CrB V CrB R Ser U Her V Oph R Dra S Her R Oph R S Her T Her W Lyr X Oph R Aql R Sgr R Cyg R Cyg R T Cyg R S Cyg R C Cgy R S Cyg R S Cyg R S Cyg R C Cyg R S Cyg R S Cyg R C Cyg R S Cyg R C Cyg R S Cyg R C Cyg R S Cyg R C C C C C C C C C C C C C C C C C C C	$\begin{array}{c} 7.9\\ 7.3\\ 7.5\\ 7.4\\ 6.8\\ 7.6\\ 7.6\\ 7.6\\ 7.6\\ 7.6\\ 8.0\\ 8.0\\ 8.0\\ 6.9\\ 7.3\\ 7.4\\ 5.3\\ 7.4\\ 5.3\\ 7.9\\ 8.8\\ 7.9\\ 8.8\\ 6.5\\ \end{array}$	$\begin{array}{c} 260\\ 224\\ 361\\ 358\\ 357\\ 405\\ 298\\ 245\\ 307\\ 302\\ 219\\ 165\\ 197\\ 335\\ 300\\ 269\\ 425\\ 190\\ 406\\ 420\\ 202\\ 390\\ 377\\ 228\\ 320\\ 278\\ 430\\ \end{array}$	Mar. 27 Feb. 19 June 17 Mar. 13 Apr. 4 Aug. 14 Sept. 18 Aug. 7 Sept. 21 July 29 June 9 June 9 June 9 June 9 Jan. 26 Feb.20 May 24 Sept. 23 Jan. 18 Aug. 16 Sept. 22 Apr. 4 Nov. 1 June 24 Feb.24 May 16 Aug. 26 May 22
134440	R CVn	7.7	326	May 25]]		

OTHER TYPES OF VARIABLE STARS

Var	iable	Max. m	Min. m	Туре	Sp. Cl.	Period d	Epoch 1958 E.S.T.
$\begin{array}{c} 005381\\ 025838\\ 035512\\ 051133\\ 060822\\ 061907\\ 065820\\ 154428 \end{array}$	U Cep ρ Per λ Tau ARAur η Gem T Mon ζ Gem R CrB	$\begin{array}{c} 6.8\\ 3.2\\ 3.5\\ 5.8\\ 3.1\\ 5.8\\ 3.7\\ 5.8\\ 3.7\\ 5.8\end{array}$	$9.8 \\ 3.8 \\ 4.0 \\ 6.5 \\ 3.9 \\ 6.8 \\ 4.1 \\ 14$	Ecl SemiR Ecl Ecl SemiR δ Cep δ Cep R CrB	B8 M4 B3 A0+A0 M3 F7-K1 F7-G3 cC0ep	$\begin{array}{r} 2.4929005\\ 50\\ 3.952952\\ 4.134606\\ 234\\ 27.018\\ 10.153527\end{array}$	Jan. 4.942* Jan. 4.171* Jan. 2.959* July 14* Jan. 13.71 Jan. 2.674
171014 184205 184633 192242 194700 201437a 222557	$\begin{array}{c} \alpha & \text{Her} \\ \text{R Sct} \\ \beta & \text{Lyr} \\ \text{RRLyr} \\ \eta & \text{Aql} \\ \text{P Cyg} \\ \delta & \text{Cep} \end{array}$	3.0 5.0 3.4 7.3 3.7 3.5 3.8	$\begin{array}{c} 4.0 \\ 8.4 \\ 4.3 \\ 8.1 \\ 4.4 \\ 6.0 \\ 4.6 \end{array}$	SemiR RVTau Ecl RRLyr δ Cep Nova δ Cep	M5 G0-M5 B8 A2-F0 F6-G4 B1 eq F5-G2	$100 \\ 144 \\ 12.9308 \\ 0.56683500 \\ 7.176678 \\ 5.366306$	Feb. 9.22* Jan. 2.095 Jan. 1.876 Jan. 5.888

*Minima

STAR CLUSTERS

The star clusters for this observing list have been selected to include the more conspicuous members of the two main classes—open clusters and globular clusters. Most of the data are from Shapley's Star Clusters and from Trumpler's catalogue in Lick Bulletin No. 420. In the following table N.G.C. indicates the serial number of the cluster in the New General Catalogue of Clusters and Nebulae; M, its number in Messier's catalogue; Con, the constellation in which it is located; a and δ , its right ascension and declination; Cl, the kind of cluster, Op for open or galactic and Gl for globular; Diam, the apparent diameter in minutes of arc; Mag. B.S., the magnitude of the fifth brightest star in the case of open clusters, the mean of the 25 brightest for globular; No., the number of stars in the open clusters were studied; Int.mag., the total apparent magnitude of the globular clusters; and Dist., the distance in light years.

N.G.C.	М	Con.	a 19	θ60 δ	Cl.	Diam.	Mag.	No.	Int.	Dist
			h m	• •		,	B.S.		mag.	l.y.
869		h Per	02 16.2	+5658	Op	30	7			4,300
884		χ Per	02 19.6	+56 56	Op	30	7			4,300
1039	34	Per	02 39.4	$+42\ 37$	Op	30	9	80		1,500
Pleiades	45	Tau	03 45.1	+23 59	Op	120	4.2	250		490
Hyades		Tau	04 18	+15 31	Op	400	4.0	100		120
1912	38	Aur	05 26.0	+35 48	Op	18	9.7	100		2,800
2099	37	Aur	05 49.7	+32 33	Op	24	9.7	150		2,700
2168	35	Gem	06 06.4	+24 21	Op	29	9.0	120		2,700
2287	41	C Ma	06 45.3	-20 42	Op	32	9	50		1,300
2632	44	Cnc	08 37.8	+20 07	Op	90	6.5	350		490
5139		ωCen	13 24.3	-47 16	Gl	23	12.9		3	22,000
5272	3	C Vn	13 40.4	+28 35	Gl	10	14.2		4.5	40,000
5904	5	Ser	15 16.5	+02 13	Gl	13	14.0		3.6	35,000
6121	4	Sco	16 21.2	$-26\ 26$	Gl	14	13.9		5.2	24,000
6205	13	Her	16 40.2	+36 32	Gl	10	13.8		4.0	34,000
62 18	12	Oph	16 45.2	-01 53	Gl	9	14.0		6.0	36,000
6254	10	Oph	16 55.0	-04 03	Gl	8	14.1		5.4	36,000
6341	92	Her	17 15.9	+43 11	Gl	8	13.9		5.1	36,000
6494	23	Sgr	17 54.6	-19 01	Op	27	10.2	120		2,200
6611	16	Ser	18 16.6	-13 48	Op	8	10.6	55		6,700
6656	22	Sgr	18 34.0	-23 57	Gl	17	12.9		3 .6	22,000
7078	15	Peg	21 28.0	+11 59	Gl	7	14.3		5.2	43,000
7089	2	Aqr	21 31.4	-01 00	Gl	8	14.6		5.0	45,000
7092	39	Cyg	21 30.8	+48 15	Op	32	6.5	25		1,000
7654	52	Cas	23 22.4	+61 23	Op	13	11.0	120		4,400

GALACTIC NEBULAE

The galactic nebulae here listed have been selected to include the most readily observable representatives of planetary nebulae such as the Ring Nebula in Lyra, diffuse bright nebulae like the Orion nebula and dark absorbing nebulosities such as the Coal Sack. These objects are all located in our own galactic system. The first five columns give the identification and position as in the table of clusters. In the Cl column is given the classification of the nebula, planetary nebulae being listed as Pl, diffuse nebulae as Dif, and dark nebulae as Drk. Size indicates approximately the greatest apparent diameter in minutes of arc; and m n is the magnitude of the planetary nebula and m * is the magnitude of its central star. The distance is given in light years, and the name of the nebula is added for the better known objects.

N.G.C.	М	Con	h	a 19 m	60 å	ì,	CI	Size	m n	m *	Dist. 1.y.	Name
650	76	Per	01	39.7	+51	22	P1	1.5	11	17	15,000	
1952	1	Tau	05	32.1	+22	00		6	11	16	4,100	Crab
1976	42	Ori	05	33.3	-05	25	Dif	30			1,800	Orion
B33		Ori	05	38.9	-02	29	Drk	4			300	Horsehead
2261		Mon	06	37.0	+08	46	Dif	2			·	Hubble's var.
2392		Gem	07	26.8	+21	00	Pl	0.3	8	10	2,800	
2440		Pup	07	40.1	-18	07	P1	0.9	11	16	8,600	
3 587	97	UMa	11	12.5	+55	14	Pl	3.3	11	14	12,000	Owl
		Cru	12	49	-63		Drk	300			300	Coalsack
6210		Her	16	42.8	+23	52	PI	0.3	10	12	5,600	
B72		Onh	17	21.2	-23	35	Drk	20			400	S nebula
6514	20	Ser	18	00.0	-23	02	Dif	24			3.200	Trifid
B86		Ser	18	00.5	-27	53	Drk	5			-,	
6523	8	Ser	18	01.2	-24	23	Dif	50			3.600	Lagoon
6543		Dra	17	58.6	+66	37	Pl	0.4	9	11	3,500	8
6572		Onh	18	10.2	+06	50	PI	0.2	9	12	4 000	
B92		Sor	18	13.2	-18	15	Drk	15	Ū		1,000	
6618	17	Sor	18	18.5	-16	12	Dif	26			3 000	Horseshoe
6720	57	Lyr	18	52.1	+32	59	PI	14	9	14	5 400	Ring
6826	0	Cyg	19	43 7	+50	26	PI	0.4	ğ	11	3 400	Tring
0020		0,2	10	10.1			1				0,100	
6853	27	Vul	19	57.9	+22	2 36	Pl	8	8	13	3,400	Dumb-bell
6960		Cyg	20	44.0	+30) 34	Dif	60				Network
7000		Cyg	20	57.4	+44	10	Dif	100				N. America
7009		Aqr	21	02.0	-11	. 32	P1	0.5	8	12	3,000	
7662		And	23	24.0	+42	2 19	Pl	0.3	9	13	3,900	

EXTERNAL GALAXIES

Among the hundreds of thousands of systems far beyond our own galaxy relatively few are readily seen in small telescopes. The following list contains a selection of the closer brighter objects of this kind. The first five columns give the catalogue numbers, constellation and position on the celestial sphere. In the column Cl, E indicates an elliptical nebula, I an irregular object, and Sa, Sb, Sc spiral nebulae, in which the spiral arms become increasingly dominant compared with the nucleus as we pass from a to c. The remaining columns give the apparent magnitude of the nebula, its distance in light years and the radial velocity in kilometers per second. As these objects have been selected on the basis of ease of observation, the faint, very distant objects which have spectacularly large red shifts, corresponding to large velocities of recession, are not included.

N.G.C.	М	Con	α 19 h m	60 δ	CI	Dimens.	Mag.	Distance millions of l.y.	Vel. km / sec
221	32	And	00 40.5	+40 39	Е	3×3	8.8	1.6	- 185
224	31	And	00 40.5	+41 03	Sb	160×40	5.0	1.6	- 220
SMC		Tuc	00 53	$-72\ 35$	I	220×220	1.5	0.17	+ 170
598	33	Tri	01 31.6	+3028	Sc	60×40	7.0	1.4	- 70
LMC		Dor	05 21	-69 26	Ι	430×530	0.5	0.17	+ 280
3031	81	UMa	09 52.4	+69 16	Sb	16×10	8.3	4.8	- 30
3034	82	UMa	09 52.7	+69 53	Ι	7×2	9.0	5.2	+ 290
3368	96	Leo	10 44.6	+12 02	Sa	7×4	10.0	11.4	+ 940
3623	65	Leo	11 16.8	+13 19	Sb	8×2	9.9	10.0	+ 800
3627	66	Leo	11 18.2	+13 13	Sb	8× 2	9.1	8.6	+ 650
4258		CVn	12 17.0	+47 32	Sb	20×6	8.7	9.2	+ 500
4374	84	Vir	$12 \ 23.0$	+13 06	E	3×2	9.9	12.0	+1050
4382	85	Com	12 23.4	+18 25	E.	4×2	10.0	7.4	+ 500
4472	49	Vir	12 27.8	+08 13	Ε	5×4	10.1	11.4	+ 850
4565		Com	12 34.4	+26 12	Sb	15×1	11.0	15.2	+1100
4594		Vir	12 37.9	-11 24	Sa	7× 2	9.2	14.4	+1140
4649	60	Vir	12 41.7	+11 46	E	4×3	9.5	15.0	+1090
4736	94	CVn	12 49.0	+41 20	Sb	5×4	8.4	6.0	+ 290
4826	64	Com	12 54.8	+21 54	\mathbf{Sb}	8×4	9.2	2.6	+ 150
5005		CVn	13 09.0	+37 16	Sc	5×2	11.1	13.2	+ 900
5055	63	CVn	13 14.0	+42 14	Sb	8× 3	9.6	7.2	+ 450
5194	51	CVn	13 28.2	+47 24	Sc	12×6	7.4	6.0	+ 250
5236	83	Hya	13 34.8	-29 40	Sc	10×8	8	5.8	+ 500
6822		Sgr	19 42.7	-1452	I	20×10	11	2.0	- 150
7331		Peg	22 35.2	+34 12	Sb	9× 2	10.4	10.4	+ 500

The above map represents the evening sky at

M	idnig	ght.			• • •	Feb.	6
11	p.m					"	21
10						Mar.	7
9	"'		•			"	22
8	"					Apr.	6
7	"'	• • • •		•••		1î	21

The centre of the map is the zenith, the circumference the horizon. To identify the stars hold the map so that the part of the horizon you are facing is down.

The above map represents the evening sky at

M	idnig	h	t	•		•	•	•	•	•	•	. May	8
11	p.m.	•			•							. "	24
10	••											. June	7
9	••											. "	22
8	"				•	•	•	•	•	•	•	. July	6

The centre of the map is the zenith the circumference the horizon. To identify the stars hold the map so that the part of the horizon you are facing is down

The above map represents the evening sky at

M	idnigl	ht	· • ·	•••	• •	•••	Aug.	5
11	p.m.						**	21
10	44	••					Sept.	7
9	"	• • •					"	23
8	**						Oct.	10
7	**						44	26
6	**				•••		Nov.	6
5	**				•••		"	21

The centre of the map is the zenith, the circumference the horizon. To identify the stars hold the map so that the part of the horizon you are facing is down.

The above map represents the evening sky at

Midnigl	ht	Nov.	6
11 p.m.			21
10 "		Dec.	6
9 ''			21
8"		Jan.	5
7 "		"	20
6 "		Feb.	6

The centre of the map is the zenith, the circumference the horizon. To identify the stars hold the map so that the part of the horizon you are facing is down.

VISITING HOURS AT SOME CANADIAN OBSERVATORIES

Administration Building of the David Dunlap Observatory, Richmond Hill, Ont., where the editor, Miss R. J. Northcott, and the assistant editor, Dr. Leonard T. Searle, have their offices.

Dominion Observatory, Ottawa, Ont .:

Monday to Friday, daytime, rotunda only.

Saturday evenings, April through October.

The 15-inch telescope is used for visitors and one of the five divisions of the Observatory is open.

David Dunlap Observatory, Richmond Hill, Ont .:

Wednesday afternoons.

Saturday evenings, April through October.

The 74-inch telescope is used for visitors; small telescopes are operated by members of the Toronto Centre.

Dominion Astrophysical Observatory, Victoria, B.C.:

Mondays to Fridays, daytime, no programme.

Saturday evenings, April through November.

The 72-inch telescope is used for visitors.

Have you thought of this?

WITH the launching of an earth satellite, the astronomical societies will have visitors come in as the result of the publicity in the papers. Individuals also will have questions asked and plans should be made to meet these questions.

This will be an amazing attempt, and should be successful. It will be the most spectacular news story the papers have ever had. When these people come into your society for a visit, because of interest (*whetted up* by the papers), what are you going to do to increase this interest and keep them coming permanently? Every astronomical society should be studying right now and getting ready; planning future programs that will be interest provoking.

Many societies have seen interested people drift into their meetings and drift out again. Analyse yourself and see if some of the blame really belongs to you. Were you cordial enough when they visited? To have the membership increased means you can go farther with the extra dues. Some, whose interest is very shallow, will not stay, but you should study to have a larger percentage remain. It will take time and effort. ASTRONOMY CHARTED is continually searching for things that will help you.

We have two new slide sets of the southern sky; sets 11 and 12 which we will not list here because we want you to write for a circular. Included is **Sky Atlas** by Rev. Francis J. Heyden of Georgetown University in Washington (complete); Harvard College's Southern slides, some from Yerkes, and from the private slide collection of Dr. Harlow Shapley. You will want to add these excellent 2 × 2 slides to your collection. Each set \$9.75, or \$18.50 for both. Many new books have been added.

We present also two star finders—the Stellasphere for Constellations, and the Stellar Navigator for navigation stars, both 40° north and good for 10° each way making them useful for the United States and Canada, and a band of like latitude around the earth. Each \$1.50—Both for \$3.00 with a moon map free.

We are also agents for Sky & Telescope and their publications. You can get their material in one order to us and have to write only one cheque.

As always you will want our descriptive literature which is free for the asking. We want to help you hold these new interested ones. Our circulars are the first step.

OUR INTERNATIONAL GEOPHYSICAL YEAR SPECIAL

The Sun, by Abetti	\$12.00
Influence of the Sun, by Ellison	. 4.50
by De Vaucouleurs	. 10.00
The Moon, by Wilkins and Moore	. 12.00
From Atoms to Stars, by Davidson	. 3.75
Between the Planets, by Watson	5.00
Milky Way (new edition),	
by Bok and Bok	5.50
Frontier to Space, by Burgess	4.50
Rockets & Guided Missiles,	
by Burgess	6.00
Astronomy & the Bible,	
(mimeographed) Wright	5.00
Total	\$68.25
This special selection	. \$63.00

You save \$5.25. A lot of ground is covered.

Our Constellation postcards and Star games are really a hit.

A \$2.45 value for only \$2.00

Phone: Worcester PL-5-6992

ASTRONOMY CHARTED

33 WINFIELD STREET, WORCESTER 2, MASS., U.S.A.

NOW IN CANADA

Here is the refractor selected by the Canadian and U.S. Armed Forces and universities throughout the world. Now available here in Canada at the lowest prices ever with no extra duty or tax charges. Fully guaranteed and serviced by Canada's largest specialists in optical instruments.

3" ALTAZIMUTH

3" EQUATORIAL

4" ALTAZIMUTH

4" EQUATORIAL

4" PHOTO EQUATORIAL ROTARY EYEPIECE SELECTOR DOUBLE EYEPIECE EYEPIECES

OBJECTIVE LENSES

ASTRO-CAMERA

-62 mm. coated objective lens, f.l. 900 mm. Four eyepieces $36 \times$ to $130 \times$. ($150 \times$ available at extra cost). Star diagonal, erecting prism system, sunglass. $5 \times$ viewfinder telescope. Slow motion controls. Tripod, fitted cabinet \$120.

- -3" aperture objective, f.l. 1200 mm. Five eyepieces $48 \times$ to $171 \times (200 \times$ and $240 \times$ available at extra cost). Large $8 \times$ viewfinder, all accessories as above. Complete \$245.
- —optical eqpt. as altazimuth, but additional $200 \times$ eyepiece. Has oversize equatorial mounting, with setting circles and verniers for declination and right ascension. Sun projection apparatus included. Complete \$375.
- -4" aperture, f.l. 1500 mm. Seven eyepieces $37 \times$ to $250 \times (300 \times$ and $375 \times$ at extra cost). $10 \times$ viewfinder, slow motion controls, all accessories. \$450.
- —as above with $77 \times$ guide telescope \$785.
- -holds six eyepieces, instantly interchangeable \$25.00
- -permits two observers simultaneously \$22.50
- -all coated, o.d. 24.5 mm. (Adapter for 1¼" 35¢ extra).
 - f.l. 25 mm., 18 mm., 12.5 mm. \$7.50 fl. 9 mm., 7 mm., 6 mm. \$9.00
 - f.l. 5 mm., 4 mm. Orthoscopic, 40 mm. Kellner
 - \$15.00
- -air spaced coated achromats, in cell 3in. \$75. 4in. \$145. 6in. \$750.
 -specify for 1¼" or 24.5 mm. eyepieces \$75.

Twenty-four years specializing in Optical Instruments

W. CARSEN & CO. LTD.

Showroom and Service Lab - 88 Tycos Dr., TORONTO, Can.

KENNEDY ANTENNAS for radio astronomy

Kennedy, designer and manufacturer of the 60' antenna for Harvard University's giant new radio telescope — shown here — can now offer its 28, 60, and 84 foot diameter reflectors equatorially mounted for use with radio telescopes, or elevation-azimuth mounted for other tracking requirements.

Drives can be adapted for lunar tracking or other special purposes, and each unit is prefabricated into sections for ease of shipment and installation.

BEST MONEY'S WORTH!

LITTLE GIANT PRISM

Suitable for many optical experiments and for use with low-power telescopes. Size 2" x 2", aluminized Size 2" x 2", aluminized on the hypotenuse. Con-tains $\frac{1}{2}$ lb. of the best white optical crown glass.

Slight imperfections (due to slicing from larger size) will not affect efficiency for most uses. A great value for a dollar.

Only \$1.00 plus 45¢ postage

ACHROMATIC TELESCOPE EYEPIECES

Cemented triplet monocentric (solid) type, highest light transmission through minimum glass thickness. Medium wide field, sharp to the very edge. Almost perfect color correction. Mounted in black anodized non-reflecting cap of fall-away type. O.D. 11/4".

1/2" e.f.l......\$10.50 p.p. 1/4" e.f.l.....\$10.50 p.p. ¹/₅" e.f.l.......\$10.50 p.p. ¹/₅" e.f.l.......\$15.50 p.p.

ACHROMATIC TELESCOPE EYEPIECES

Twin - achromatic doublet about $\frac{1}{3}$ " e.f.l. (30x) made of two achromatic cemented doublets, of famous manu-facture. Field is sharp to the very edge. Good color correction. In French-doubscrew-type mounting, let giving highest eye-point possible with this short-focus combination. Mounting — standard 1¼" O.D. Limited supply.

Each \$8.50 postpaid

SUN SAFETY FILTERS

The SAFE AND SANE way to look at solar displays with or without a Telescope—use our Special Safety Sun Filters. Each one is 50 mm. (2'') diameter and 2 mm. (1/16'') thick; polished flat on both sides.

This Special Safety Sun Filter can be used in any of the following three ways:

1. View the sun *directly* by looking through filter with unaided eyes without harm or danger.

2. Place filter at the eyepoint of the ocular of either refractor or reflector and observe with any power after limiting the objective (with a dia-phragm) to less than 3".

3. Use filter as a limiting diaphragm in front of the objective of the telescope. Will not crack. Prevents harm to mirror or objective.

For Winter sunlight use No. WF12 For Summer sunlight use No. SF14 Only \$2.00 each or \$3.00 per set of 2 (containing one of each of above).

More Value

ACHROMATIC LENS ASSORTMENT

10 assorted achromatic lenses. To assorie a chromatic lenses, some large (3'' O.D.), some medium, some small (1/2'')O.D.), some long F.L., some short F.L. Coated and uncoated Some Jonath uncoated. Some mountedmost not. Some chipped, some not edged BUT ALL GOOD ACHROMATS!

10 assorted lenses . . . \$5.00 plus 89 ϕ postage Suitable for telescopes, microscopes, eyepieces, objectives, spectroscopes, collimators, and the like. Order now. We reserve the right to discontinue this offer without notice.

Subject to prior sale-Stock limited!

Make a Professional Astronomical or Terrestrial Telescope for as Little as \$20.50 No Need for Months of Tedious Grinding ! **Telescope Success** Assured

6" TELESCOPE MIRROR 63" F.L., GROUND, POLISHED, ALUMINIZED, ONLY \$20.50

Our regular 6" Aluminized Telescope Mirrors. 63" f.l. 1" blank. Pyrex glass. ONLY \$20.50, plus 89c.

EQUATORIAL MOUNTING

Aluminum and Steel

Weight 10 pounds. Height 15", width 17". Finished in grey lacquer. Will handle any telescope up to 10" diameter. All bearings and 1" steel axils guaranteed against play. Every motion of the instrument will feel as smooth as silk. The polar axis is adjust-able. The telescope can be

moved north-south in de-clination and east-west in time or right ascension to any part of the sky.

COMPLETE \$75.00 Plus Parcel Post of \$2.50

Include postage please. No open accounts or C.O.D.'s. Complete catalog-\$1.00.

HARRY ROSS

Telescopes—Microscopes

New York 7, N. Y. 61 Reade Street, Desk 7 In Business Over Quarter Century

UNITRON Leads in Value and Quality

UNITRON refractors have been ordered and reordered by the Canadian Department of Defence, the U.S. Army, the U.S. Air Force, leading universities such as Harvard, Columbia, Stanford, etc., as well as by active amateurs the world over. More UNITRONS are sold than any other telescopes of their type—there must be a reason!

 Amateur clubs and research programs

MANY MODELS TO CHOOSE FROM!

1.6″	ALTAZIMUTH	5 75
2.4″	ALTAZIMUTH	125
2.4″	EQUATORIAL	225
3″	ALTAZIMUTH	265
3″	EQUATORIAL	435
3″	PHOTOGRAPHIC EQUATORIAL	550
4″	ALTAZIMUTH	465
4″	EQUATORIAL	785
4″	PHOTOGRAPHIC EQUATORIAL	89 0
4″	PHOTO-EQUATORIAL with clock	
	drive, astro camera	1175
4"	PHOTO-EQUATORIAL with clock	
	drive, camera, and metal pier	1280

NOTE THESE UNITRON FEATURES

• LENSES are FULLY CORRECTED for spherical and chromatic aberration and are COATED for maximum brilliance and clarity of image. AIR-SPACED CELL insures freedom from "clouding" with age.

• EYEPIECES of the HIGHEST QUALITY ... Orthoscopic, Achromatized Symmetrical, Kellner, Huygens.

• FINEST MATERIALS throughout DURA-LUMIN TUBE. Moving parts of BRASS carefully machined to close tolerances, and finished in CHROMIUM.

• MODERN DESIGN based on time-tested engineering principles. HANDSOME APPEARANCE to which no illustrations can do justice.

• STURDY TRIPOD may be folded.

• ALTAZIMUTH MODELS have slow motion controls for both declination and right ascension.

• ALTAZIMUTH MODELS have slow motions for both altitude and azimuth.

- VIEWFINDER with crosshair eyepiece.
- RACK-AND-PINION FOCUSING.
- SUNGLASS for solar observation.
- UNIHEX Rotary Eyepiece Selector.

• STAR DIAGONAL for easy observing at all altitudes.

• ERECTING PRISM SYSTEM for TERRES-TRIAL OBSERVATION may be used with any of the eyepieces to give the same complete range of terrestrial magnifications as for celestial observation.

FITTED WOODEN CABINETS.

United Scientific Co. 204-206 MILK STREET BOSTON 9, MASS.

Telescope Accessories by UNITRON

The UNITRON line of accessories and components permits you to modernize your telescope at a minimum of cost. In addition to the accessories listed below, we can also offer objective lenses, eyepieces, equatorial mountings, rack and pinion focusing devices, star diagonals, the DUETRON Double Eyepiece, etc. All are illustrated, described, and priced in the free UNITRON catalog offered on the facing page.

VIEW FINDERS with mounting brackets

42 mm, 10X, coated objective	\$18.00
30 mm, 8X, coated objective	10.75
23.5 mm, 6X	8.50
POSTPAID	

UNIHEX ROTARY EYEPIECE SELECTOR:

The old-fashioned method of fumbling with eyepieces in the dark has been outmoded by UNIHEX, UNITRON's new Rotary Eyepiece Selector. With UNIHEX, you always have 6 magnifications ready at your fingertips. To change power, merely rotate a new eyepiece into position while the object stays centered and in focus in the field of view. If through inaccurate tracking you should lose the object under observation, you need only rotate the lowest power eyepiece into position to convert your telescope into a giant view finder, recenter the object in the field of view. Model A is designed to fit the UNITRON rack and pinion and is for UNITRON only. Model B fits 1/4'' eyence holders. Complete with special clamping device and cabinet.

Model A or B

Only \$24.75 postpaid

ASTRO-CAMERA 220: The camera uses an airoperated curtain shutter of the Thornton-Pickard type, giving speeds of 1/10 to 1/90 second in addition to bulb and time. It may be positioned so that the plane of the film passes through the focal point of the objective or mirror which is then the only optical element. When magnification of the primary image is desired, an eyepiece can be inserted into the camera tube and an image projected on the film. Astro-Camera 220 comes complete with ground-glass back, 3 double plateholders for $3'_4'' \times 4'_4''$ plates or cut film, a 30mm.f.l. eyepiece, extension tubes and clamps to lock the camera firmly in place, air-operated bulb release, removable filter, and a fitted wooden cabinet. Model A is designed to fit the UNITRON rack and pinion replacing the customary drawtube and is for UNITRONS only. Model B fits $1'_4''$ eyepiece holders.

Model A or B

Only \$69.50 postpaid

UNUSUAL OPTICAL BUYS

Photographers!

Adapt your camera to this Scope for excellent Telephoto shots and fascinating photos of moon!

See the Stars, Moon, Planets Close Up!

3" ASTRONOMICAL **REFLECTING TELESCOPE**

ASSEMBLED and READY TO USE!

(Famous Mt. Palomar Type)

60 & 120 Power - An Unusual Buy!

You'll see the Rings of Saturn, the fascinating planet Mars, huge craters on the Moon, Star Clusters, Moons of Jupiter in detail, Galaxies! This is a fine quality, American-made telescope engineered and built for clear definition and resolution. Equatorial mount with lock on

definition and resolution. Equatorial mount with lock on both axes—you automatically follow stars across the heavens. Aluminized and overcoated 3" diameter high-speed f/10 mirror. Each mirror Foucault tested. Telescope Accessory eyepieces available for powers up to 250. An Optical Finder Telescope, always so essential, is also included. Sturdy, hardwood, portable tripod.

Free with scope: Valuable STAR CHART and 272 page "Astronomy Book." Stock No. 85,050-V \$29.50 f.o.b.

(Shipping wt. 10 lbs.)

4¼" ASTRONOMICAL TELESCOPE

Mt. Palomar type. Up to 270 power. A fine Reflector Telescope complete with real Equatorial Mount and Tripod. Aluminum tube, 4'4'' dia. mirror, rack and pinion focusing eye-piece holder, 2 eye-pieces and mounted Barlow Lens for 40X, 90X, 120X and 270X. Shipping weight approx. 25 lbs.

Barrington, N. J.

Barrington, N. J.

MOUNTED BARLOW LENS

Double and triple your Telescope's power with a Barlow Lens. Ours is mounted in chrome-plated, brass tubing with variable spacers— just slide this mounted negative lens into your 1/4'' I.D. eyepiece holder, and use your regular eyepieces in it. Fully guaranteed to please you.

Stock No. 30,200-V \$8.00 ppd.

6X FINDER TELESCOPE

Has crosshairs for exact locating. You focus by sliding objective mount in and out. Base fits any diameter tube-an important advan-Atage. Has 3 centering screws for aligning with main telescope. 20-mm. diam. objective. Weighs less than ½ pound. Stock No. 50,121-V \$8.00 ppd.

GET OUR GIANT FREE CATALOG-V UNUSUAL OPTICAL BARGAINS

Save Money on Astronomical Telescopes and Components

MANY WAR SURPLUS ITEMS! Complete Line of Astronomical Tele-MANY WAR SURPLUS IIEMS! Complete Line of Astronomical rec-scope Parts and Assembled Telescopes. Also huge selection of lenses, prisms, war surplus optical instruments, parts and accessories. Tele-scopes, microscopes, binoculars. Hand spectroscopes, reticles, mirrors, Ronchi rulings, dozens of other hard-to-get optical items. America's No. 1 source of supply for Telescope Makers, Photographers, Hobby-ists, etc. Write for FREE Catalog-V

RDER BY STOCK NUMBER .SEND CHECK OR MONEY ORDER . SATISFACTION GUARANTEEDI लनाब, ITIFIC CO., BARRINGTON, NEW JERSEY

The Sky Master functional globe shows all 88 constellations, all stars down to Magnitude 5.5, nebulae, clusters, galactic and ecliptic poles, and other data. The 57 Navigation Stars have the official geometrical diagrams, magnitude symbols, names, and numbers.

Invaluable for students of Marine and Air Navigation, as co-ordinates are marked in R.A., S.H.A., and L.H.A. γ

Latitudinal divisions as shown above. Each longitudinal segment of 2 RAhours has date on which stars thereon are on your local meridian at 9 P.M.

Stars and technical data are in white; pictures in peacock blue. The black base is the toughest, double-thick, ragcover available, and will withstand an unusual amount of handling, and mishandling.

12" globe (kit only)	\$5.00
Guide and Check List	1.95
globe kit and book	6.75
Data on assembled globes and m	aterial
for 24" school globes sent upon re	quest.

(All globes may be had without the mythological pictures, if desired.)

assemble your own

12" Sky Master functional globe

from 3-color kit

Guide and Check Lists

52 pages, $8\% \times 11$; fully indexed (available separately)

A condensed, complete, up-to-date course in descriptive and positional astronomy; with explanatory diagrams, and data on history, constellations, star names, time, calendars, navigation, and so on.

Main List of 550 entries by R.A. and S.H.A. from γ eastward. 20 columns giving data on stars to magnitude 3.5; on important nebulae, clusters, variables, multiples, radiants, observational data, and so on.

15 Cross Check Lists quickly locate objects, known by name or number only, in Main List, on Sky Master, or on any chart.

(Constellation and star names, origins and meanings; 109 apparently and 50 absolutely brightest stars; nebulae with common names; 30 radiants, and shower dates; NGC to Messier, M to NGC numbers; equivalents of navigation measurements; mid-month positions of planets to 1965. L.H.A. γ on meridian, hourly for every 10th day of year, with sunrise, sunset, and twilight columns for Lat. 35°, 40°, and 45° on same page; Who Was Who in Astronomy; etc.)

SKY MASTER Capt. J. Ellrich, 781 Fairview Ave., Fairview, N. J.

The Incomparable

A superb portable telescope by one of the world's leading manufacturers of astronomical instruments. Although it weighs only 45 pounds its sturdy construction, fork-type mounting and integral electric drive mark it as an instrument of professional quality.

lonta

Brilliant fully corrected 4 inch clear aperture optical system for out of the ordinary performance.

ONLY \$198.50 f.o.b., PITTSBURGH, PA., U.S.A.

Complete with Electric Drive, Slow Motions, Right Ascension and Declination Circles, Finder Telescope and Heavy Duty Tripod. Magnifications of 35X, 70X, 105X, and 210X

j. W. fecker, inc. A Subsidiary of AMERICAN OPTICAL COMPANY

24 INCH CASSEGRAIN-NEWTONIAN REFLECTOR WITH WIDE FIELD CORRECTOR SYSTEM AND OB-JECTIVE PRISM. DESIGNED AND MANUFACTURED FOR VANDERBILT UNIVERSITY

6593 HAMILTON AVENUE PITTSBURGH 6, PA. • U.S.A.

SUBSCRIPTION:

the leading astronomers and thousands of amateurs throughout the world who look to SKY AND TELESCOPE as a welcome monthly package of informative articles pleasingly illustrated, up-to-date news items, observing material, and telescope making notes. The largest astronomical magazine on any planet!

In Canada and Pan American Postal Union Countries	One year, \$6.00; two years, \$11.00; three years, \$16.00.
In the United States and possessions	One year, \$5.00; two years, \$9.00; three years, \$13.00.
In all other countries	One year, \$7.00; two years, \$13.00; three years, \$19.00.

OTHER SKY PUBLICATIONS

THE HISTORY OF THE TELESCOPE, by Henry C. King-The first
book to tell the complete story of the evolution of the telescope from
early, crude instruments to the giants of today-recommended to
each telescope user or maker, and to everyone interested in how the
universe is explored \$10.00
MAKING YOUR OWN TELESCOPE, by Allyn J. Thompson-How to
construct a low-cost 6-inch reflecting telescope \$4.00
INSIGHT INTO ASTRONOMY, by Leo Mattersdorf-A practical and
informative introduction to astronomy \$3.50
SPLENDORS OF THE SKY-A 36-page picture booklet \$0.75
SKY SETS I AND II-Two different collections, 24 large pictures in each
set. Solar system, Milky Way, and galaxies Each set, \$4.00
MOON SETS-18 large pictures showing the entire visible face of the
moon
LUNAR CRESCENT SETS-A matching series to Moon Sets, for the
waxing and waning phases. 10 pictures in a set \$2.50
ATLAS OF THE HEAVENS, from the Skalnate Pleso Observatory-16
large charts, covering both hemispheres to stellar magnitude 7.75.
With transparent co-ordinate grid overlay
VISTAS IN ASTRONOMY, edited by Arthur Beer-Two volumes on
contemporary astronomy

Payment should accompany order. Write for free circular describing these and other Sky Publications

Harvard College Observatory Sky Publishing Corporation Harvard College Observatory Cambridge 38, Massachusetts

CALENDAR

1958

Jan. Feb.										N	Mar.								April									
S	M	т	w	т	F	S	S	M	Т	w	T	F	S		S	M	т	w	Т	F	S	S	M	т	w	т	F	S
5 12 19 26	6 13 20 27	7 14 21 28	1 8 15 22 29	2 9 16 23 30	3 10 17 24 31	4 11 18 25	2 9 16 23	3 10 17 24	4 11 18 25	5 12 19 26	6 13 20 27	7 14 21 28	1 8 15 22	 1 2 3	29630	3 10 17 24 31	4 11 18 25	5 12 19 26	6 13 20 27	7 14 21 28	1 8 15 22 29	6 13 20 27	7 14 21 28	1 8 15 22 29	2 9 16 23 30	3 10 17 24	4 11 18 25	5 12 19 26
May June								J	July						Aug.													
S	M	т	w	т	F	S	S	M	т	w	т	F	S		S	M	Т	w	Т	F	S	S	M	т	w	т	F	S
				1	2	3	1	2	3	4	5	6	7				1	2	3	4	5						1	2
11	12	13	14	15	16	17	15	16	17	18	19	20	21	1	3	14	15	16	17	18	12	10	11	12	13	14	15	16
18 25	19 26	20 27	21 28	22 29	23	24	22	23	24	25	26	27	28	2 2	07	21	22	23	24	25	26	17	18	19 26	20 27	21 28	22 29	23
										2						-						31						
-			-				-	-	-		-				1	-		-	200	-	-	-	-		-	-	-	
Se	ept.						00	Oct.						ľ	Nov.							Dec.						
S	M	T	W	T	F	S	S	M	Т	W	T	F	S		S	M	Т	w	T	F	S	S	M	T	V/	T	F	S
7	1 8	29	3	4	5 12	6 13				1 8	29	3	4		2					7	1 8	7	1 8	29	3	4	5	6 13
14	15	16	17	18	19	20	12	13	14	15	16	17	18		9	10	11	12	13	14	15	14	15	16	17	18	19	20
28	29	30		45	20		26	20 27	21	29	30	31	25	2	3	24	18 25	26	20	21 28	29	28	29	30	31	25	26	27

Advertise

in the publications of

The Royal Astronomical Society of Canada

Sample copies and rate card sent to interested advertisers upon application to

252 COLLEGE STREET TORONTO 2B, ONTARIO

SKY-SCOPE

The full $3\frac{1}{2}^{n}$ diameter reflecting type, Astronomical telescope that is sweeping the country. Shows Moon craters, Saturn's Ring, Jupiter's 4 moons and close "double-stars" with guaranteed observatory clearness.

It has a tested ¹/₄-wave aluminized mirror, 60 power Ramsden type eyepiece and is equatorially mounted on an all-metal stand.

as illustrated 9075

Complete

(125 & 35 power extra eye-pieces are available at \$5.20 each)

Finder (with brackets) \$7.50

We invite your attention to our free and straightforward descriptive brochure which also shows photographs of the individual parts used.

The Skyscope Company, Inc. 475-5th Avenue New York 17, N.Y.

Fortunate indeed is the observer who has this UNITRON 4" Photo-Equatorial, Model 166, at his disposal. Never before has such a wealth of equipment and features been found in an instrument of this size.

Model 166 comes complete with clock drive, astro-camera, photographic guide telescope, 42mm. viewfinder, Super UNI-HEX rotary eyepiece selector, 10 eyepieces, and many other accessories for only \$1280 complete.

The unexcelled performance, careful workmanship, and elegant finish of Model 166 is characteristic of each and every telescope that bears the famous UNITRON name. Such uniform excellence is but one of the many exclusive features which distinguish UNITRONS from all other refractors of equal aperture.

See our advertisements on the inside pages

United Scientific Co. 204-206 MILK STREET BOSTON 9, MASS.