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I watched, with awe, 
Man’s celestial 
Exploration.
Life before 
Was nothing more
Than meagre terrestrial 
Occupation.

AN INTRODUCTION TO PROJECT ZUBENELGENUBI

49h2m -15°52' are the co-ordinates of the star Alpha Librae, found in 
the southern constellation of Libra, at a distance of approximately 66 
light years. Centuries ago this star was named ZUBENELGENUBI, from an 
Arabian text; whereas, during the summer months of 1973, a group of amateur 
astronomers decided to use this unusual name as the title of an astronomy- 
oriented Opportunities For Youth (O. F. Y.) project. The project’s --orig­
inal conception had little in common with projects that had been attempted 
in the past, and thus we were essentially an experimental project. We 
decided, in lieu of providing a direct benefit to a small number of people 
in one specific area of our community, as other projects had planned, that 
our group of three would provide an astronomy oriented, community benefit- 
ting program aimed at everyone interested in learning more about Modern 
Astronomy and related topics through discussion groups and actual visual 
observations at public star nights. Our project was designed to provide a 
type of general introduction to enable the public to understand more about 
the neglected aspects of this science, and encourage them to take part in 
the fascinating pursuit of amateur astronomy.

We chose the name of the project partially because it was interesting 
and catchy sounding; and meanwhile we explored the idea that our motto 
should reflect one of the aims of our endeavour. Our motto: "Have Teles­
cope, Will Travel”.

We commenced with our project early in May with the first of a three 
part plan. We visited a large number of students attending various Elem­
entary and Separate Schools situated in London, and gave an illustrated 
talk on the Universe. The second and third parts of the project proved to 
be very time consuming. The book which you are now reading is a product 
of our hard work and effort for the remaining summer months. The third 
phase of the project, as I have already mentioned, was the nightly Star 
Nights held at various parks throughout the city.

Our hope is that Zubenelgenubi will be remembered not only as a double 
star in the night sky with an apparent magnitude (see page 73) of 2.76, 
but as a successful summer project whose final aim was not to die out as 
simply a memory, but to exist years in the future in the form of this new 
source book of knowledge.

Eric Clinton
Amateur Astronomer

It is indeed a feeble light that reaches us from the 
starry sky. But what would human thought have achieved 
if we could not see the stars ................?

JEAN PERRIN



AN INTRODUCTION TO ASTRONOMY

Go out alone in the small hours of the morning, away from the harsh 
lights of the city. Let the soothing darkness envelop your soul. Then 
stand quietly; look at the horizon, and listen. You hear silence; silence 
that is only marginally violated by the distant sounds of leaves whispering 
in the cool breeze that dances pleasantly across your face. You smell the 
freshness of the unused air of a day yet to begin. However do not concern 
yourself with the day, as the Sun will not rise to banish the stars from 
the sky for several hours, and the night holds more joys to be experienced.

Turn your eyes now, onto the vault of the heavens above: in one short 
turn of the head you have gazed upon the Universe. It is filled with myr­
iads of stars, randomly placed, and all intensely beautiful. You reach out 
as if to touch their glittering surfaces, even though you know these points 
of radiance are further away than you could travel in a hundred lifetimes. 
The only barrier between you and them is the ultimate barrier: space. The 
incredible numbers, the unimaginable distances and the alien beauty all 
bring forth the ancient fear of the unknown. You begin to feel alone and 
afraid. You would run because of the fear, but you remain frozen in your 
upward stare; there is no place to run to, from the Universe!

Rationality returns; the fear ebbs and changes to humility, and wonder. 
You are completely filled with awe and curiosity. You now suffer from a 
painful, but wonderful affliction, that makes one want to know everything, 
even though one understands that one never will. The first signs of dawn 
are showing themselves in the east; you shiver as the cool breeze has become 
a cold wind. The twinkling stars overhead have but little time before the 
comming Sun outshines them, into oblivion.

The last few twinkling stars fade away with the rising of the Sun, as 
you slowly return to the "reality" of daily life. In the future you will 
return to this place, to stand quietly at peace,to remember, and to be hap­
py, while gazing upon the Universe; but for now, you are mourning the loss 
of your companions: the stars.

The stars will be your faithful companions for the rest of your life; 
you will get to know them well.

The night sky has a bewitching effect on those who would take the time 
to look at it, and think about it. This book is dedicated to those who do 
look and think, to those who appreciate the beauty of the night sky: the 
"afflicted". By means of the preceeding paragraphs, I have endeavoured to 
give the reader an answer to the question: "Why Astronomy?".

In this book we deal not only with Astronomy, but with relevant basic 
Physics and Mathematics; it is a good conceptual representation of the 
Universe for the interested beginner. Many of the concepts presented may 
be considered, by some, to be too complex for the beginner. However com­
plexities are but large aggregations of simplicities. Thus, if taken step 
by step, as this book presents the material, complexities tend not to be so 
complex. Astronomy is a more complex subject than is presented here; how­
ever we believe that the beginner's astronomical knowledge will be greatly 
increased by the working through of this book.

In getting to know your Universe, I would suggest the practical as 
well as the conceptual approach; get to know the stars by name. There are 
many good books on the simple but enjoyable topic of constellations. When 
the stars are known conceptually,as well as practically, you will be a 
stranger to your Universe no longer.

Chris Essex
Astronomy Student



AN INTRODUCTION TO PROGRAMMED LEARNING

Programmed learning is presently one of the most neglected tools avail­
able to modern educators. Some of the reason for this neglect seems to be 
related to a misunderstanding, on the part of many educators, regarding the 
techniques and goals of programmed learning. It is appropriate, then, to 
include a discussion of some of these factors in the introduction to a book 
of this kind. Hopefully, this section, along with the section entitled 
"How to use this Book" will help the user derive the full benefit from the 
materials here presented.

Programmed learning has its origins in a rather well studied phenomen­
on in Psychology known as Operant Conditioning. This phenomenon involves a 
particular set of relationships that exist between the two variables stim­
ulus and response. A stimulus can be defined as any environmental event to 
which a particular organism has the ability to respond, and that can be 
measured. It is clear that the status of a particular environmental event 
as a "stimulus" varies with the organism, in that the structure of receptor 
organs may differ from species to species. For example, sounds of frequen­
cies in excess of 20,000 cycles per second may be regarded as stimuli, if 
the organism in question is a dog, but not if the organism is a human being. 
A response can be similarly defined as any single measurable activity that 
an organism produces. It is rather important to realize that any particul­
ar "response" is usually an aggregate of a series of smaller response units. 
For example, a response like "bar pressing" observed for a rat placed in an 
experimental chamber known as a "Skinner Box", might be further subdivided 
into the responses: "approaching the bar"; "rearing up on hind legs"; 
"touching the bar with fore-paws"; and "exerting a force downward on the 
bar". On yet a more microscopic level, this same response might be consid­
ered in terms of an even more complicated series of individual responses of 
nerve cells. Hence, the beginning and ending of one "response" are always 
arbitrary in Psychology, and are usually defined in a way that is approp­
riate to the kind of research work done. Mentalistic phenomena popularly 
associated with Psychology, such as "thoughts" and "feelings" are only quan­
tifiable as responses when they produce reliable physical changes that can 
be measured. Current research methodology is extremely weak in this area. 
In fact, it is difficult to talk about such things, at present, in anything 
but a purely subjective way.

In operant conditioning, these two variables are considered in the 
temporal order: Response, followed by Stimulus. In other words, operant 
conditioning considers the case where a response is emitted which is foll­
owed, in a consistant manner, by some stimulus. Both variables affect each- 
other in a reciprocal fashion: The way in which the response affects the 
stimulus is determined by properties of the immediate environment; whereas 
the way in which the stimulus affects the response is determined by proper­
ties of the organism. It is the latter causal connection that will concern 
us here. Briefly, there are three ways in which a stimulus can affect a 
response: The stimulus can increase the probability that the response will 
be emitted in the future; it can decrease this probability; or it can leave 
it unchanged (in which case the stimulus is not really "affecting" the res­
ponse at all). The term "reinforcement" was originated for the purpose of 
describing these relationships. For instance, when a stimulus increases 
the probability of some response, we say that the response has been posit­
ively reinforced by the stimulus, or that the stimulus has acted as a pos­
itive reinforcement. Likewise, a stimulus that acts to decrease the prob­
ability of some response is known as a negative reinforcement. The lay­
man's way of visualizing such concepts is to regard positive and negative 



reinforcement as being analogous to reward and punishment respectively. 
This kind of analogy is very useful up to a point. For example, if a rat 
in a Skinner box presses a bar and the resulting stimulus is the presenta­
tion of food in a food magazine, the probability of the response called 
"bar pressing" will increase. If, instead, the resulting stimulus is a 
painful electric shock, administered through a grid on the floor of the 
Skinner box, the probability of the "bar pressing" response will decrease. 
It is clear that the experimental animal has been "rewarded" and "punished" 
in these instances. In other instances, the analogy breaks down. For ex­
ample, several Psychologists have remarked that prisons tend to positively 
reinforce criminal behaviour. This is usually a very objective statement. 
What it means is that a prison term for some individual tends to increase 
the probability that he will perform more criminal acts after he is releas­
ed. Here it is clear, in a statistical way, that the response we call "cr­
iminal behaviour" has been positively reinforced, but it is not clear that 
this behaviour has been "rewarded". The analogy for negative reinforcement 
and punishment breaks down in a similar way. Although we shall not elabor­
ate on this point, research in the field of operant conditioning has shown 
that positive reinforcement is, all things considered, a more efficient way 
to shape behaviour than is negative reinforcement. This is an important 
fact to keep in mind, as "behaviour shaping" is at the centre of the activ­
ity that we call "learning".

In Psychology, learning is usually defined as any modification of be­
haviour that occurs as a consequence of experience. This suggests a some­
what more universal use for the term than that which is implied in ordin­
ary conversation. For the purposes of the present discussion, we will be 
concerned with learning mostly as it applies to formal education. That is, 
we are going to consider the kind of learning that takes place in institut­
ions whose purpose it is to increase the adaptability of individuals to 
future occupational situations. Pure and applied research in this area has 
suggested what might be enumerated as four general principles to facilitate 
efficient learning: (1) The amount of positive reinforcement administered 
during learning should be maximized; (2) This positive reinforcement should 
be immediate; that is, any time lag between the emission of a learned beh­
aviour and the presentation of a positive reinforcement should be minimized; 
(3) Complex concepts should be broken down into smaller units and learned 
in a step-by-step progression, where positive reinforcement is administer­
ed for successive approximations of the final concept; (4) The rate of le­
arning for an individual should be allowed to vary according to the extent 
of any relevant abilities and prior knowledge which he may possess. At 
this point, it should be remarked that the most effective positive reinfor­
cement for the type of learning we are considering is simply the knowledge, 
on the part of the student, that he has responded correctly. Elaborate 
token economies of the sort that allow students special privileges for ear­
ly completion of assignments etc. are usually quite unnecessary, even at 
the lower educational levels.

Even casual observation is sufficient to suggest that none of the ab­
ove criteria is very well met by conventional educational systems. These 
systems, for the most part, have been refinements of older and more expl­
oitive systems based on aversive control through the use of negative rein­
forcement (eg. —the birch rod). The result of the liberalisation of these 
older systems was to remove most of the aversive control and leave, in its 
place, almost no control at all. Certainly the feasability of control 
through positive reinforcement has been ignored. The reason for this, per­
haps, is that, not only are most teachers unaware that the efficiency of 
this sort of control has been empirically demonstrated; but control through 
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positive reinforcement is a less visable and therefore less intuitively ob­
vious form of control than is the aversive kind. The result of this  
--- is that control, when applied at all in the modern classroom, is mild­
ly aversive in nature. Threats of poor grades,detentions, extra assignments 
and "visits" with the principal serve as examples of this.

When positive reinforcement occurs at all, in conventional educational 
situations, it is quite sporadic. In the traditional teacher-centered sit­
uation, where concepts are being introduced through a question and answer 
approach, the probability that any one student in an average sized class­
room will be called upon is about 1/30. What this means is that, if the 
teacher calls upon students at a rate of two per minute, the limit for the 
number of positive reinforcements that can be received in a one hour sess­
ion by a particular student, will be something less than 4, usually. This 
number will, of .course, vary between students; but the bias usually oper­
ates in favour of the better student, creating a situation where "the rich 
get richer and the poor get poorer". The only other opportunity that stud­
ents have to receive feedback on their own responses occurs when written 
work is evaluated. Once again, positive reinforcements are rare, as more 
attention is usually given to things done wrong than things done correctly. 
Furthermore, the great time lag between the production of written work by 
the student and its subsequent correction and return by the teacher is usu­
ally sufficient to significantly reduce any effect that positive reinforce­
ment might have created. Also, the concepts to be dealt with are usually 
presented, learned and evaluated in large chunks. Teachers are rarely en­
couraged to break up what seem, to them, to be basic concepts, into smaller 
units. Finally, matters relating to different rates of learning for diff­
erent students are handled only in a very crude way: In some schools it is 
still traditional to divide students up into "bright" and "dull" classes. 
As well-intentioned as some of these efforts are, the effect is often an 
unfortunate one: The "dull" students are usually perceptive enough to real­
ize that they have been put into the "slow" class and are there-by given an 
added incentive to perform at sub-standard levels. Once again, a situation 
is created where "the rich get richer and the poor get poorer".

Programmed learning is perhaps best described as a method which attem­
pts to make teaching more consistant with what is known, in a scientific 
way, about learning. Frequently programmed learning sequences constitute 
the software for "teaching machines". However the technique has a slight­
ly broader application than this, the present book being only one example. 
In general, programmed learning attempts to break down the learning of con­
cepts into a series of small, discrete steps. Also, a facility is provided 
for immediate feedback on the correctness of responses made by the learner. 
These goals are usually accomplished by presenting the material to be lear­
ned in a series of written "frames", each of which requires the learner to 
make some response and check its correctness before he proceeds on in the 
program. Beyond this point, programming techniques generally diverge into 
two different schools, each based on slightly different philosophies regar­
ding which variables are most important in the learning process: The most 
popular of these — Linear Programming — uses frames with blanks inserted 
in them which the user is required to fill in and check before proceeding 
on in the program. Every user follows the same sequence of frames. The 
chief disadvantage of linear programming seems to be that it ignores indiv­
idual differences amoung learners. A sequence that appears to be adequate 
for some learners may be either too easy or too difficult for others. This 
difficulty is usually overcome by producing programs only for very specific 
age and ability levels. This, however, is a tedious process. The other 
kind of programming — Branching Programming —attempts to direct users to
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different sequences of frames according to the extent of their comprehens- 
ion of material already covered. This is done by incorperating a multiple 
choice type question into every frame, the answer to which determines where 
the user then proceeds, in the program. The criticism usually applied to 
branching programming is that, as its strength depends on several users 
answering incorrectly, it shapes behaviour, in part, by negative reinforce­
ment. This point is, perhaps, not very well taken, as it relies on the 
assumption that the consequenses of answering incorrectly are always negat­
ively reinforcing. Though this is certainly the case in conventional educ­
ational systems, it need not be the case in systems based on programmed 
learning. Another disadvantage of branching programming is that some con­

cepts are just not adaptable to a multiple 
choice format of questioning. This, we 
believe, is the more serious objection.

In the program which appears in this 
book, we have incorporated both linear and 
branching features. We are not aware, at 
this time, of any programs that have been 
produced which are similar to our's in this 
respect. This method, however, seemed to 
be a logical one, to us, for several reas­
ons: On a practical level, we found that 
some concepts in Astronomy were more read­
ily adaptable to a branching format than a 
linear one and vice-versa. Certainly, as 
we were producing the book for a rather 
diversified audience, a pure linear appr­
oach was impractical. A pure branching 

A Simplified Flow Diagram Of A Typical 
Program Segment

format, on the other hand, 
was considered to be- too 
rigid for our. purposes. On 
a theoretical level, we con­
cluded that a combination of 
both formats would help to 
reduce the disadvantages 
present in either one used 
by itself. The basic str­
ucture of our program is 
linear, with branching fr­
ames embeded in it. Freq­
uently associated with br­
anching frames is a feature 
that we call a "corrective 
linear sub-program’1, desig­
ned to deal with incorrect 
answers. The presence of 
branching frames makes this 
basically linear program 
more adaptable to different 
ability levels; while the 
presence of corrective sub­
programs provides positive 
reinforcement for users who 
have made incorrect respon-

one of the disadvantages of  ses, and therefore overcomesone of the disadvantages of a pure branching format. A typical segment of
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our program is illustrated in the accompanying flow diagram: Regions 2, 3, 
and 6 represent linear frames which are part of the main body of the 

program; region 4 represents a branching frame; and regions 5A, 5A2, and 
5A3 represent parts of a corrective sub-program. Other features of this 
segment are regions 1 and 7 which are connectors that link this segment to 
others in the program, and region 5C. which represents an abort frame: This 
is simply a feature that momentarily terminates the user’s progress in the 
program,if it appears that he has become exhausted or bored.

Other features of this program will indicate, to those knowledgable in 
this area, that we have not followed traditional methods of programming 
very closely: We have, for example, made occaisional use of lengthy linear 
frames which are usually discouraged in programmed learning. This has been 
done mostly for the purpose of breaking the monotony of our format by inser­
ting facts that the user is not specifically requested to recall. We have 
also taken advantage of the fact that we were producing a book and not a 
program for a teaching machine, by encouraging the user to go back to pre­
vious frames to retrieve various pieces of information that he may have 
forgotten. Finally, we have (though I hesitate to use the word) ’’invented” 
what we refer to as "data frames" for the purpose of providing pieces of 
numerical information that are usefull at various points in the program. 
It is our hope that these features, taken together, will make the book 
somewhat more "readable" than it would otherwise be.

The last thing that should be pointed out, in this introduction, is 
that studies of the merits of programmed learning systems as compared to 
conventional systems, have, so far, yielded conflicting results. This sug­
gests that proper controls have not been used in these investigations. 
Certainly, further studies of this matter are required. Even in the absence 
of this sort of evidence, however, there are several factors that suggest 
the feasability of an educational system based on programmed learning: One 
of these is the problem of evaluation. In conventional systems, evaluations 
are usually so imprecise, that they can only determine student progress in 
a very crude way. If a mark like 60%, for example, indicates that a stud­
ent has learned 60% of the work, there is nothing to say which 60% it is 
that he knows. When a "pass — fail" analysis is applied to this mark, one 
of two decisions is then made: Either the student is allowed to proceed to 
the next level of difficulty in the subject matter, or his progress is set 
back one year. Which of these options is pursued is determined by an ar­
bitrary "cut-off" level which, for the sake of argument, is called a "pass­
ing grade". In primary and secondary levels of education, cut-off levels 
are typically quite low. This creates a certain amount of redundancy in 
the teaching process due to the excessive amounts of "review" that are made 
necessary from year to year. At the university level, this problem is usua­
lly dealt with by raising cut-off levels substantially. This is done, how­
ever, at the expense of dissapointing a number of worthwhile candidates who 
find themselves the victims of "bad fortune”. In programmed learning, eval­
uations are a good deal more precise than this. The cumulative record that 
the student produces while working through programmed materials is quite suf­
ficient to indicate, in a concise way, where his strengths and weaknesses 
lie. Furthermore, in highly efficient programs, the mere position of the 
student in the sequence can serve to adequately indicate his level of mastery 
of the subject matter.

If, as some people would like to claim, programmed learning systems are 
proven to be no more effective than conventional systems, then only one of 
two possible conclusions can be made: Either the scientific assumptions on 
which programmed learning is based, are incorrect (a possibility which, at 
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this point, must be considered unlikely), or more work has to be done to 
refine this technique for use in practical situations. In either case, 
the conclusion is an important one. Hopefully, the present book will, in 
some way, demonstrate the effectiveness of this technique.

Bill Smythe 
Psychology Student

HOW TO USE THIS BOOK

This is a programmed book. To derive the full benefit from its cont­
ents, you should be prepared to work through it. It is not "read” in the 
way that most books you are familiar with are.

The material in this book is organized into a series of "frames” which 
are marked off by horizontal lines and numbered consecutively throughout. 
Each frame will require you to make some response. Usually you will be 
asked to fill in a blank with some appropriate word, phrase or number. The 
method that we recommend for working through frames such as this is to take 
a piece of paper or cardboard and cover up all the material below
the frame you are considering. When you have filled in the blank in ques­
tion with what you believe to be the appropriate response, then you may 
slide the paper down the page to reveal the correct answer to the blank and 
then the next frame. Answers appear in capital letters directly below the 
lines which are used to mark off frames. Another kind of frame that you 
will come across has a multiple choice question incorporated into it. Here 
you simply choose the option that you believe to be the most appropriate, 
then proceed to the frame refered to alongside the option you have chosen. 
To find this frame it is a good idea to cover up all the material to the 
right of the frame numbers and then proceed until you find the appropriate 
number. When you have done this, proceed with the material in that frame, 
covering up any material which may appear either above or below it. You 
may want to keep a record of all your responses. This can be done by writ­
ing them down on a pad of paper along with the accompanying frame numbers. 
This same pad of paper might also be used to calculate the correct answers 
to numerical problems presented in the book.

For users whose acquaintance with the subject of Astronomy has not 
been great, most of the concepts presented in this book will be quite new. 
A more mathematically-oriented topic that appears in this book might, how­
ever, be familiar to several users: this is the topic Scientific Notation. 
For users who believe themselves to be knowledgable on this topic, you may 
save yourself some time, as you work through the program if, when you reach 
frame 195, you immediately proceed to frames 265, 274 and 444. If you are 
able to do each of the questions presented in these frames correctly, than 
you may proceed to frame 277 and continue from there.

Finally, it should be pointed out that programmed learning, though 
enjoyable, is not necessarily "easy". You should be prepared to consider 
the material presented here, in some detail. However, things like incor­
rect answers should not cause you any anxiety: In this program, you 
sometimes stand to learn quite a bit by answering incorrectly.
To reduce the probability that you will answer incorrectly, however, you 
would be well advised to read the material presented very carefully and 
to, when "stuck" on a question, review material in previous frames to help 
you out.

We hope that you are successful in this learning experience.

x



1. In the first segment of this program we are going to teach you some­
thing about Astronomical distances. To talk about these distances 
in terms of units you are familiar with (miles, kilometers) would 
involve numbers that are much too large. Obviously, then, these units 
are much too (large, small)  to be convenient for Astronomers.

SMALL

2. For example, the distance from our solar system to the next nearest 
star is 25,200,000,000,000 miles. This number is much too (large/ 
small)_ to be very convenient. Hence the unit ’’miles” is too
(large/small) for our purposes.

LARGE; SMALL

3. Some units that Astronomers use for distance are based on the speed of 
light. To understand these it is necessary for you to realize that 
light has a speed. Light travels at a rate of 186,000 miles per 
second. This means that, in one second, light would travel a distance 
of (how many?)  miles.

186,000

4. In one minute, light would travel 186,000 X miles.

5. In one hour, light would travel 186,000 X 60 X  miles?

In one day, light would travel 186,000X X X miles.

60; 60; 24

7. In one year, light would travel 186,000 X 
miles (use multiplication signs).

60 X So X 365 

8. This means that miles is the dist-
ance that light travels in one" year (use a mathematical expression).

186,000 X 60 X 60 X 24 X 365

9. To understand how units for distance are derived out of a speed, you 
should know how the concepts of distance, time, and speed relate to 
each/other. If ’v' represents speed, ’d' represents distance, and 't’ 
represents time, then which of the following is correct?

(a) v = t/d see frame 1OA
(b) v = d/t see frame 10B
(c) v = d X t see frame 10C
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10A. Your answer: v = t/d
is incorrect.  
You seem to have it backwards. Suppose you were to travel from Lon- 
don to Toronto (a distance of 120 miles) in 2 hours. This would 
mean that, on the average, you would have travelled at a speed of 60 
miles per hour*.
6o(v) is 120(d) divided by ___ (t).  

10A2.’So then, speed(v) is given by divided by
and the expression v= d/t is (correct/incorrect)  .

DISTANCE-“TIME; CORRECT     

10A3. Now go back to frame 9 and choose the correct answer.  

10B. Your answer: v = d/t   
is; correct.
Your are to be congratulated on your perceptiveness. Re-arranging 
this expression to derive an expression for distance would give us 
which of the following?

(a) d = v X t, see frame 11A
(b) d = v/t see frame 11B
(c) d = t/v see frame 11C

10C. Your answer: v = d X t     
is incorrect.
To derive the correct answer, let us suppose that we are on an imm- 
aginary trip from London to Toronto (a distance of 120 miles) that 
takes us 2 hours to complete. This means that, on the average, we 
would have been travelling at a speed of (how many?) _____ miles per 
hour.

10C2. 60(v) is 120(d) divided by ___  (t). ——————————

2 Proceed now to frame 10A2. 

11A. Your answer: d = v X t 
is correct.
Recall that _ ________ _________ (expression)is the dis­
tance that light travels in one year.

186,000 X 60 X 60 X 24 X 365 MILES  Proceed, now, to frame 12

11B. Your answer: d = v/t 
is incorrect.
To derive an expression for d, out of the expression v = d/t, we 
must multiply both sides by a common letter so that d remains by 
itself on one side. If we multiply the right side by the letter 
___ , d now stands by itself.
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11B2. We have multiplied the right side by t. This gives us d/t X t = d, 
To keep the expression equal, we must multiply the left side by the 
letter ___  as well. This gives us .

t; V X t

11B3. We now have, in our equation, ___  on the right side, and 
on the left side.

d; v X t 

11B4.We can now say, then, that d =

v X t  

11B5. Now go back to frame 10B and choose the correct answer.

11C. Your answer: d = t/v
is incorrect.
To derive an expression for d, out of the expression v = d/t, we must 
multiply both sides by a common letter so that d remains by itself 
on one side. If we multiply the right side by the letter , d 
now stands by  itself.

t Now proceed to frame 11B2

12. This distance is known as a Light Year. A light year is a measure of 
(time/speed/distance)

DISTANCE -------------------------------------------------------

13. A light year is, in fact, the distance that light travels in (what time 
period?) .

ONE YEAR -------- ---------- ------ ---------------------------------------------

14. Recall that distance is related to time and speed by the expression

v X t ------- --- -------------- —-------------------------------------------

15. The source of the terminology "Light Year" should now be clear: This 
distance equals the speed of light(v) multiplied by a time period of 
one year (t). Out of this, we derive the term: Light Year. A light 
year is (defn.) ~

THE DISTANCE THAT LIGHT TRAVELS IN ONE YEAR ---------------------------------------—

16. Suppose, now, that a certain star happens to be 10 light years away from 
us. What this means is that the light we see from that star took (how 
long?)  to reach us.



10 YEARS 

17. In other words, the light we see from that star is (how many?) 
years old. We are seeing the star, then, as it appeared (how long?) 
__ _ ago.

10;. 10 YEARS   ————---------------------------------

18. From what you learned in frame 17, would you now say that, whenever  
you look at stars in the night sky, you are looking back into time?

(a) Yes see frame 19A. 
(b) No see frame 19B.
 (c) Not Necessarily see frame 19C.
(d) Yes, except if your great aunt has post-nasal drip.

   see frame 19D. 

19A. Your answer: Yes   ———....................... .... ..  ..............
is correct. - 
This is a very astute observation on your part. Suppose, now, that 
you were to take an immaginary trip to that same star (10 light 
years away) at 18.6 miles per second (recalling that the speed of 
light is ________ ________ . It would take you (how many?)

years to make the trip.

186,000 MILES PER SECOND; 100,000 Proceed, now, to frame 20 

19B. Your answer: No   ............
is incorrect.
We have already pointed out that the light from a particular star is 
ten years old. Most starlight is a good deal older than this. Go 

.... back to frame 18 and think some more about this concept. Then choose 
a better answer.

19C. Your answer: Not Necessarily     
is incorrect.
We have pointed out that the light from a certain star is ten years  
old. Most starlight is a good deal more ancient than this. Why, 
then, did you say that looking at the stars was "not necessarily" 
looking back into time? Go back to frame 18, think about this con­
cept some more, and then choose a better answer.

19D. Your answer: Yes, except, if your great aunt has post-nasal 
indicates not so much a lack of understanding as a feeling of 
exhaustion on your part. In fact, you have unwittingly stumbled upon 
an abort frame. You are advised to set the book down for a while. 
When you feel properly refreshed, we suggest that you go back to  
frame 18 and select a better answer.

20. Would you estimate that 18.6 miles per Second is a last speed to be 
travelling, compared to present speeds at which man is able to travel?

(a) Yes see frame 21A
(b) No see frame 21®



21B. Your answer; No; is incorrect. Go back and try again.

21'A. Your answer: Yes
is correct.
18.6 miles per second is, indeed, a fast speed to be travelling. In 
fact, this is almost four times as fast as man is able to travel at 
present. On this basis, would you now say that interstellar 
(between stars) travel is, at present:

(a) Feasable see frame 22A.
(b) Out of the question see frame 22B.

22A. Your answer: Feasable
is incorrect.
Come, come now!! Unless you expect to live to a ripe old age of 
well over 100,000 years, you could not, yourself, visit even some 
of the nearest stars at present. Go back and choose the correct 
answer.

22B. Your answer: Out of the question 
is correct.
You have realized that, to travel to even the nearest stars at 
present speeds, would involve a journey of such length that you 
would find yourself long dead on arrival. Would you now think that 
it is possible to measure short distances (distances you are fam­
iliar with) in light years?

(a) Yes see frame 23A
(b) No see frame 23B

23A. Your answer: Yes
is correct.
You have realized that, although it is inconveniant to measure small 
distances with such a large unit, it is, just the same, quite poss­
ible. To give you an example: suppose that the grocery store is 
one half mile away from your home. If there are, approximately 
6,000,000,000,000 miles in one light year, how many light years 
would you have to travel to go there to do some shopping?

(a) 1/5,000,000,000,000 light years see frame 24A 
(b) 1/12,000,000,000,000 light years see frame 24B 
(c) 5,000,000,000,000 light years see frame 24C
(d). ½ mile see frame 24D

23B. Your answer:No 
is incorrect.
You have been confused by the fact that, although measuring small 
distances in light years would be extremely inconveniant due to the 
awkward fractions involved, it is, never the less, quite possible, 
since a light year is a unit of distance like an inch or a kilomet­
er. Go back, now, to frame 22B and select the correct answer.

24A. Your answer: 1/5,000,000,000,000 light years 
  is incorrect.

It is clear, however, that you have the right idea. Let us con­
struct the correct answer: 6,000,000,000,000 miles makes up one 
light year. Therefore 1 mile makes up (fraction) 
light years._ 

1/6,000,000,000;000 
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24A2. We are talking, however, of a distance of one half mile. ½ X 
1/6,000,000,000,000 =  .

1/12,000,000,000,000   -------------------------------------------------------

24A3. So, then, in one half mile, there are (how many?) 
light years.  —

1/12,000,000,000,000  - ----------------------------

24A4. Now go back to frame 23A and choose the correct answer. 

24B. Your answer: 1/12,000,000,000,000 light years 
is correct.
You are to be commended on your well thought out arithmetic (if you 
got the first time). What we have pointed out here, then, is 
that the light year is indeed a measure of (time,  speed, distance) 

_ ________ ; and there is nothing particularly mysterious 
about it.

DISTANCE Proceed, now, to frame 25  

24C. Your answer: 5,000,000,000,000 light years------------------------------------ --
is incorrect.
You have failed to notice that your answer is totally unrealistic.
To travel 5,000,000,000,000 light years to the grocery store would 
be to take a very indirect route. What is more — you would not 
live long enough to walk even a very small fraction of this dis-  
tance. Go back to frame 23A and choose a better answer.

24D. Your answer: ½ mile -----------------—------ ------------
is incorrect.
You have used the wrong units: We asked for the distance in light 
years, and you gave it in miles. Go back to frame 23A and choose a 
better answer.

25. (defn.) of the concepts you have learned, so far, a light year is-----

THE DISTANCE THAT LIGHT TRAVELS IN ONE YEAR .

miles. “-------—  

186,000 X 60 X 60 X 24 X 365 - ---- -“-------------------------------------------- —

27. The terminology ’’Light Year" comes from an expression for distance (d)
in terms of speed (v). and time (t). This expression is: .

d = v X t  . ———-------------

28. Most importantly, the unit "Light Year" is based on the speed of---------
 which travels at a rate of

LIGHT; 186,000 MILES PER SECOND



29. The light year is not the only unit that Astronomers use to measure 
astronomical distances.  Two other units which are used are known as 
the Astronomical Unit (A.U.) and the Parallax Second (Parsec). The 
Astronomical Unit (A.U.) and the Parallax Second (Parsec) are units of

DISTANCE

30. Parsec is derived from an abbreviation of ; and
A.U. is an abbreviation for .

PARALLAX SECOND; ASTRONOMICAL UNIT 

31. Three units that Astronomers use for distance are:  
, .

LIGHT YEAR; A.U. or ASTRONOMICAL UNIT; PARSEC or PARALLAX SECOND

J2. An Astronomical Unit is simply the average distance from the Earth to 
the Sun. This means that a trip from our planet to the sun would in­
volve a distance of (how many?) _ A.U.'s)

:----------------------------

33. One A.U. is equal to 92,957,000 miles. This is the average distance 
from  to  .

THE EARTH; THE SUN ............

34. One Astronomical unit is (larger/smaller) than one light
year. A good definition for an Astronomical Unit would be that it is

SMALLER; THE AVERAGE DISTANCE FROM THE EARTH TO THE SUN

35. The unit Parsec is a little more complicated. It involves something 
called parallax. An understanding of parallax will help us under­
stand the unit which we call the  .

PARSEC '   

36. So now we will attempt to explain the parsec by explaining something 
called .

PARALLAX  —— 

37. First, we would like you to try an experiment: Take a pencil (or 
some similar sort of object) and hold it at arms length. Close one 
eye. Notice where objects in the background appear to be relative  
to the pencil. Now close the eye you were using and open the other 
one. When you do this, you will notice that ______  ______
appear(s) to have shifted, but ____________ appear(s) to
stay stationary.
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THE PENCIL; OBJECTS IN THE BACKGROUND ------------------ ----- -------- ----------------

38. Since (hopefully) you did not move the pencil yourself during the ex- 
periment, this shifting is not real but apparent. Parallax, then, 
has to do with movement.

APPARENT      --------- —----------- ----------------- —— ---------------——_

The reason for this apparent shift has to do with the fact that there 
is a significant distance between your two eyes. Thus, when you 
change from one eye to the other, you are actually observing the pen­
cil from two different

POSITIONS or LOCATIONS

40. Parallax, then, can be defined as "the apparent shift against some back- 

ground that an object undergoes when it is observed from two different

POSITIONS or LOCATIONS------- --   — -.................................................................. -—

41. Another property of Parallax can be demonstrated by another variation  

of the same experiment: Take the same pencil and move it closer to 
you than arms length. Now repeat the experiment outlined in frame 37.
The apparent shift is now (greater/less) ___________ than that which 
was observed in the previous experiment.

GREATER

This suggests a very conveniant generalisation: The farther away an 
object is, the (greater/less) ___________ _ will be the apparent 
shift against some background when it is observed from two different 
positions.

LESS

It is Clear, then,  can be used to find distances: The
distance to an object may be found by measuring the
it undergoes when viewed from two different ------- ----- ~-----------

APPARENT SHIFT; POSITIONS--------------- -----—--------- —___________ _ ________

44. Distant objects will undergo (much/little) apparent shift—

ing, while closer objects will undergo (much/little)
apparent shifting. ---- ----------

LITTLE; MUCH ------- ---- --------------- -------------— _____ __

the should recall the definition
 a ---------- ---------------------when it

APPARENT SHIFTING; BACKGROUND; POSITIONS



46. In Astronomy, Parallax can be used to calculate the distance to some 
of the nearer stars. The apparent shift that these stars undergo is 
observed against the background of the more distant stars (which are 
too far away to show any observable shifting effect). Now all that 
we need is a way to accurately measure the amount of shifting so that 
we can calculate distances. We will, for the sake of convenience, 
consider the sky to be the inside surface of a sphere (or ball) called 
the Celestial Sphere, which is then divided along its circumference 
into 360 equal parts known as degrees. At any one time, looking up at 
the night sky, we can see only half this much or (how many?) _  
degrees,

180  -------

47. Each degree is further divided into 60 units called minutes, each of 
which is divided into 60 units called seconds. So, the order of these 
units from smallest to largest is? ________ , ____________ ,
and,

SECONDS; MINUTES; DEGREES 

48. (how many?) seconds make up one minute, (how many?) min- 
utes make up one degree, and (how many?) _degrees-make up the 
Celestial Sphere, (how many?) _ of which we are able to see at
one time.

60; 60; 360; 180    

On the basis of what you have learned so far, how many seconds around 
is the part of the sky (celestial sphere) that you are able to see at 
one time,

(a) 60 seconds ...... see frame 50A
(b) 1,296,000 seconds see frame 50B
(c) 648,000 seconds see frame 50C
(d) 3600 seconds see frame 50D
(e) 7½ days see frame 50E

50A. Your answers 60 seconds
is incorrect.
What you have given is the number of seconds in one minute. This is 
not what was asked for. Let us develop the correct answers You 
already know that there are 60 seconds in one minute, (how many?) 
____  minutes in one degree and (how many?) ____ degrees in the 
Celestial Sphere, (how many?) ____  of which can be seen at one time.

60; 360; 180    

50A2. So, the number of seconds in one degree is given by 60 X __  = ___

60; 3600 — ----------------------

50A3, This number should now be multiplied by the number of degrees in 
half the Celestial Sphere which is (how many?) ____ , This gives
us  X______ =.

-9-



180; 3600; 648,000

50A4. Now go back to frame 49 and choose the correct answer.

50B. Your answer; 1,296,000 seconds 
is incorrect.
You are quite close, however: What you have given is the number of 
seconds in the Celestial Sphere, calculated by the expression 60 X 
60 X 360 = 1,296,000. The amount of sky that you can see at any one 
time, however, is equal to only half of the Celestial Sphere. There­
fore, you must divide the answer you gave by ___  to get the correct
answer. This gives you (how many?)  seconds.

2; 648,000.  — ---------- _------------------- -------

50B2. Now go back to frame 49 and choose the correct answer.

50C. Your answer: 648,000 seconds  
is correct.
If you got this answer on the first attempt, congratulations are in 
order for the accuracy of your numerical reasoning. You will recall 
that our purpose in developing the concepts of parallax and seconds 
of arc was to explain the unit known as the .

PARSEC Proceed, now, to frame 51

50D. Your answer: 3600 seconds
is incorrect.
What you have given is the number of seconds in one degree calculated 
by the expression___ X____ = 3600.

60; 60 Proceed, now, to frame 50A3

50E. Your answer: days   
is incorrect. 
This answer is meaningless because the unit "days" is totally in­
appropriate. We want an answer in terms of seconds of arc. Go 
back to frame 49 and select a better answer.

51. You will remember that parallax is defined as 

and that the observable sky is divided into (how many?) sec-
onds of arc, 

THE APPARENT SHIFTING THAT AN OBJECT UNDERGOES AGAINST A BACKGROUND WHEN 
IT IS VIEWED FROM TWO DIFFERENT LOCATIONS; 648,000
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52. We now have most of the tools we need to measure distances to stars, 
using parallax. We have a background against which to observe app­
arent shifting (the distant stars) and a way to measure the extent of 
this shifting (in seconds of arc ). All that we need to do now is to 
observe the star from two different locations, separated by some con­
venient , to observe a parallax effect.

DISTANCE  

53. The distance that we are talking about (called a "baseline") has to be 
large if we wish to observe a parallax effect with the nearer stars. 
The distance between your eyes, for instance, is much too small. The 
baseline that is used to define a parsec is the average distance from 
the Earth to the Sun which, you will recall, is called a(n) 

ASTRONOMICAL UNIT (A.U.)

54. A parsec, in fact, is defined as the distance at which an object 
would have to be to appear to have shifted one second of arc when  
observed from two different positions, separated by a distance of one 
A,U. at right angles to the distance to the object. The diagram
 below will make this clear (fill in the blanks).

55. It is not possible or, at least, conveniant to observe the star in 
question from Earth, and then have your friend travel one Astronomical 
Unit out into space to observe it again, so that you can determine its 
parallax. A better idea would be to observe the star as it appears 
now, then wait half a year to observe it again when the Earth is on 
the other side of its orbit. This would make the distance between the 
two locations from which you viewed the star equal to (approximately 
how many?) _Astronomical Units.

56. If you went through this procedure and found that’ the star in question 
had a parallax of 2 seconds of arc, you would be able to conclude that 
it was (how many?) parsec(s) away.
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57. All of the stars that we have parallax measurements for show less app­
arent shifting than the hypothetical star which we considered in 
frame 56. This means that all of these stars are:

(a) more distant than one parsec see frame 58A
(b) less distant than one parsec see frame 58B

58A. Your answer: More distant than one parrsec —
is correct
You have remembered. that the less apparent shifting there is, the 
more distant the object in question will be. For example, if we 
repeated the procedure outlined in frame 56, and found a parallax of 
one second of arc, we would now conclude that the star in question 
was (how many?) ___  parsec(s) distant.

2;Proceed, now, to frame 59    

58B. Your answer: Less distant than one parsec  
is incorrect.
You have forgotten that the less apparent shifting there is, the 
more distant the object in question will be. If you are still uncer­
tain about this, return to frame 42 and review the material present­
ed there. Then go back to frame 57 and select the correct answer.

59. Before we complete our discussion on Astronomical distance’s, it is 
important that we manipulate some relationships that exist between 
the units we have talked about so far? For example, 1 parsec is 
equal to 3.26 light years. Let us suppose that there are two extra­
terrestrial beings named Ralph and Sam who are interested in sched- 
ualing an interstellar picnic. Ralph and Sam live on star systems 
which are 100 parsecs apart. Ralph finds it necessary to signal Sam 
to initiate preparations for the picnic. If Ralph’s signal travels 
at the speed of light, how long would it take from the time the mes­
sage was sent, for it to reach Sam?

(a) 3.26 hours  see frame 60A
(b) 100 years see frame 60B
(c.) 3,260 years see frame 60G
(d) 1,000 light years see frame 60D
(e) 326 years see frane 60E

60A. Your answer? 3.26 hours  
is very unrealistic. The time period we are talking about will be 
much greater than this. Go back to frame 59 and select a better 
answer.

60B. Your answer: 100 years —
 is incorrect.

The answer would be 100 years if Ralph and Sam lived 100 light years 
apart, however they live 100 parsecs apart, and a parsec is not the 
same as a light year. A parsec is equal to 3.26 light years. Go 
back to frame 59 and select a better answer.
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60C. Your answer: 3,260 years 
is incorrect.
You are reasonably close, however, as your answer is only out by a 
factor of 10. You recall that 1 parsec = 3.26 light years and that 
Ralph and Sam live 100 parsecs apart. Go back to frame 59 and sel­
ect a better answer.

60D. Your answer: 1,000 light years ——-
is incorrect.
You have used the wrong units. The light year is a unit of distance. 
The answer that is required is a time period. Go back to frame 59 
and select a better answer.

60E. Your answer: 326 years
is correct.
From this, we would have to conclude that Ralph and Sam have relativ­
ely _________ lifetimes.

LONG Proceed, now, to frame 61

61. 1 light year is equal to 63,200 astronomical units. Given that the 
solar system is 80 astronomical units across, and that the nearest 
star to our system is about 4 light years away, how many solar sys­
tems could we fit between the sun and this star?

(a) 252,800
(b) 3,160

see frame 62A 
see frame 62B

(o) 31,600 see frame 620
(d) 790 see frame 62D

62A. Your answer: 252,800
is incorrect.
What you have calculated is the number of Astronomical units to the 
nearest star (4 X 63,200). Our solar system, however, is 80 A.U.s 
across. So, to find how many solar systems you could put in that 
distance, you must divide your answer by ____ .

80    —---------------- ----------------------

62A2. This now gives you divided by which equals

252,800; 80; 3,160  ------------------------------ —-------

62A3. Now go back to frame 61 and choose the correct answer.

62B. Your answer: 3,160    --------------------
is correct.
You have done well if you got this answer on the first attempt. In 
any event, this answer should indicate to you that the stars are 
rather widely spaced. We will return to such matters later in the 
program. At this point, however, it is time for review: All 
through this part of the program we have been discussing
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ASTRONOMICAL DISTANCES   Proceed, now, to frame 63  .......................

62C. Your answer: 31,600
is incorrect.
You have the right idea, but you are out by a factor of ten. Let us 
develop the correct answer: The number of A.U.s in one light year 
equals 63,200, and the number of light years from our solar system 
to the next nearest star is 4. Therefore, the number of Astronom­
ical units from our Sun to the next nearest star is  X

63,000; 4; 252,800    —

62C2. The solar system is 80 A.U.s across. Therefore we must divide the 
answer in the previous frame by ____  to find the number of. solar
systems that would fit in this distance.

80    Proceed, now, to frame 62A2

62D. Your answer: 790
is incorrect.
What you have calculated is the number of solar systems that would 
fit, end to end, along the distance of one light year (63,200 div­
ided by 80). However, the distance to the nearest star is 4 light- 
years. Therefore, to get the correct answer, you must multiply this 
answer by ____ .

62D2. This gives you_____ X___ = .

790; 4; 3,160 

62D3. Now go back to frame 61 and choose the correct answer.

63. You will recall that we defined the light year as 

THE DISTANCE THAT LIGHT TRAVELS IN ONE YEAR

64. The Astronomical Unit (A.U.) is defined as 

THE AVERAGE DISTANCE FROM THE EARTH TO THE SUN

65. The Parsec (or Parallax Second) is defined as 

THE DISTANCE AT WHICH AN OBJECT WOULD HAVE TO BE TO APPEAR TO HAVE 
SHIFTED ONE SECOND OF ARC WIEN OBSERVED FROM TWO DIFFERENT POSITIONS, 
SEPARATED BY A DISTANCE OF ONE A.U. AT RIGHT ANGLES TO THE DISTANCE 
TO THE OBJECT.
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66. The diagram below can be labelled in the following way, to illustrate 
 the concept of the Parseo.

1. 1 A.U. ; 2. 1 PARSEC; 3. 1 SECOND OF ARC

67. You have finished the segment of this -program on Astronomical dist- 
ances.  If you have not taken a break yet, we suggest that you do so 
before continuing on in the program. 

68. This segment of the program will concern itself with the Solar, sys­
tem. The solar system consists, principally, of the nearest star

to us (the Sun), our own planet, eight other planets and an asteroid 
belt between the orbits of Jupiter and Mars. We are not at

present, of the existance of any other planetary systems, although 
there is no reason to assume that such systems do not exist. Each 
of the planets in our system has a unique average distance from the 
Sun. These distances are best expressed in terms of units based on
the speed of light. One such unit with which you are already famil- 
iar is known as the ,

LIGHT YEAR -----------

69. Light travels at a speed of 

186,000 MILES/SEC.  

70. You will remember that a light year is defined as

THE DISTANCE THAT LIGHT TRAVELS IN ONE YEAR  

71. If we were to consider a new unit, which is defined as the distance 
that light travels in one second, a good name for this unit would be 
the “light“.

SECOND  

72. The length of this unit (in miles) would be

186,000 MILES  
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73. Another unit called the _________________  is defined as the
distance that light travels in one minute.

LIGHT MINUTE

74. You will recall, from an earlier frame in the program, that this dis- 
tance is X_ miles in length.

186,000; 60

75. The distances from the Sun to some of the planets' 'in our solar sys- 
tem can be expressed, conveniantly, in terms of light minutes. For 
example, our own planet is, on the average, 8 light minutes away from 
the sun. This is equivalent to (how many?) _  Astronomical Units.

ONE---------------------------------------------- -------------------------------- -------:-----
76. In fact, the would also be a conveniant

unit to use, when discussing distances to planets.

ASTRONOMICAL UNIT (A.U.)

77. from the content of frame 7 5, you should be able to conclude that
1 A.U. = ___  light minutes (approximately).

78. The planet Mercury is about 3 light minutes away from the sun. This 
distance, in A.U.s, is (how much?)  (approximately)

3/8 or .375 A.U.s

79. The planet Mars is 1½ (or 1.5) A.U.s away from the sun. How long, 
then, would a trip from Earth to Mars take, on the average, when the. 
Earth is situated on a straight line between the sun and Mars (as 
shown in the diagram), if you were travelling at the speed of light?

(a) 4 minutes see
(b) 12 years see
(c). ½ A.U.s  see
(d) 12 minutes see
(e) 35,000,000 miles see
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80A. Your answer: 4 minutes
is correct.
Another unit for distance (from the speed of light) based, this time, 
on hours instead of minutes, is called the and is
defined as   ....

LIGHT HOUR; THE DISTANCE THAT LIGHT TRAVELS IN ONE HOUR 
    Proceed, now, to frame 81

80B. Your answer: 12 years      
is incorrect.

 Take a look at your units. We are considering units expressed in 
small numbers of light minutes. This means that, travelling at the 
speed of light, it should take you much less than 12 years to cross 
such distances. Go back to frame 79 and choose a better answer.

80C. Your answer: ½ A.U.s  
is incorrect.
We asked for an answer that consists of a time period, and you gave 

  us a distance. However you do have part of the answer: ½A.U.s is 
the average distance from the Earth to Mars when the two planets are 
situated as shown in the diagram on frame 79. You will recall that 
 there are (how many?) ______ light minutes in one Astronomical Unit.

8--------------——————------ ----------------------------------- _---- ---------------------

80C2. Therefore, a distance of ½ A.U.s would be equal to ....X___= 
light minutes.

4 —---------------------------- ——---------------------

80C3. So, then, to travel this distance at the speed of light- would take 
you (how long?)     

4 minutes —------------------------   ------------

80C4. Go back, now, to frame 79 and select the correct answer.-----------------

80D. Your answer: 12 minutes  ......... ...
is incorrect.

What you have calculated is the time required to take a trip at the 
same speed (the speed of light) from the Sun to Mars. This was not 
what was asked for. You will recall that thé Earth is (how many?) 
___ light minutes away from the Sun.

80D2. So, to derive the correct answer, you must subtract-------------- ..............  
from your answer.   

MINUTE'S ——--------- ----------------------------------- ---------------- ------------;-------- 

80D3. This leaves - =  minutes.--------- 

12; 8; 4 ----------------—--- ----- ------------- -------—- ----------------  
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8OD4. Go back, now, to frame 79 and choose the correct answer.

80E. Your answer: 35,000,000 miles
is incorrect.
The units you have used are inappropriate. The answer that was as- 
ked for was a time period. You responded with a distance. Go back
to frame 79 and choose a better answer.

Average distances beyond Jupiter are best discussed in terms of light 
hours. One light hour, naturally, is equivalent to (how many?) 
light minutes.

82. The planet Saturn (next furthest out beyond Jupiter) is, for example, 
 about 80 light minutes away from the Sun. This distance, in light 

hours, is .

1 1/3 or 1.33... LIGHT HOURS

85. This means that sunlight takes (how long?) to travel 
from the surface of the Sun to Saturn.

1 1/3 HOURS or 80 MINUTES   --------------------------------

84.  The  planet Pluto (the farthest planet out in our system, to our know- 
ledge) is, on the average, 5½ light hours away from the Sun. This 
means that our solar system has an average diameter (or distance 
across) of...  .

11. LIGHT. HOURS  -----------------------------------------------------

85. In the late 1700's, a German Astronomer by the name of Johann Bode 
made famous a law which, it seemed, allowed him to describe something 
about the orbits of the planets. Laws, in Science, are typically 
named after those who were associated with them. Therefore, we would 
suspect that this law that Bode made famous would be called 's 

..... law.

¿6. Bode's law begins by taking the series of numbers 0,5,6,12,...
doubling the last number each time to obtain the next one. The next 
four numbers in this series will be , , ___ , ...

24; 48; 96; 192 -------------------------------------

87. The number 4 is now added to each term in the series. When we do this 
to the eight term series which we developed in frame 86, the result is 
the series: _________

4,  7, 10, 16, 28, 52, 100, 196...  --------------------------------

¿8. The. final thing that is done is to divide each term in this new series 
by 10. This leaves us with the series: 
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0.4, 0.7, 1.0, 1.6, 2.8, 5.2, 10.0, 19.6 ....

89. The series that we have been developing can also be generated by the

following Mathematical Expression: a = 0.4 + 0.3 X 2n
where ”2n" means "n 2's multiplied together”. For example, 23 = ___

2; 2; 2; 8  ------------------------------------ ------------------

90. The "a" in the expression  X 2n can be any term of thea= 0.4 + 0.3 X
series we have been talking about, depending on what number we let 
"n” be equal to. For example, if we let "n” equal 1, "a" would equal 
____  (Hint: 21 = 2)

1.0  --------------------------------------- —-------------------------- ------

91. This just happens to be the distance from the Sun to the Earth in 
Astronomical units. Frame 92, a data frame, presents some more inter­
esting results from the expression a =  .

0.4 + 0.3 X 2n

92. DATA FRAME ON BODE'S LAW:------ - ---------------------------------- ----

Planet- n a Actual Distance 
(from the Sun, in A.U.S)

Earth 1 1.0 .1.00

Mars 2 1.6 1.52  

Ceres 
(Minor "planet” in 
Asteroid belt)

3 2.8 2.77

Jupiter 4 5.2 5.20

Saturn 5 10.0 9.52

Uranus 6 19.6 19.18

After you have examined the contents of the above table, proceed to 
frame 93.

93. You noticed, when you examined the table in frame 92, that the----------- 
values for "a” and those for "Actual Distance” are almost 

EQUAL or THE SAME   -------------------- ------------ --------------------- - ------
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94. What can you conclude from this data?

(a) Bode's law adequately describes the distances of all the bod­
ies in the solar system. see frame 95A.

(b) Bode’s law accounts for the structure of the solar system. 
see frame 95B.

(c) One can conclude very little from this data.
see frame 95C.

(d) Both (a) and (b) see frame 95D.
(e) "The Queen to me a royal pain doth give"

see frame 95E.

95A. Your answer: Bode's law adequately describes the distances of all 
the bodies in the solar system 

is incorrect.
See frame 95A2 for the explanation.

95A2.In the first place, the table in frame 92 contains data on only some 
of the planets — those for which Bode's law seems to work quite well. 
In fact, Bode's law completely fails to account for the distances to 
Neptune and Pluto unless you ignore Neptune and consider Pluto to be 
the eighth planet. Secondly, Bode's law is an Empirical law. This 
means that it has been contrived to explain data that are already 
known. It is not known to be based on any physical properties, .and
it, therefore, has no ability to predict. Therefore Bode's law can 
not be considered to be a usefull scientific law because it can not

PREDICT Proceed, now to frame 94 and select a better answer.

95B. Your answer:Bode's law accounts for the structure of the solar 
system

is incorrect.
See frame 95B2for the explanation.

95B2. Mathematics, by itself, never "accounts for" anything, although it 
can sometimes be used as a reflection of physical processes. To 
find out why Bode's law fails in this respect, proceed to frame 
95A2. 

95C. Your answer: One can conclude very little from this data  
is correct.
You have realized that, not only was the table in frame 92 incom­
plete (it did not include all the planets, and, in fact,.Bode's 
law does not "work" for all the planets), but a law that is con­
trived to explain facts that are already known (called an empirical 
law) does not necessarily predict facts which are not known. A 
usefull scientific law should have the power to 

PREDICT Proceed, now, to frame 96

95D. Your answer: Both (a) and (b)  - ----
is incorrect.
See frame 95B2 for the explanation.
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95E. Your Answer: ’’The Queen to me a royal pain doth give” 
is incorrect.
You have given us the title of a famous P.D.Q. Bach Madrigal. Unfor­
tunately this was not what was asked for. In fact, the incorrect­
ness of your answer is only exceeded by its frivolousness. In short 
you have come to another abort frame. You are advised to set the 
book down momentarily and take a break. When you feel refreshed 
once more, we suggest that you go back to frame 94 and continue on 
in the program.

96. A law that is contrived to explain facts that are already known is-----  
called a(n) law.

EMPIRICAL ———-------------------------------- .-----------

97. We are now going to introduce you to a scientific law that is, on the 
other hand, quite usefull in Astronomy. This law is known as 
Kepler’s Third law. This law was developed by a man by the name of 
Johannes (last name)  (1571 - 1630).

KEPLER  ------- ------------------- -------

98. Kepler’s third law is usefull because, as with all good scientific 
laws, it is based on _  and can be used to

____ _____ facts which are not known.

PHYSICAL PROPERTIES; PREDICT or DERIVE-------------------------- ---------------

99. This law attempts to relate the motion of any two bodies (or objects) 
to their distance apart and their masses (or weights). To under­
stand it will require that you have an intuitive understanding of 
what something called Gravity is. Gravity can be thought of as a 
force that exists between any two objects. This is important when 
we start to consider the solar system because it is this thing 
called _____ ___  which keeps all the planets in their orbits
about the Sun.

GRAVITY ------------------------------------- —------------------- ------------------

100. Any two objects (or bodies) in the universe exert a gravitational 
attraction on each other—ie.—The force of gravity acts on the 
two bodies to bring them together. However, the effect of this is 
not always observable because the strength of this force which we 

-------------- ----------  is affected by the weights (or masses) of the 
bodies and the distance between them.

GRAVITY —--------- - ------ —...................................... .........

101. -------  attraction between two bodies is affected by the
— - -  and the ____________  associated with the two
bodies we are considering.

GRAVITATIONAL; DISTANCE; MASSES----------------- -- --------------------------------- “----
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102. The force of gravity is related to mass in the following way: The 
greater the product of the masses (one mass multiplied by the other) 
the greater the force of gravity. For example, if we were able to 
observe the effect of the gravitational attraction between two bodies 
and were then able to increase the mass of one of the bodies by 3 
times, the new force of Gravity between them would now be ___  times
as great as it was previously.

3

103. Distance and Gravity are related in a different way: If you increase
the distance two objects in question by "n" times, then the force of 

  
.... Gravity between them decreases to one "n2"th times as much as it was 

previously. Where n2 means, as you will recall, .

n X n

104. For example, if we made the distance between the objects two times as 
great, the force of gravity is now. only ¼ as much. If we now incre­
ase this distance to 3 times as much as the original,  the force of  
gravity is now only times as large.

105. You should now be able to explain why the effects of gravity are not 
 always observable; ...For. example, you can not detect the force of 

gravity between yourself and a chair that is in the same room with 
you, because the combined mass of you and the chair is much too

SMALL or LITTLE

106. However you are constantly aware of the force of gravity between 
yourself and the Earth, because the combined _  of you and
the Earth is quite (large/small) .

MASS; LARGE     -------------------------- -----------------------

107. However, you are not aware.of the force of gravity between yourself 
and some other hypothetical planet, about the same size as the Earth 
which is Several hundred light years distant, in some other part of 
the universe, because this planet is too  .

DISTANT or FAR AWAY  ---------

108. You will recall that the force of gravity between two bodies increa- 
ses as the   increases.

PRODUCT OF THEIR MASSES    ------------------------- ;---- -
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109. The way that a relationship like this is usually stated is to say 
that the force of gravity between two bodies is directly propor­
tional to the product of their masses. If we let the force of 
gravity be represented by Fg, and the two masses be represented by 

and then the  way to state this relationship mathematically
is to write Fg α M1 X M2. Where "α" means "

IS DIRECTLY PROPORTIONAL TO

110. This means that, if we triple the quantity M1 X M2, Fg increases by  

(how many?) _ times.

111. Another way to say the same thing is to write: Fg = k X M1 X M2 , 

where "k” is some number that is put in to make both sides of the 
equation equal. This means that if we, in some way, change the 
equation, we must also change   .,

THE NUMBER THAT WE LET "k” BE EQUAL TO-------—---------------------------------------

112. You will notice that the relationship we have been talking about  
still holds —ie.—if. we multiply one side of this equation by a 
number "n", the other side becomes (how many?) ___  times as large.

113. In review, Fg α M1 X M? means the same thing as Fg = 

where "α" means 

k X M1 X M2; IS DIRECTLY PROPORTIONAL TO-------------- ------ ---------------------’----

114. You will now recall that the force of gravity between two bodies 
decreases as the distance between them__________ , such
that, as this distance is increased by "n" times, the Force of
 gravity becomes one ____th as strong.

INCREASES; 2 ----- -------------- ----- ----------------------------------------------n  

115. A relationship like this is usually stated by saying that the force 
of gravity is inversely proportional to the distance multiplied by 
itself. This is stated, mathematically as Fg α 1/d , where "d" 
represents distance, d2 means  and Fg represents

d X d; THE FORCE OF GRAVITY

The relationship Fg α 1/d2 can also be expressed mathematically, as
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k X 1/d2 or k/d2

117. "k" is put in the above expression so that both sides of the equation 
will be . This ”k” (is/is not) ______ the same number as 
the "k” in Frame 111.

EQUAL; IS NOT.

118. Notice that, for example, if "d" is increased by 4 times, Fg now be- 
comes (how many?) _ times as large.

1/16----------------- ----------------------
119. We will now attempt to combine these two expressions: You will rec­

all that the force of gravity is related to mass by the expression 
Fg α

m1 x m2 

120. The force of gravity is related to distance by the expression: 
Fg α__•

1/d2

121. Combining these two expressions gives us the expression:

  M1 X M2
Fg α M1 X M2

.2

Another way of saying this is to write: Fg = -

k X M1 X M2

d2    

122. You realize, of course, that this "k" (is/is not) the same num-
ber as any of the "k"s used elsewhere in the program.

IS NOT

123. This "k" is usually written as ”G”, which is just like giving another 
name to the same thing. "G" is known as the Gravitational Constant. 
The gravitational constant is put in so that 

BOTH SIDES OF THE EQUATION WILL BE EQUAL

124. Using ”G" in the place of ’’k" gives us the equation:
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125. This is known as Newton's Law Of Universal Gravitation. It was dev­
eloped, as you can guess, by a man named Isaac (last name) .

NEWTON-------------------------------------------------------------—---------------------- -----------

126. You will recall that we explained gravity in this amount of detail so 
that you might better understand a law which is called 

KEPLER'S THIRD LAW------------------------------------
127. Stated in a symbolic, mathematical way, Kepler's Third Law is this:

You are already familiar with some of the terms in this expression. 
For example, and "Mg" represent , 

and "G". represents the  .

THE MASSES OF TWO BODIES ; GRAVITATIONAL CONSTANT

128. "a" in the above expression represents the distance between the cen- 
tres of the two bodies we are considering. 3

"a ", of course, means

3 "a"s MULTIPLIED TOGETHER or a X a X a

129. "p" in this expression is put in to represent something which we call 
 the "period". "p2", of course, means

2 "p"s MULTIPLIED TOGETHER or "p" TIMES ITSELF

130. "Period," in this case, simply means the time that elapses until a 
regular motion observed for two bodies in gravitational attraction 
begins once again. For example, if the two bodies we are consid­
ering are the Sun and one of its planets, a "period" would be the 
time it takes for that planet to one orbit.

COMPLETE or FINISH ------------------------------ ---------------------
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131. The only other thing in this expression which we have not yet ex­
plained is "π". "π" is simply a number. Four our purposes, it 
is approximately equal to 3. In the expression, then, the term 
4π2 is equal to the number:

(a) 144  see frame 132A
(b) 36 see frame 132B
(c) 24 see frame 132C
(d) 0 see frame 132D

132A. Your answer: 144
is incorrect.
You have not understood the meaning of "4π2". It should be clear 

2to you that "π2" means  .

2 "π"s MULTIPLIED TOGETHER or "π" TIMES ITSELF

132A2. "4π2" means 4 X "π2" or  4 times .

TIMES ITSELF 

132A3. You should now be able to calculate the correct answer. Go back 
to frame 131 and try again.

132B. Your answer:36 
is correct.  
You have understood the meaning of the expression "4π2". If we 
measure time in years, mass in solar masses .(1 solar mass = the 
mass of the sun), and distance in A.U.s, then we find that G has a 
value of about 36. You will recall that the expression for 
Kepler’s third law is:

a3
.................. 2 =

................... p  ........................ .. ..

M1 + M2 Proceed, now, to frame 133 ........

132C. Your answer: 24
is incorrect.
You do not know the meaning of "4π2". It is also possible that 

you have forgotten the meaning of "π2". Let us consider some ex­

amples to bring this back to mind: 12= 1;’ 22= 4; 32= 9;’ 42= .

16 ----------------  

132C2. Therefore, if ”n" is any number "n2" means

nX n; or n TIMES ITSELF ----------------------
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2
132C3. It should be clear, then, that π2 is equal to .

TIMES ITSELF. Proceed, now, to frame 132A2

132D. Your answer: 0
is incorrect.
In fact, this answer is meaningless. You will recall that Kepler's 
third law states that a3

132D2. If you claim that 4π2 is equal to zero, then you will be left with 
the problem of dividing G by _____ .

132D3. This is not possible, so that it is obvious that your answer is 
unrealistic. Go back to frame 131 and choose a better answer.

Recalling the value which we calculated for 4π2, G/4π2 can now be 
calculated to be equal to .

134. Our expression for Kepler's third law, then, can be written more sim- 
ply, as:

a3

135. You remember, of course, that this way of writing Kepler's third Law 
is only valid if time is measured in , mass is measured in

, and distance is measured in .

YEARS; SOLAR MASSES; ASTRONOMICAL UNlTS or A.U.s ..........   . ................... 

136. From this, expression —ie.— a3 = M1 + M2 , it is possible to pre- 
2   ............ ........

P
diet something about the motions of planets, if we know their

 average distances from the Sun. First, we must consider a com­
parison: You already know that the Sun weighs __  solar
mass(es).

137. The largest planet (Jupiter) weighs only 1/1,000 solar masses or 
(how many times?) as much as the Sun.

 



1/1,000'

138. So, if the two bodies we are considering are the
 will represent by M1) and a planet (whose mass we will represent by 

M2), the quantity M1 + M2 will not be much different from .

139. Suppose now that we are considering two planets in our solar system: 
One (planet A) which is quite close to the Sun, and another (planet 
B) which is farther away. In the expression:   

a3 = M1 + M2 ,
  p2

 planet B will have a higher value for  than planet A. --- 
_______ ____________ '   (which letter?)
a   

140. However, as we have already pointed out, the quantity M1 +M2 will 

stay about the same, regardless of which planet we are considering, 
because the mass of the Sun is so .

LARGE  

141. Therefore, to keep M1 + M2 about the same (in the expression: 

)
   p2 

when we have increased the value for "a”, we must also change "P" 
so that it becomes .

GREATER or LARGER‘

142. This suggests...a very conveniant generalization: The farther away 
a planet is from the Sun, the (greater/less)___________will
be its period. ......  ..........

GREATER   

143. ’’Period", in this case, can be defined as the time that it takes a 
planet to . 

ORBIT THE SUN ONCE

144. Let us now go back to the example which we considered in frame 139: 
Suppose that planet B is exactly twice as far away from the Sun as 
planet A. This means that the value ”a" for planet B would be (how 
many?) _ times as great as it is for planet A.
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145. Also, the value "a3” for planet B would be (how many?) times as 

great as for planet A.

146. However, when we double the value for "p”, "p2” becomes only (how 
many?) _____ times as much.

147. Therefore, to keep the ratio a3/p2 about the same (that is, equal 
to M1 + M2), we must increase ”p" by (more/less)  than 2 

times every time we double "a".

MORE 

148. What this means is that, in general, the farther a planet is from the 
sun, the (slower/faster)  it travels in its orbit.

SLOWER  

149. In review; Newton’s Law Of Universal Gravitation is described by the 
expression;

Fg = G X M1 X M2

d2

150.  In the above equation, "Fg” represents 
"G" represents   , "M1” and "M2" represent

 , and "d” represents  ,

THE FORCE OF GRAVITY; THE GRAVITATIONAL CONSTANT; THE MASSES OF THE TWO
BODIES; THE DISTANCE BETWEEN THE TWO BODIES

151. Kepler’s third law is described by the expression;

a3
P2
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152. In the above equation, "a" represents , "p" represents
, and " π " is a    approximately equal

to '___ . 

DISTANCE; PERIOD; NUMBER; 3    

153. If time is measured in______  , distance is measured in _______
_____________ , and mass is measured in .____________ _, this 
equation can be simplified to

YEARS; ASTRONOMICAL UNITS (A.U.s); SOLAR MASSES;

154. Both Kepler’s third law and Newton's law of Universal Gravitation 
are usefull scientific laws because they are based on _______ 

, and have the power to _ .

PHYSICAL PROPERTIES; PREDICT    

155. Concepts associated with the question: "Which direction is up?" are 
are also quite important in Astronomy. Look at the diagram below and 
indicate, by drawing an arrow, which direction is up. You are 
standing at the spot labelled "X".

Do the same thing for the 
following series of frames.
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158.

159.

160.

161. On the basis of what you have learned in the sequence from frame 155 
to frame 160, draw arrows to indicate every direction that could be 
considered to be "up" on the following diagram:
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162. Would it now seem reasonable to you to say that "up" and "down" are 
important concepts in space?

(a) Yes see frame 163A
(b) No see frame 163B
(c) Only if it is raining on a Thursday afternoon

see frame 163C

163A. Your answer; Yes 
is incorrect.  
We have tried to point out, in the sequence starting from frame 155 
that ''up” and "down” are concepts associated with our lives here on 
Earth. That is to say, "up” is against the direction that gravity 
pulls us, and "down" is with it. In space there are large distances 
between bodies that exert gravitational forces, hence gravity has 
no appreciable effect. Therefore concepts like ''up" and ''down" 
become unimportant. Go back to frame 162 and select a better answer.

163B. Your answer: No 
is correct.
You have realized that "up" and "down” are concepts that we learn 

- here on Earth, In other words, "up" is simply in the (same/opposite) 
_____  direction that gravity pulls whereas "down", is 
in the (same/ opposite)  direction that gravity pulls
us.

OPPOSITE; SAME Proceed, now, to frame 164

163C. Your answer: Only if it is raining on a Thursday afternoon 
is incorrect.
It should be clear that you have stumbled across another abort 
frame. Take a break, and then begin afresh at frame 162.

164. We will now consider some facts concerning the relative sizes of 
planets. Frame 167 is another data frame. In order to interpret its 
contents, however, you will need to understand the meaning of the 
unit "Earth mass". This will not be a difficult task, because an . 
"Earth mass" is defined in the same way that we defined a "solar mass” 
earlier in the program. You will recall that 1 "solar mass" is equal 
to .

THE MASS OF THE SUN ——————

165. In a similar way, an "Earth mass" is defined in such a way that 1 
"earth mass”, will be equal to.

THE MASS OF THE EARTH -

166. If we say, then, that a certain body weighs 10 Earth masses, we are 
saying that it weighs (how many?) times as much as the Earth.

10

-32-



167. DATA FRAME ON RELATIVE SIZES OF PLANETS:

Planet Diameter 
(in miles)

Mass
(in Earth masses)

Surface Gravity 
(Gravity of Ea^t^j

Mercury 3,025 0.06 0.38

Venus 7,526 0.8 0.90

Earth 7,927 1.0 1.00

Mars 4,218 0.1 0.38

Jupiter 88,700 318.0 2.64

Saturn 75,100 95.2 1.13

Uranus 29,200 14.6 1.07

Neptune 31,650 17.3 1.08

Pluto 3,500 0.1 o.6o

68. The next several frames are based on information from the above data 
frame. First, if the series of circles below represent the relative 
sizes of all the planets (in descending order), they would be label­
led in the following way:
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169. The scales on the diagram below are balanced if the box on the right 
contains (how many?) planets the size and mass of Mars.

10

170. The scales are again balanced if the box on the right contains (how 
planets the size (and mass) of the Earth.

171. Again the scales are balanced if the box at the right contains (how 
many?)  planets the size and mass of Mars.

172. If we again fill the box on the right with planets the size (and mass) 
of Mars, we would need (how many?)  of them.



173. Once again, we arc to fill the box at the right with planets the size 
(and mass)of Mars. We should need (how many?) ___  of them.

5

174. To balance the scales now, we need to fill the box at the right with 
(how many?) _ planets the size (and mass) of Mercury,

100

175. You will notice, from the table in frame 167, that the surface grav­
ity on the planet Venus is ____  times as much as it is here on
Earth.

9/10 or 0.9  

176. What this means is that a one pound object here on Earth would weigh 
(how many?) ____  pounds on Venus.

9/10 or 0.9

177. Someone weighing 100 pounds here on Earth would weigh (how many?)  
  pounds on Venus. -

178. This same person would weigh (how many?) pounds on Jupiter.

264 

179. A person weighing 180 pounds on Venus would weigh (how many?) 
pounds on Earth, and therefore (how many?) _pounds on Jupiter.

200; 528 —————



180. An object weighing 19 pounds on Mercury would weigh how much on 
Saturn?

50; 1.13; 56.5 
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181A. Your answer:56.5 pounds
is correct.
This same object would weigh (how many?)  pounds on Jupiter.

132 Proceed, now, to frame 182

181B. Your answer: 50.0 pounds —————————
is incorrect.
You have part of the answer, however. Your answer is, in fact, the 
weight of the same object here on Earth. You recall that every 
pound here on Earth weighs (how much?) on Saturn.

1.13 pounds

181B2.Therefore, 50 pounds on Earth weighs X = pounds 
on Saturn.

181B3. Go back, now, to frame 180 and select a better answer.

181C. Your answer:3.26 light years 
is incorrect.
What you have given us is the number of light years in one parsec. 
This has nothing to do with the question that was asked, however. 
Take another look at your units. Then go back to frame 180 and try 
again(we recommend that you take a break first, however).

181D. Your answer: 38.0 pounds     
is incorrect.
Your answer equals the weight of an object on Mercury that weighs 
100 pounds here on Earth. However the object we are considering 
weighs 19 pounds on Mercury. 19 = 38/ .

181D2. Therefore on Earth, this same object would weigh 
= pounds.  

100; 2; 50

181D3. You know, from the data frame (167) that every pound here on Earth 
weighs (how much?)  on Saturn.

1.13 pounds  Proceed, now, to frame 181B2



182. It is now time to review this segment which has dealt, mostly, with 
phenomena in our solar system. Three units which we can use, conven- 
iantly-, to describe distances within our solar system are _____  

,  and .

LIGHT MINUTES; LIGHT HOURS; ASTRONOMICAL UNITS (A.U.s)

183. One light minute is equal to (defn.) , one light
hour is equal to (defn.)__________ , and one A.U. is equal
to  .

THS DISTANCE THAT LIGHT TRAVELS IN ONE MINUTE; THE DISTANCE THAT LIGHT 
TRAVELS IN ONE HOUR; THE AVERAGE DISTANCE FROM THE EARTH TO THE SUN

184. Three ’’laws" which we have talked about in this segment are known as 
_______, and __________

BODE'S LAW; NEWTON’S LAW OF UNIVERSAL GRAVITATION; KEPLER'S THIRD LAW

185. The mathematical statement of Bode's law is:

a = 0.4 + 0.3 X 2n

186. The mathematical statement of Newton's law of Universal Gravitation 
is

G X M1 X M2

187. The mathematical statement of Kepler's third law is:

188. Of these three laws, and
are usefull scientific laws because they are based on 

and have the power to 

NEWTON'S LAW OF UNIVERSAL GRAVITATION; KEPLER'S THIRD LAW; PHYSICAL
PROPERTIES; PREDICT 

189. One "solar mass” is equal to , and one "earth
mass" is equal to  .

THE MASS OF THE SUN; THE MASS OF THE EARTH - ----

190. Concepts like —----  and  become unimportant in space.
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UP; DOWN

191. You have come to the end of this segment of the program. If you have 
not taken a break since the beginning of this segment, we suggest 
that you do so now, before continuing on to frame 192.

192. You will recall that the Sun is just one example of a whole class of 
objects called,

STARS - ---------------------- ----------------------------------------------

193. Before we attempt to explain anything about such objects, however, it 
is going to be necessary for you to understand something known as 
Scientific Notation. This will not only help you to follow the mat­
erial in this segment, but will facilitate your comprehension of con­
cepts appearing later in the program which will also require a know­
ledge of  notation.

SCIENTIFIC -------------------------------------- - --- -—---- ---------------------------------

Scientific notation is simply a way of dealing with large numbers.— 
In the first segment of this program (bn Astronomical Distances), we 
mentioned that the nearest star to our solar system was 25,200,000, 
000,000 miles distant. The way that this difficulty was overcome, 
in that section of the program, was to invent new for dis­
tance.

UNITS --- ----------------—------------- -------------- ---- ------ ---- —————-------

195. Unfortunately, it is not always conveniant to invent new units for 
everything that we would like to measure in the universe. Hence, it 
becomes necessary to deal with large numbers directly. This thing 
called   helps us do this.

SCIENTIFIC NOTATION  - -------------- -- -------------------------------------

196. You will recall, from various places earlier in the program, that if 
some number ’’k" is written with some other number"n" at the top right 
hand corner —ie.—"kn", this means .

"k”s MULTIPLIED TOGETHER or k X k X k X k X...(n times)---------------------

197. For example: 52 = ____ .

25

198. 23 =   ---------------------

8- ----------------------- :-------- —— ---------- ------------------------ -----

-------4__ _____________ - ------------------ ----- -------------------------------------- ___ 
199. 34 = -___ .

------------- -- --------------- —------------------------------------- --------------------—
——————---------------------- -- --------------------------



200. 102= _____ .

100 ------------------------------------------- —

1,000; 10,000; 100,000 ----- --------------------

202. 10n, of course, means

n 10’s MULTIPLIED TOGETHER-----------------------------------

203. It should be clear, from frames 200 and 201, that ”n" in 10n is also 
the number of _ in your final answer.

— ———————————------------ —-------- ----------- ---------------------

204. _    23 —————————— ---- -----------------------
For example, a number like 1023 would be written as 1 followed by

23 0’s — --------- ------------------------—---------------------

205. It will now be necessary that you understand how numbers such as these 
are multiplied together and divided. Let us take an example: You. 
can calculate, for instance, that 100 X 1,000 = .

100,000 ------------------------------ ----- -------------------

206. Another way that we can write 100 is  Similarly, we can write 
1,000 as _ and 100,000 as _____ .

102; 103; 105

207. Substituting these numbers into the multiplication problem which we 
considered in frame 205, gives us the expression: ___  X ___  =

102; 103; 105

208. Let us consider another example: 100 X 10,000 = .

1 ,000,000 —— - ---------------- ---- ----- --------------------------

209. Another way of writing this expression is: — .-------------
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102 X 104 = 106

210. The numbers above and to the right of the 10's are called exponentts. 
This way of writing numbers, in fact, is called exponential notation. 
The multiplication problems which you have considered (frames 205 - 
209) should lead you to believe that, to multiply two numbers written 
in the same exponential notation* , all that you have to do is 
their exponents. ——----



ADD

211. For example, it now causes very little difficulty to do the following 
problem: 1023 X 1047 = _ (in exponential notation).

_____ _ _____

     70
212. You will recall that this number "1070" means ___________________ or

70 10's MULTIPLIED TOGETHER; 1 FOLLOWED BY 70 0's ————

213. This technique for multiplication in exponential notation works for 
13 7any number of numbers multiplied together. For example: 10 X 107

x 1015 =

214. The method for dividing numbers written in ________  notation
is quite similar.

EXPONENT1A L

215. Let us consider some examples:

100

216. Another way of writing this expression is:

10 =10

217 1,000,000 = 
 1,000

1,000

218. Another way of writing this expression is

103

219. The rule for division for two numbers in the same notat­
ion is to their exponents.*3



EXPONENTIAL; SUBTRACT

220. You should now be able to do the following problem with little --- 
 difficulty: 1062 =

41 10 .

221. It is possible to combine the operations of multiplication and div­
ision in a very simple way:  For example, what is the correct answer 
to the following problem?  

1032 X 1019 X 1012 ?
1010 X 1029 X 103 -

222A4. This problem can now be solved if you remember the rule for div- 
ision in exponential notation which is to ________the
exponents.

(a) 1063 see frame 222A 
(b) 1010 see frame 222B
(c) 1042  see frame 222C
(d) 10 see frame 222D
(e) I do not know how to do this problem 

see frame 222E  

222A. Your answer: 1063

is incorrect.
The number which you have come up with represents only part of the 
answer.  -63  32  19   —ie.—1063 = 1032 X 1019 X 1012. In other words, ano-

32 19 12ther way of writing 1032 X 1019 X 1012 is .

222A2. Similarly, another way of writing 1010 X 1029 X 103 is

42

222A3. This means that 1032 X 1019 X 1012

1010 x 1029 x 103
can be re-written as



SUBTRACT    ------------------------

222A5. You should now be able to solve the problem in frame 221. Go back 
and try again.

222B. ——————— ---------------------------------------------------
Your answer; 10
is incorrect.
Let us break up the problem into parts: You will recall that the 
rule for multiplication in exponential notation is to _____  the
exponents.

ADD -- -------------------------------

222B2. Therefore, 1032 X 1019 X 1012 = ____ .

EXPONENTIAL NOTATION Proceed, now, to frame 223

1063 

222B3. Similarly, 1010 X 1029 X 103= 

1042 --- -------------------------------

222B4. This means that 1032 X
—-----------------------------------
1019 X 1012 

........................................................1010 X 29 3 - - - / *
1029 X 103  /

1063/1042 Proceed, now, to frame 222A4.

42     
222G. Your answer: 1042

is incorrect.
The number which you have come up with represents only part of the 

10 29 42
answer.—ie.—10 X 10 X 10 =10 . In other words, another 
way of writing 1010 X 1029 X 103 is ____ .

222C2. Similarly, another way of writing 1032 X 1019 X 1012 is

10^ Proceed, now, to frame 222A3

222D. Your answer: 1021
.......... is correct.

We will now go on to talk about how scientific notation is writ­
ten. Scientific notation comes out of the type of notation we 
have just been talking about, which, as you will remember, is cal-
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222E. Your answers I do not know how to do this problem
is, of course, no answer at all. To solve your present difficul­
ties, let us break up the problem into parts. You will recall that 
the rule for multiplication in exponential notation is to _____ 
the exponents.

ADD Proceed, now, to frame 222B2

223. It should be clear to you, now, that if 103 means ''1” followed by 

 , then 6 X 103 means  .

3 0's;6 FOLLOWED BY 3 0's

224. Also, 6.0 X 103 means_______________ . Written out the "long way"
this number is .

6 FOLLOWED BY 3 0's; 6,000

225. Similarly 6.1 X 103 is equal to (written out the "long way").

6,100

226. In a similar fashion, 6.13 X 103 is equal to written the
"long way").

6,130

227. Also, 6.132 X 105 is equal to  (written the "long way").

6132  

228. You will notice, in the above frame, that multiplying by 103 has the 
effect of moving the decimal point in the number 6.132 over (how 
many?) _ places to the (left/right) .

3; RIGHT

229. You will remember that multiplying by 103 is equivalent to multiply= 
ing by 10 (how many?) _ times.

3  ------------------------------------

230. This leaves us to conclude that every time you multiply a number by 
10, you move the decimal point in that number (how?) -

1 PLACE TO THE RIGHT   ——
--- ------ -------- .----- ------------------- _------ .--- ------------------------------------

231. For example, 9.37125 X 104 =  .

93712.5   ..........................  ------------------- ——---------

----------------------------------------------------------



232. Also 9.37125 X 105 =.

937125

233. As well, 9.37125 X 106 =

9371250  

234. In addition, 9.37125 X 1010= .

93500000 ------------------------------------------------------------ —— ------------------

235. It we now consider the number 9.37125 X 1023, we know that it will 
be written as 9 followed by (how many?) _____ digits before the dec­
imal point.

236. To find out how many 0's there will be in a number such as this, we 
simply subtract _(the number of digits after the 9 which are not 
0) from 23. This gives us (how many?) _ 0's.

5. -----------------------------------------------------

237. In other words, the number 9.37125 X 1023 is written as 937125 fol­
lowed by (how many?) _____ O's.

238. Similarly, the number 6.362 X 1042 is written as.

6326 FOLLOWED BY 39 0's -- ------------- --------------------------------------------- —

239. You have reached the point where you should be able to understand 
what Scientific Notation is. A number is in scientific notation when 
it is written as some number that is greater than or equal to 1 and 
less than 10 multiplied by a 10 raised to some exponent. Another 
way of saying this, is: A number in scientific notation is written 
as k X 10n where "k" is a number greater than or equal to 1 

and less than 10, 
and "n" is some exponent.

For example, the numbers     3  9.37125 x 1025 are bOth

SCIENTIFIC NOTATION ------------------- ---------------------------------

240.  ———------------------------- -  -
is the number 11.2 X 10 written in Scientific notation?

(a) Yes - see frame 241A
(b) No see frame 241B  



241A. Your answer: yes
is incorrect.
You will recall that a number in scientific notation should be writ­
ten as x 10n where "k" som,e number greater than or equal to

__ , and less than ____ .

1; 10

241A2. 12In the number 11.2 X 10 , the number 11.2 is (greater/less) ____ 
 than 10. Therefore, it is not in scientific notation.

GREATER

241A3. Go back, now, to frame 240 and choose the correct answer.

241B. Youranswer: No   ..............
is correct. ^2
You have realized that, in the number 11.2 X 10 , 11.2 is greater 
than 10. Therefore, this number is not written in 

SCIENTIFIC NOTATION Proceed, now, to frame 242

14  
242. Is. the number .93 X 1014 written in Scientific Notation?

(a) Yes see frame 243A
(b) No see frame 243B

243A. Your answer: Yes
is incorrect.
You will remember that a number in scientific notation is written 
as k X 10n, where "k” is less than___ _ and greater than or equal 
to ____ .

10; 1

243A2. You will notice that, in .93 X 1014, the number .93 is (greater/ 
less)than . Therefore, this number can not be 
in Scientific Notation.

243A3. Go back, now, to frame 242 and choose the correct answer.

243B. Your answer: No  
........ is correct.

Is the number 6.236 X 102 written in Scientific notation?

    (a) Yes see frame 244A
(b) No see frame 244B ......



244A. Your answer: Yes
is correct. 
Finally, is the number 10.0 X 1042 written in Scientific notation?

(a) Yes see frame 245A
(b) No see frame 245B

244B. Your answer: No
is incorrect.
the number 6.326 X 102 certainly is in Scientific notation. The 
number 6.326 is less than 10 and greater than or equal to 1; and 

2
in 102, 2 is an acceptable exponent. If you are still confused on 
this point, go back to frame 239 and review Scientific notation in 
more detail. Otherwise, proceed to frame 243B and choose the cor­
rect answer.

245A. Your answer: Yes   
is incorrect.
You have failed to understand the correct limits for "k" in the ex­
pression k X 10n. ”k” is greater than or equal to 1, but less than

10 can never be less than itself, therefore 10.0 X 1042 is not 
in scientific notation.. If you are still confused on this point, go 

  back to frame 239 and review scientific notation in more detail.
Otherwise , proceed to frame 244A and select the correct answer.

245B. Your answer: No
is correct.
You have understood the correct limits for "k" in the expression 

k X 10n, in that’you know that "k” is to be greater than or equal 
to _____ and less than _____ .

10 Proceed, now, to frame 246 ------------------------------- -----

246. Converting a number from the "long form" to Scientific notation is----  
not difficult. All that you have to do is put a decimal point after 
the first digit in the number, count the number of digits to the right 
of the decimal point, and let that be the exponent "n” when you write 

10 . .For example, the number 623000 can be converted to scientific 
notation if we put the decimal point between the digits 6 and 2. 
This leaves (how many?) _ digits to the right of the decimal
point.

247. Therefore, 623000, in scientific notation, is written as 6.23000 X

5  ------------------------------------------------------------------------------------- -------------------------------------—
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248. The 3 0’s after the decimal place are quite unnecessary, and, in 
fact, they can be left out. If we do this, our representation of 
623000, in scientific notation, now looks like this: .

6.23 X 105

249. How would the number 93600 be written in Scientific notation?

(a) .936 X 105 see frame 250A
(b) 9.36  see frame 250B
(c) 9.36 X 10? see frame 250C
(d) 9.36 X 10 see frame 250D
(e) I do not know see frame 250E

250A. Your answer: .936 X 105 
is incorrect.
The number .936 is less than 1, therefore, .936 X 105 is not in 
Scientific notation. Go back to frame 249 and select a better 
answer.  ...............................-

250B, Your answer: 9.36 
is incorrect.
You are. missing something very important. In scientific notation 
you need a term consisting of 10 to some exponent. Go back to 
frame 249 and select a better answer.

250C. Your answer: 9.36 X 105 
is incorrect.   
You have the exponent wrong. Let us go back to the original number: 
93600. The first step in changing this number into Scientific 
notation is, as you recall, to put the dedimal point after (which?) 
_________  digit.

THE FIRST  -------------------------

250C2. In other words, the decimal point is placed in between the digits 
____  and ____ .

9; 3  - ------- ---------------------------------

250C3. Next, we count all the digits to the right of the decimal point. 
There are (how many?) ____  of them.

250C4. This number (4) now becomes the value for

THE EXPONENT or "n’'  -------------------------

250C5. Hence this number, in scientific notation, is 9.3600 X



250C6. A simpler way of writing this is X .

9.36  ; 104

250C7. Now go back to frame 249 and choose the correct answer,

250D. Your answer: 9.36 X 104 
is correct.
Very Good!!!(For those of you who got this the first time). You 
should now be able to convert the number which we introduced at the 
beginning of this segment into Scientific notation. You will recall 
that the distance from our solar system to the next nearest star is 
about 25,200,000,000,000 miles. This number, in scientific notation 
is .

13
2.52 X 10 Proceed, now, to frame 251

250E. Your answer; I do not know
Indicates one of two problems; Either you did not follow the devel- 
opement in. frames 246 - 248 closely enough, or you find yourself un- 

 able, for some reason, to formulate the correct answer to the ques­
tion in frame 249. If your problem is the first of these, then go 
back to frame 246 and proceed from there. If not, continue on with 
the material in this frame; You will remember that the first step 
in changing a number (in this case 93600) into scientific notation 
is to put a decimal point after (which?) digit.

THE FIRST Proceed, now, to frame 250C2

251. The last topic that we will consider in talking about scientific 
notation, is the way in which numbers such as these are multiplied 
and divided. We will first consider the problem of multiplication:

10 12Let us consider two numbers: 9.6 X 10 and 2.4 X 1012.  You will 
notice, first of all, that both these numbers are in

SCIENTIFIC NOTATION

252. To multiply numbers together in Scientific Notation, you must multi- 
ply like parts of them together and then recombine the two results
that you get to derive a final answer. As you know, .numbers in 
Scientific notation are made up of two parts: One part (eg. 9.6) is

written in decimal notation, the other (eg. 1010)is written in
   notation.

EXPONENTIAL
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253. The multiplication which we are considering involves two steps, then. 
First, we multiply together the parts of the numbers which are in 
__________ notation, then we multiply those parts which are in 
 _____ -----  notation.

DECIMAL; EXPONENTIAL

254. If we are considering the problem (9.6 X 1010) X (2.4 X 1012 ), we 
first multiply the decimal parts together —that is— the numbers 
 _ and _____ .

9.6; 2.4   ---------------------------------——---------------------

255. When we do this (9.6 X 2.4), we come up with the number ------

23.04 --------------------------- -------------------------------------------------- ----

256. Next, we multiply the two exponential parts together —that is— the 
numbers - and____ , remembering that the rule for multiplication
 in exponential notation is to

1010; 1012 ADD THE EXPONENTS

257. When we do this (1010 X 1012), we come up with the number .

1022

258. If we now combine these two parts together, the result is the number 
-  x .

23.04; 1022

259.  —-----------------------——---------------------- ------------ ---- ;----
You will notice however, that the number 23.04 X 1022(is/is not) 
_____  in Scientific notation.

IS NOT ----- ------------------- ------- -----------------------

260. To correct this, we must move the decimal point in 23.04 so that it 
is now between the — and —. The result is the number ,

2; 3; 2.304

261. Doing this has the same effect as dividing the number 23.04 by (how 

10

262. To keep everything equal, however, we must multiply the exponential 

part (1022) by (how much?) _.

  ------------------ - ------------------- - ------ ------ -----



263. When we do this, the result is the number _____ .

1023 

264. Our final-answer, in scientific notation, then, is 

2.304 X 1023   

265. What is the solution to the following problem (in scientific notation)? 
(5.2 x 1015) X (6.3 X 105) = ? 

see frame 266A
see frame 266B
see frame 266C
see frame 266D 

(a)  3.276 X 1021
(b) 327.6 X 1020
(c) 32.76 X 10
(d) Darned if I know!?!

266A. Your answer: 3.276 X 1021
is correct.
Your arithmetic has worked out quite well. We will now consider the 
problem of division in Scientific notation. Once again, we divide 
like parts of the numbers together and then recombine —that is— 
we divide the two parts in ___________  notation, then the two
parts in __________  notation.

DECIMAL; EXPONENTIAL Proceed, now, to frame 267

266b. Your answer: 327.6 X 1020 
is incorrect.
Your answer indicates that you do not know how to multiply decimals. 
The problem of figuring out where the decimal point goes is, however, 
not difficult. You simply count the number of digits to the right 
of the decimal points in the two numbers that you are multiplying 
and let that be the number of digits to the right of the decimal 
point in your final answer. For example, consider the problem 
6.12 X 7.3. In the number 6.12, there are (how many?) __  digits
to the fight of the decimal point, and in the number 7.3 there are 
(how many?) ___ digits to the right of the decimal point.

Altogether, then, there are (how many?) , digits to the right of 
the decimal points in these two numbers. Therefore, there will be 
(how many?) ____ digits to the right of the decimal point in the
final answer.

3; 3

266B3. When we multiply 612 X 73, we get the number .
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44676------------------------------------------------------------------------ - ----------------

266B4. Therefore, the result of 6.12 X 7.3 is the number

44.676 

266B5. Similarly, the result of 5.2 X 6.3 is the number 

32.76  

266B6. Go back, now, to frame 265 and choose a better answer.

2660. Your answer: 32.76 X 1020
is incorrect.
There is nothing wrong with the way in which you did the calculation; 
however you did forget to convert your answer to scientific notation. 
To do this, you must move the decimal point in 32.76 so that it is 
between the digits ___  and ___ .

3; 2 ——   ---------- ;--------------------

266C2. This has the effect of dividing the decimal part of your answer by 

266C3. To keep everything equal, then, you must multiply the exponential  
part by ___

266C4. Your answer, in Scientific notation, then, is X

3.276; 1021  

266C5. Go back, now, to frame 265 and select the correct answer.

266D. Your answer: Darned if I know!?!    -----
indicates one to two things: Either you did not follow thè develope- 
ment from frame 251 closely enough, or you find yourself unable, for 
some reason, to calculate the correct answer. If your’s is the first 
of these problems, go back to frame 251 and start the sequence again. 
Otherwise, continue on with the developement from this frame: You 
will recall that to multiply two numbers together, in scientific no­
tation, it is necessary to multiply like parts of the numbers —that 
is—the  part of one with that of the other,and the 
—.... ..................... part of one with that of the other.

DECIMAL; EXPONENTIAL ----------------------------------------------------------

266D2. In the problem (5.2 X 1015) X (6.3 X 105), for example, we multiply 

the two parts ___  and ___  together, then the two parts ___  and

——————-- -------------



5.2; 6.3; 1015; 105

—...... ...... ... ... ................ ......... ......... ——-------- -—--------- 
266D3. When we do this (ie.—5.2 X 6.3, and 1015 X 105), we come up with 

the two results  and _ ___ .

32.76; 1o20   

266D4. Combining these gives us the number  

20
32.76 X 10 

266D5. To put this into scientific notation, we have to move the decimal 
point so that it is now between the digits ___  and ___ .

3; 2 Proceed, now, to frame 266C2

267. As an example, let' us take two numbers similar to those which we con- 
sidered previously, and attempt the following problem: 4x1015

9.6 X 1010

If we first divide the decimal parts of both numbers, the result is 
2.4/9.6 =____ .

268. When we divide the exponential parts of both numbers (remembering 
that the rule for division in exponential notation is to ______

 ...,) , we come up with the result 1015/1010_

SUBTRACT THE EXPONENTS; 105  

269. Combining these two results gives us the number X .

.25; 105

270. Again, the number .25 X 105 is not in Scientific notation. To put it 
into Scientific notation, we need to put the decimal point between 
the digits _ and ____ .

271. This has the effect of multiplying the number .25 by .

272, To keep everything equal, we need to divide the exponential part by 
__ . The exponential part now becomes (what number?) ____ . 
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275A2; This has the effect of multiplying .5 by

275A5. To keep things equal, we need to. divide the exponential part of  
your answer by ____ .

275A4. Your answer, in .scientific notation, then, is ___  X  _.

275A5. Go back, now, to frame 274 and select the correct answer. 

 
275B. Your answer: 5.0 X 1070

is incorrect.
You have forgotten how to divide in exponential notation. The rule 
for division in. exponential notation is to (see frame 268.) ............ ...

275B2. Go back, now, to frame 274 and select a better answer.
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5.0; 1028

10

10

10; 10

273. The answer, in Scientific notation, then, is

2.5 x 104

274. What is the solution to the following problem (in scientific notat-
ion?)

(a) 0.5 X 1029 see frame 275A
(b) 5.0 X 1070 see frame 275B
(c) 5.0 X 1028 see frame  275C
(d) One of the above. see frame 275D

29
275A. Your answer: 0.5 X 1029 .

is incorrect.
There is nothing wrong with your calculation; however you have for­
gotten to convert your answer into Scientific notation. To do this, 
you must move the decimal point so that is is (where?)

AFTER THE FIVE

SUBTRACT THE EXPONENTS



275C. Your answer: 5.0 X 1028 
is correct.
You are to be commended for staying with the developement until
 this point. You will remember that we started this segment discus­
sing objects called .

STARS Proceed, now, to frame 276 

275D. Your answer: One of the above
is not incorrect; however it is obviously not explicit enough. It 
is fairly clear that you have become bored at this point. This is, 
as you might have guessed, another abort frame. We suggest that you 
set this book down for a while, and then, at some later time, con­
tinue on in the program starting from frame 274.

276. The nearest star to us which we call , is just one example
out of this class of objects.

THE SUN '

277. In the next several frames, we will attempt to acquaint you with some 
phenomena and a few facts that will help you to calculate how long 
we expect the sun to last. First, however, you will need to under-
stand some units which we will use in this developement. The first 
unit which we will talk about is the centimeter. The centimeter (cm.) 
like the inch, is a measure of.

LENGTH or better -- DISTANCE '   

278. It takes, in fact, about 2½ centimeters to make up one inch. This 
means that an ordinary 12 inch ruler is about (how many?) _____ centi- 
meters (cm.) long.

30

279. A distance of 300 cm., then, is about (how many?)' inches in
length.

120  

280. The second unit which we would like to introduce is the gram (g.). 
The gram, like the pound, is a unit of  .

WEIGHT, or bettor — MASS     

281. For example, there are  about 500 grams(g.) in one pound. This means 
that a 10 pound object weighs about (how many?)  g.

5,000



282. The object at the right below would have to weigh (how many?) 
pounds to balance the scales.

283. We have three more units to introduce: First, however, it will be 
necessary for you to be able to differentiate between two basic con­
cepts: Energy and Power. You probably already have a good intuit­
ive understanding of what Energy is. For example, a light bulb works 
by giving off .

ENERGY  -------------------------------------------- ------ ---- --------------

284. Power, on the other hand, is defined as the rate of release of Energy. 
In fact, we can describe this relationship by using the following 
equation:

Power = Energy/Time

Another equation which we have considered earlier in the program, 
that is similar to this is: .

v = d/t -----------------------------------------

285. For example, suppose that you were able to measure the energy given 
off by a light bulb in some time period. Next, you take another 
light bulb and observe that it gives off the same amount of energy as 
the first, but during a shorter time period. How much Power is in­
volved in this second instance? 

(a) Less than was involved previously see frame 286A
(b) More than was involved previously see frame 286B
(c) The same amount that was involved previously
  see frame 286C  

(d) There is not enough information available to answer
this question see frame 286D 

286A. Your answer:  Less than was involved previously 
is incorrect.
We are considering the equation: Power = /  

ENERGY; TIME -------------------- “--------—----— 

286A2. Something on the right hand side of this equation changes so that----- 
the amount of Power (on the left-hand side of the equation) changes. 
We know, from the question, that the amount of releas­
ed does not change. ---- —----------
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---------------------------------------------------------------------- -----------
286A3. The only thing left on the right hand side of the equation Power = 

Energy/Time that can change, then, is the amount of

TIME------------------------------ -

286a4. We know, in fact,' that the amount of time involved "does change, 
because, in the second instance, the light bulb was observed  for 
a (longer/shorter) period of time.

SHORTER-—-----------------
286A5. Time appears as the bottom part of a fraction. Let us see what 

happens to a fraction as we decrease the value of its bottom part. 
For example, 3 is less than however 1/3 is (greater/less)  

than

GREATER----------- -    

286A6. Similarly, 2 is less than 3, however 5/2 is (greater/less) 
__ _ than 5/3.

GREATER 

286A7. Therefore, as you decrease the value of the bottom part of a 
fraction, the fraction, itself, becomes (larger/smaller) 

LARGER

286a8. Notice that Time is the bottom part of the fraction Energy/Time, 
the top part of which, as we have already discussed, does not 
change. In the example we are considering, the value for time 
(increases/decreases)  ............. .

DECREASES

286A9. Therefore, the value of the fraction Energy/Time (increases/ 
decreases) .

INCREASES

286A10. You will recall that Energy/Time =  

POWER     

286A11 . Therefore, in the example we are considering,  increases.

POWER 

286A12.Go back , now, to frame 285 and choose the correct answer.
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286B. Your answer: More than was involved previously 
is correct.
You have realized that, in the equation Power = Energy/Time, as 
applied to our example, the value for Energy is staying the same, 
but the value for time is decreasing. The result of this is to 
increase the value for .

POWER Proceed, now, to frame 287

286C. Your answer: The same amount that was involved previously 
is incorrect.
We are looking at the equation: Power =  / .

ENERGY; TIME Proceed, now, to frame 286A2

286D. Your answer: There is not enough information available to answer 
this question 
is incorrect.
We are locking at the equation: Power =  /

ENERGY; TIME Proceed, now, to frame 286A2

287. Ono unit for energy is the Joule, another is the erg. The Joule and 
the Erg are both units of  .

ENERGY ...... ............................. .

      —— -  -........... - -
These units are related in the following way: 1 Joule = 107Ergs. In 
other words, 5.3 X 107  X 107 ergs is equivalent to (how many?) Joules.

— — —----------------- —----------------------------

289. 6.7 X 109 ergs equivalent to (how many?)  Joules.

 ---------—-----------
290. 3.9 Joules is equivalent to (how many?) "" ergs.-----------

3.9 X 107

291. Units for Power are derived out of those for Energy. You will remem- 
ber that Power and Energy are related to each other by the following 
equation: __

POWER = ENERGY/TIME --------------------------- -- ----------------------

292. The unit for Power which we will consider is the watt. The watt is 
defined in the following way: 1 Watt = 1 Joule/second. In other 
words, 1 Watt =  ergs/second.
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293. This means that a 60 watt light bulb releases (how many?) 
Joules each second.

294. A 100 want light bulb would release (how many?) Joules each 
second.

100---------------------------------------------------- -------------- -- —------------

295. It is clear, then, that a 100 watt light bulb would be (brighter/ 
dimmer) than a 60 watt light bulb.

BRIGHTER

more things that we have to introduce, before beginning our dev- 
elopement on the lifetime of the Sun, are two equations: The first 
of these allows you to calculate the surface area of a sphere (or 
ball). To understand this, you will have to know what we mean by
the radius of a sphere: 
ance between the centre 
example, if the diagram 
centre of a sphere, the 
of that sphere.

The radius of a sphere is simply the dist- 
of the sphere and its outside edge. For 
below represents a slice taken through  the 
line drawn in (r) would represent the 

RADIUS

297. The formula for the surface 
A =  4πr2

area of a sphere, then, is this:

• where

and

A represents Area   
r represents radius
π is a number approximately equal- 

to

298. For our purposes here, however, it will be convenient to use a better 
approximation than this for ”π”. ”π” is, in fact, closer to 3.1.
To illustrate how the formula A = 4πr2 is used, we know, for instan­
ce, that a sphere of radius 3 inches would have a surface area of 
(how many?)  square inches.

111.6     ------------- -------- --------- —

-58-



299. The second equation that you will have to know attempts to relate 
Energy to Matter. This equation, developed by Albert Einstein, is 
the following: 

E = mc2 where E represents Energy,
m represents mass , 

and c represents the speed 
of light.

To demonstrate how an equation such as this might be used, we will 
consider the following example: Given that the speed of light is 

10  3 X 1010 cm./sec, if we were able to convert a 10 gram object into 
energy, the amount of energy that we would end up with would be equal 
to (how many?) • - ergs.

 21  
9.0 X 1021

300. This is a lot of energy!!! This is (how much?) energy
(in Joules), remembering that 1 Joule = 107 ergs.

9 X 1014 Joules

301. With this amount of Energy, we could keep (how many?) . 100
 watt light bulbs burning for one second (remembering that 1 watt =

1 Joule/sec.).

12 9 X 10

302. In review of the material we have covered so far in preparation for 
the following developement, the centimeter is a unit of _______ 

DISTANCE          

303. The gram is a unit of .

MASS    

304. Power is related to Energy by the following, Equation: .

POWER  =  ENERGY/TIME 

305. Two units for Energy are the  , and the

JOULE; ERG     

306. A unit that is used to measure power is the .

WATT       

307. 1 Watt = (how many?) Joules/sec. 
= (how many?) ergs/sec.

1; 107 
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308. The equation for the surface area of a sphere is the following:

A = 4πr2

309. Einstein’s equation, relating matter to energy, is the following:

E=mc 2
 E = mc2

310. In the next several frames, you will be manipulating several numbers 
in Scientific notation. If you are still uncertain about how num­
bers written in Scientific notation are multiplied together and div­
ided, this would be a good time for you to review the contents of 
frames 265 and 274. If, on the other hand, you are ready to proceed, 
we must point out two things: First you should express all the ans­
wers that you calculate, in scientific notation. Secondly you should 
’’round off” the decimal part of any answer that you get, to one dec­
imal place. To illustrate how "rounding off” works, consider the 
number 3.14. This number is (closer to/farther from)

.... the number 3.1 than 3.2.

CLOSER TO   ------------ - —---------

311. Hence, we can ”round_off” 3.14 (to one decimal place) by calling it 
the number  .    ____ .

  ......... ................... - .. -...-..

312. Similarly, a number like 3.17 can be rounded off (to one decimal  
place) to the number . 

3.2 .. -.... ....... .................

313. For the sake of argument, we will consider a number like 4.25 to be 
closer to 4.3 than 4.2, hence, 4.23 can be rounded off. (to one dec­
imal place) to the number  

314. The purpose of the next several frames is to allow you to make some 
calculations regarding the power output of the Sun and to there-by 
determine how long we expect it to last.* The first figure that you 
will need to know is this:  1 A.U. = 1.5 X 1013cm. This, of course, 
means that the radius of the earth’s orbit about the Sun is about 
(how many?) centimeters long.

1.5 X 1013

315. At this distance, the power output of the Sun can be measured to be 
.14 watts per square centimeter of area. This means that, on the 
average, the measured power of the sun over an area of 1 square cm. 
on the Earth is (how much?)



.14 watts

316. If we assume that the Sun releases the same amount of power in every 
direction, then it is possible to say that it releases .14 watts 
over every square centimeter of area at (how many?) 
centimeters from the sun.   

1.5 X 1013 

317. The problem of finding how many square centimeters are involved here 
is equivalent to considering the surface area of a sphere placed just 
inside the earth’s orbit, or, in other words, a sphere whose radius 
is (how many?)  centimeters.

1.5 x 1013

318. To calculate the area of such a sphere, we must use the equation:

A = 4πr2

319. When we plug in this value (1.5 X 1013) for ”r", (remembering that π 
equals about 3.1) the result- is (how many?) square centi—
meters.

2.9 X 1027

320.    . ............ .......
We know that the power output to each one of these 2.9 X 1027 centi- 
meters is (how many?)  watts.

.14   
  
321. Therefore, to calculate the total power output of the Sun, it is sim-
ply a matter of finding out how many watts are involved for every 

square centimeter we are considering, taken together. This calcul- 
ation can be done by multiplying the two numbers ____(number of watts 

per. square centimeter) X  (number of square centimeters).

.14; 2.9 X 1027     

322. When we do this, the result is the number. . 

4.1 X 1026

323. This number (4.1 X 1026) is the total ______ output of the Sun
in (what units?)    

POWER; WATTS .................... *------ -   -------------------
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324. You will recall that 1 watt = (how many?) -----  ergs/sec .

107

325. Therefore, 4.1 X 1026 watts =  X----  ergs/sec.

4.1 X 1026; 107

326. When we do the calculation outlined in the above frame, we come up 

with the number .

4.1 X 1033

327. This number ( 4.1 X 1033) is, as you will recall, the number of 
in (how many?) watts.

ERGS/SEC. ; 4.1 x 1026    

328. This means that the Sun’s energy output per second is (how much?)

4. 1 X 1033 ergs.    

329. The Sun "works" by convening matter to energy. Thus, if we know how 
much energy is released by the Sun every second, we should be able  
to find out how much matter is converted to energy in this process. 
To do this, we must use the following equation which attempts o 
relate matter to energy: •

  E = mc2 
330. We know the values for two of the letters in this equation already. 

These are the letters ____  and ____ .

E; c
331. E = (how much?)  , and c = (how many?)  .

 cm. / sec.
(see frame 299)

4.1 X 1033ergs; 3.0 X 1010

332. The only letter that we do not know the value of, then, is (which 
one? )    .   

m
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333. However, we can calculate the value for ”m” by knowing those for ”E”
2 and "c”. First, however, we must re-arrange the equation E = mc2 so 

that ”m” stands by itself on one side. At this point in the program 
you should be able to re-arrange an equation of this sort. If you 
are still somewhat uncertain about this, however, we suggest that you 
go back and review frames 11B to 11B5 to recall how we developed d = 
v X t from v = d/t, before continuing on from this frame. Otherwise, 
.you should be able to manipulate the equation E = mc2 
equation: m =

__________ .

334. Using the values for E and c that we have already talked about, we 
can calculate that m = / grams.

4.1 X 1033; 9.0 X 1020

335. When we complete the calculation outlined in frame 334, we find that 
the value for ”m" becomes (how much?)  .

124.6 X 10 grams

336. What this means is that (how many?) grams (of matter)
are converted to Energy in the Sun every second.

4.6 X 1012

12337. 4.6 X 10 grams is equal to about 5 million tons. Remember that 
5 million tons represents the amount of _  converted to

in the Sun (how often?) .
  

MATTER; ENERGY; EVERY SECOND 

338. We know, from Kepler’s Third Law, that the mass of the Sun is equal 
to. about. 2.0 X 1033 grams. About .7 percent of this mass is avail­
able to be converted to energy. What this means is that, for every 
100 grams of matter in the Sun, .7 grams can be converted to energy. 
2.0 X 1033 =  X 100,(102)

2.0 X 1031    

339. Therefore, the amount of matter in the Sun that can be converted to 
energy is equal to .7 X  grams. *4

2.0 X 1031

340. When we complete this calculation, we come up with the number



311.4 X 1031

341. This number (1.4 X 1031) is, as you will recall, the amount of 

MATTER IN THE SUN THAT CAN BE CONVERTED TO ENERGY______ ___________________  
342. If we assume that, when this "fuel" is used up, the Sun’s lifetime is 

over, then we should be able to calculate about how long this partic­
ular star will last.*5 We know, for instance, that (how many?) _____  

 grams of matter are converted to energy in the Sun every sec­
ond.

4.6 X 1012

343. We also know that (how many?) grams of matter are available
in the Sun, to be converted.

1.4 X 1031 ___________________________________________________ ____
344. Therefore, we should expect that the Sun will last  

_____  seconds.

1.4 X 1031; 4.6 X 1012______________ ._________________     ......  .. .
345. When we complete this calculation, we come up with the number

3.0 X 1018

346. This number (3.0 X 1018) is, as you recall, the length of time that 
 in (what units?) .

WE EXPECT THE SUM TO LAST; SECONDS 

347. We can convert this figure for seconds into one for years, knowing

that there are 3.2 X 107 seconds in one year. Therefore 1 second 
=( 1/__________ _) years.

3.2 X 107

348. Therefore 3.0 X 1018 seconds = ( /) years.

3.0 X 1018; 3.2 X 107 ____________ ____________________________ ____________
349. When we do the above calculation, the result is the number .
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9.4 X 1010

350. This number (9.4 X 1010) represents the length of time that we expect 
the Sun to last in (what units?) . ... .

YEARS  -----------------------------------

351. Does the fact that the Sun may "burn out" after this time period 
worry you at all?

(a) Yes see frame 352A
 (b) No  see frame 352B

(c) Only at night see frame 352C

352A. Your answer: Yes
may very well indicate a very genuine concern for humanity on your 
-part. However it should be pointed out that there are other fact­
ors which threaten to shorten man’s existance on this planet to much 

............. .    less than 9.4 X 1010 years. You would be well advised to redirect 
your concern to some of these factors. Go back to frame 351 and 
pretend that you are a little less concerned about this problem.

352B. Your answer: No 
is quite realistic, if we remember how long a time period 9.4 X 1010 
years actually is. We are now going to proceed to discuss matters 
relating to the brightness of stars. We have already considered the 
power output of one star (the Sun). Stars vary, however, in the 
amount of power that they put out. It should be obvious that the 
more power a star puts put, the (brighter/fainter) 
that star will tend to be,at some distance.

BRIGHTER Proceed, now, to frame 353

352C. Your answer: Only at night  
might have some interesting philosophical implications; however it 

....  probably indicates a state of exhaustion on your part. This is
an abort frame. If you have not done so recently, we suggest that 
you put the book down momentarily and take a break. When you feel 

.... ready to make a more coherent attack on these programmed materials, 
we suggest that you proceed from frame 351.

353. In Astronomy, the brightness of things is talked about in terms of 
something called Magnitude. To talk about the relative brightness 
of things in Astronomy, it is convenient to use the term 

MAGNITUDE

354. Magnitudes are represented by a series of numbers: The greater the 
value of the number, the less the brightness of the object in quest­
ion. For example, a star of magnitude 4 is (brighter/fainter)

than a star of magnitude 3.

FAINTER  ------------------------------------------------



355. A star of Magnitude 0 is (brighter/fainter)   . .......  than a
star of magnitude 2.

BRIGHTER
356. A negative number, like -2, is (greater/less) than 0.

LESS
357. Hence an object of magnitude -2 is (brighter/fainter)  

than one of magnitude 0.

BRIGHTER

358. An object of magnitude 1 would be (brighter/fainter) 
than one of magnitude -2.

FAINTER

359. To give you some idea of how bright objects are, whose magnitudes are 
represented by numbers like these, the faintest stars which you are 
able to see (on a dark clear night) arc around magnitude 6. The 
brightest stars are around magnitude 0. The magnitude of the Sun is 
about -27. A star of magnitude 2 is (how many?) magnitudes 
brighter than the faintest stars visable to the unaided eye, (how 
many?) ____  magnitudes fainter than the brightest stars, and (how
many?) ____ magnitudes fainter than the Sun .

4; 2; 29 

360. The telescope at Mount Palomar can photograph stars of magnitude 23. 
This is (how many?) _ magnitudes fainter than the faintest stars
visable to the unaided eye.

361. You will recall that, the brighter a star appears, at some distance, 
the (greater/less)  its power output will tend to be.

GREATER 

362. Hence, the greater the number- representing the magnitude of a star, 
at some distance, the (greatcr/less)  the power output 
of that star will tend to be.

LESS *

363. Suppose, now, that all stars are the same colour and that you are out 
observing them under the night sky. You see a star, the magnitude of 
which you estimate to be equal to 1. The estimated magnitude of a 
second star is equal to 2. Is the power output of the first star gr­
eater than that of the second? (a) Yes see frame 364A

(b) No see frame 364B
  (c) Not necessarily see frame 364C



364A. Your answer: Yes 
is incorrect.
Your answer assumes that both stars in question are about the same 
distance from you . It is quite possible that this is not the case. 
You know, in an intuitive way, that, as you increase the distance 
between yourself and a bright object, the objects appears to become 
(brighter/fainter).

FAINTER

364A2. Hence, a star could very well be quite bright in itself —ie.—its 
power output is (great/small) _____—however this same star 
might, to us, appear to be quite faint, because it is .

GREAT; DISTANT or FAR AWAY

364A3. Hence, information on magnitudes of stars, by itself, tolls un no­
thing about their power outputs, because different stars are differ- 
____________  from us.

DISTANCES

364A4. Go back, now, to frame 363 and select a better answer.

364B. Your answer: No
is incorrect.
It is possible that you are confused by the fact that, although the 
power output of the first star is not necessarily greater than that 
of the second, it is still possible that this is the case. Return 
to frame 363 and select a better answer.

364C. Your answer: Not necessarily 
is correct.
You have realized that the two stars in frame 363 may be at differ­
ent distances from us, hence information regarding their magnitudes 
can not, by itself, allow us to say anything about their relative 
power outputs. The fact that we are talking about the brightness of 
stars as they appear to us suggests the term: Apparent Magnitude— 
the brightness of an object as it appears to us. It should be clear 
that the ______ __________________ _ of a star is affected by distance
as well as power output.

APPARENT MAGNITUDE Proceed, now, to frame 365

365. In other words, the farther away a particular star is the (higher/ 
lower) _________ . will be the number representing its apparent 
magnitude.

HIGHER

366. Suppose that the two stars mentioned in frame 363 actually had the 
same power output. From this, we would be able to conclude that the 
star whose apparent magnitude was 1 was actually (closer to/farther 
from)  us than the star whose apparent magnitude 
was 2. 



CLOSER TO ----- ----

367. To talk about magnitudes of stars, in a way that refers, more closely, 
to their actual power output, we must use a different term: Absolute 
Magnitude. From the absolute magnitude of a star, it is possible to 
say something about its power output. Hence, absolute magnitude is 
based on how bright an object (eg. — a star) would appear at some 
fixed .

DISTANCE ------ --------

368. The distance that is used is 10 parsecs or (how many?) light 
years (hint: see frame 59).

32.6 --------------------------------

369. So, then, . is defined as the apparent mag­
nitude a star would have, viewed from a distance of 10 parsecs.

ABSOLUTE MAGNITUDE ----- ------------

370. Hence, if we know the apparent and absolute magnitude of a star, it 
would be possible to calculate the __________ from here to that
star.

DISTANCE ~----------------------------------------------- ---- --

371. For example, if two stars having the same absolute magnitude were 
observed to have different apparent magnitudes, we would be justified 
in concluding that the two stars are at different from
us. 

DISTANCES -------------------

372. Numerical calculations for distances, knowing absolute and apparent 
magnitudes are possible, using an equation. This equation allows us 
to calculate the distance to a particular star, by knowing two facts 
about that star: Its  and its 

APPARENT MAGNITUDES ABSOLUTE MAGNITUDE

 (m - M + 5
373. The equation that we use is the following: ^r = 10 5

where “m” represents Apparent Magnitude 
"M" represents Absolute Magnitude 

and "r” represents distance (in parsecs)
It is important that you realize that m - M 5 is an exponent.

For example, suppose that a star exists whose absolute magnitude is 
2, and whose apparent magnitude is 7. The value for m, then, is 
and that for M is .
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7; 2

374. Therefore, the expression (m - M + 5) takes on the value 
( 5 )

375. Going back to frame 373, we can now calculate that ”r” is equal to 
10 raised to the exponent ____ .

376. Hence, “r” takes on the value .

100

377. What this means is that the star in question is (how far ?)  
  away.

100 PARSECS 

378. So far, wo have talked about exponents in a very intuitive way: You 
know, for instance, that

1011 means .

11 10’s MULTIPLIED TOGETHER 

379.
Anumber like 10½ seems to be meaningless, in this context. However, a 

number like 10½ does have an actual numerical value, although it is 
beyond the scope of this program to discuss how such values are der­
ived. Exponents like are fractions, hence they are called fraction­
al exponents. To do meaningfull calculations with the equation for 
distance which we have intro_duced, it will be necessary for you to  
know how to work with fractional exponents. These exponents are usu­
ally expressed in decimal notation. For example, the decimal repres­
entation of ½ is.

380. Hence, 102 can be written as

10.5

381. 102/5 can be written as 

10.4



382. DATA FRAME ON FRACTIONAL EXPONENTS:

10.1 = 1.2 

10.2 = 1.6

10.3 = 2.0 

10.4 = 2.5

10.5 = 3.2

10.6 = 4.0

10.7 = 5.0

10.8 = 6.3

10.9 = 8.0

The above list contains some examples of fractional exponents of the num­
ber 10 and the approximate values of these numbers. You will find these 
usefull in the next several frames.

383. To determine values for numbers with fractional exponents, using in­
formation from the above data frame, is a simple procedure; To ill­
ustrate this, consider the example: 

101/3. The fraction 1/3 writ­
ten as a decimal, rounded off to one decimal place, is ____ .

.3

384. Therefore 101/3 can be written as  (approximately).

385. The value for 10.3, from the data frame (382) is .

2.0 ——

386. The procedure, then, is quite simples You simply convert the frac­
tional exponent to a decimal, rounded off to one decimal place, and 
look up the value for 10 raised to that exponent in data frame 382. 
For example, 

105/8 = .

387. Let us consider an example using the equation for distance relating 
to Absolute and Apparent magnitude which is, as you recall,r =
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388. The brightest star in the night sky, Sirius, has an apparent magni­
tude of -1.4 and an obsolute magnitude of 1.5. Therefore, in this, 
case, (m - M + 5 ) = ____ . ____ .

2.1; 5

389. 2.1/5= (rounded off to one decimal place).

.4———————————————
390. From the table, in data frame 382, you know that 10.4 =.

 --------------------------------------------------------------------------

391. Therefore, we know that Sirius is (how far?) away.

2.5 Parsecs  

392. The distance from here to Sirius is, therefore, (how many?)      
light years. 

8.15 - --------------------------------

393. Dealing with fractional exponents greater than 1 . like 
 103.2, for

example, presents no problem. All that you need to do is split-the 
number up and deal with it in two parts,

for example, 103.2 = 103
x ____ . (Hint: You remember that the rule for multiplication in
exponential notation is to add the exponents).

10.2

394. 103, written the "long way" is , and 10.2 = (see frame 382) 

1,000; 1.6. —........

3.2395. Therefore, 10  =___— X .

1,000; 1.6  -------------------

396. When we do the above multiplication, the result is the number

1,600 --------------- --------------------
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397. 1,600 is written, exponentially, as .

103.2

393. Let us consider another example: Polaris, the north star, has an 
apparent magnitude of 2.0 and an absolute magnitude of -4.6. What 
is its distance from us in light years?

(a) 2.3 light years see frame 399A
(b) 7.5 light years see frame 399B
(c) 652 light years see frame 399C
(d) 200 light years see frame 399B
(c) I do not know what to do with a negative exponent. 

see frame 399E

399A. Your answer: 2.3 light years 
is incorrect.
The number in your answer represents the value of the exponent we 
are using, ie.—the value of the expression (m - M + 5) when you 

plug in the correct numbers for absolute and apparent magnitude. 
This number, however, is only an exponent. It is part of the equat- 
ion r =

. (see frame 373).

(m - M + 5 )
10 5 )

399A2. "r" represents the distance to the star in question in (what 
units?) 

PARSECS    

399A3. The exponent on the ten, in this case, is ____ .

2.3

2.3     2 3399A4. The value for 10 is calculated by splitting 102.3  into two parts:
l02.3 = 102 x ____ .

10.3

2 3399A5. 102 = (written the "long way"), and 10 =  (see frame
392).

100; 2.0 
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399A6. So, then, 102 X 10.3 =.

200  ------------------- -

399A7. This number (200) represents

THE DISTANCE TO POLARIS IN PARSECS -----

399A8. To convert this to a distance in light years, it is necessary to 
know that 1 parsec = (how many?)  light years (see frame 59).

3.26 — ----------------------

399A9. Therefore, Polaris is X 3.26 light yrs. away from us.

200    —- — -------------------------

399A10. Go back, now, to frame 398 and choose a better answer.

399B. Your answer: 7.5 light years
is incorrect.  
This answer indicates that you have not handled the exponent corr­
ectly. You will recall that the equation for distance, using- ab­
solute. and apparent magnitude is r =

399B2. Polaris has an apparent magnitude of 2.0 and an absolute magnitude 
of -4.6. Therefore, in this instance, m = and M =_____ . •

2.0; -4.6 — ------

399B3. When we plug in these values for ”m” and ”M”, the expression 
( m - M + 5 ) becomes equal to .
( 5 )

2.3 Proceed, now, to frame 399A2

399C. Your answer: 652 light years 
is correct.
This is a commendable effort on your part. As you already know, the 
"mascot” for the project that produced this book. is the star
Zubenelgenubi. The apparent magnitude of this star is 2.8, and its 
absolute magnitude is 1.2. From this, we can conclude that Zubenel- 
genubi is (how far?) , away (in parsecs).

20 PARSECS Proceed, now, to frame 400
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399D. Your answer: 200 light years 
is incorrect.
The number in your answer represents the distance to Polaris in 
parsecs. To convert this to a distance in light years, we must  
remember that 1 parsec = (how many?) ______  light years (see frame
59.)   

3.26 Proceed, now, to frame 399A9

399E. Your answer: I do not know what to do with a negative exponent.
is, of course, inadequate. If you did the question correctly; you 
should not have come up with a negative exponent. It is possible 
that you have the values for "m" and ”M” mixed up. You will remem­
ber, from frame 373, that ”m” represents ____________________ and
”M” represents.

APPARENT MAGNITUDE; ABSOLUTE MAGNITUDE  

399E2. The star Polaris has an absolute magnitude of -4.6 and an apparent 
magnitude of 2.0. Therefore ”m” =  and “M” = .

2.0; -4.6

399E3. When we substitute these numbers into the expression ( m - M + 5 )
( 5 )

we get  - (  ) + 5 on the top part of the fraction,

2.0;  -4.6 

399E4 . When two signs occur together, they can be replaced by a ”+" 
sign. Hence, 2.0 - (-4.6) + 5 =  + 5
     -—

399E5. Hence the value of (m - M + 5 ) is now equal to 

_ — . — —

399E6. Go back, now, to frame 398 and select a better answer.

400. As another example, consider this? The absolute magnitude of the Sun 
is approximately 4.8, and the faintest magnitude visable to the un­
aided eye is about 6. How far could you go out into space (in par­
secs) and still see "home" (ie.—the Sun).

(a) 16 parsecs see frame 401A
(b) 1.2 parsecs see frame 401B
(c) 6.3 parsecs see frame 401C
(d) I am puzzled see frame 401D



401A. Your answer: 16 parsecs 
is correct

You have indicated that you understand how to use the equation:

r = 5 ) and that you know what apparent and absolute

magnitude are. We are now going on to discuss matters related to 
the temperatures of stars. Temperature is another factor that helps 
to determine the magnitude of stars. Temperature, therefore, is 
related to the of stars.

BRIGHTNESS Proceed, now, to frame 402

401B. Your answer: 1.2 parsecs
is incorrect.
The number in your answer represents the solution to the expression 
(m - M + 5 when the correct values for “m” and “M” are put in. 

However, you will recall that the equation for distance is this: 
r =

+ 5
10 5 )

401B2. So, then, the number 1.2 is the  on the 10.

EXPONENT

401B3. You should now be able to calculate the correct answer. If you do 
not feel that you can do this, you would be well advised to review 
the question in frame 398. If not, return to frame 400 and select 
a better answer.

4010. Your answer: 6.3 parsecs
is incorrect.
You have mixed up the values' for “m" and "M”. This indicates that 
you probably do not understand the question. You are given, first 
of all, the absolute magnitude of the Sun which is (see frame 400)

4.8

401C2. This means that the value of , in this case, is .

401C3. The question asks how far from the sun you would have to be for it 
to appear to be of magnitude 6. In other words, what is asked for, 
then, is the distance at which the Sun would have to be to have an 
apparent magnitude of (how much?) .
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401C4. Hence, the value for ”m" is, in this case, equal to (what number?) 

6

401C5. All that we do now is substitute these values 'for ”m” and "M" into 
the equation r =

Proceed, now, to frame 401B3

401D. Your answer: I’m puzzled
is, of course, inadequate.
It is obvious that you do not understand the question. First of all, 
you are informed that the absolute magnitude of the Sun is (see 
frame 400) .

4.8 Proceed, now, to frame 401C2

402. To understand matters relating to the temperatures of stars, it is 
important that you understand something about light. Consider the 
following experiment: The passing of white light through a prism 
results in a band of different colours (see diagram below). 

This experiment suggests that white light is, in fact, "made up” of 
different .

COLOURS

403. This observation is, in fact, quite correct: There are, in fact,  
different “kinds” of light. Our eyes can detect different kinds of 
light by seeing different

COLOURS
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404. Colours of objects which emit light are related to their temperatures
—ie.—light sources of different temperatures emit different colours 
of light. Assuming that stars are different temperatures, do you now 
think that the assumption that we made in frame 363 (that all stars 
are the same colour) is correct? (a) Yes see frame 405A

(b) No see frame 405B
(c) Only if stars are the same color .

see frame 405C



405A. Your answer: Yes 
is incorrect.
We have already pointed out that stars have different outside temp­
eratures and that colour varies with temperature. Hence, it is 
reasonable to assume that stars are different  .

COLOURS 

405A2. Go back, now, and choose a better answer (frame 404).

405B. Your answer: No 
is correct.
Stars, by virtue of the fact that they have different "outside” 
temperatures, are different colours, These colours generally 
vary along the spectrum from the red end to the blue end, “Reddish” 
colours indicate lower temperatures. Conversely, “bluish” colours 
indicate  temperatures.

HIGHER   Proceed, now, to frame 406

405C. Your answer:  Only if stars are the same colour 
indicates that you are obviously not thinking clearly. This, in 
fact, would be a good time for you to take a break if it has been 
a long time since you have done so. This, as you probably recog­
nize, is another abort frame. Please take a break, then resume your 
work in the program starting from frame 404.

406. The progression of colours, as temperature increases, is generally 
as follows: Red —> Yellow —> White ->Blue. In other words, the "out­
side” temperature of the Sun (a yellowish, star) is (greater/less) 
 ___ than that of a bluish coloured star, and (greater/less) 

 than that of a reddish coloured star.

LESS; GREATER  

407. Looking out at the night sky, all stars appear to be white. However 
we know that this is not really the case, because stars have differ­
ent  and are, therefore, different colours.

"OUTSIDE” TEMPERATURES 

408. The fact that stars appear to be white in the night sky is more a 
property of the human eye than of the stars themselves. You know 
from your own experience, for instance, that, as dusk approaches, 
your ability to see colour (increases/decreases) .

DECREASES

409. Therefore, the human eye does not see colour well when there is much 
little) . light to sec.

LITTLE

In Astronomy, colours of stars arc described in terms of something 
called spectral class. It should be clear that spectral class also 
describes the  of stars.
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TEMPERATURES

411. Different spectral classes are distinguished by naming them using 
different letters of the alphabet. The following spectral classes 
will be of concern to us here: O; B; A; F; G; K; M. These are 
listed in order from the more "bluish” stars(O) to the more "reddish” 
stars (M). For example, a star of spectral class K would be (more/ 
less)  bluish than reddish.

LESS

412. A convenient mneumonic device for remembering these spectral classes 
is to fit the letters into a sentence, such as:”O Be A Fine Girl, 
Kiss Me.”; remembering that the sequence:O; B; A; F; G; K; M, goes 
from (what colour?)  stars to (what colour?) , 
stars.

BLUISH; REDDISH

413. The sentence: ”O be a fine girl, kiss me.” is a good memory aid for 
recalling the spectral classes of stars which are represented by the 
following sequence of letters: .

0, B, A, F, G, K, M

414.A mneumonic device for remembering spectral classes is the sentence:
” ." This gives us the sequence of
letters: which represent spectral classes of 
stars from (what colour?) stars to (what colour?)

 stars in that order.

OH BE A FINE GIRL, KISS ME; O, B, A, F, G, K, M; BLUISH; REDDISH

415. Information concerning the colours of stars also tells us something 
about their .

"OUTSIDE" TEMPERATURES

416. We have now come to the point where we can talk about a relationship 
that exists between spectral class and magnitude. Magnitude, as you 
recall, is a way of talking about the  of stars.

TIGHTNESS

417. A graph describing this relationship appears below:

Spectral Classes

Absolute Brightness 
Graph



417(cont...) .
When the values (for absolute magnitude and spectral class) for most stars 
are plotted, they fall into the region described by the shaded area. This 
area is known as the main sequence (the position of the Sun on the main 
sequence is shown on the diagram). What this relationship means is that 
the more "reddish" a star is, the (brighter/fainter) _____________ _ it will 
tend to be. 

FAINTER

418. You will also remember that spectral class describes temperatures 
of stars in that the “outside” temperatures of "bluish” stars are 
(higher/lower)  than those of "reddish” stars.

HIGHER     

419. Therefore, the relationship depicted in frame 417 can also be stated 
in another way by saying that, the higher the "outside" temperature 
of a star, the - (greater/less)  will tend to be its bright­
ness.  

GREATER

420. Before we review the concepts that we have covered in this section on 
stars, it is important that we discuss one more feature of stars: 
their masses. You will recall that we are able to determine the mass 
of the nearest star to us (the Sun)by using (see frame 338) 

KEPLER’S THIRD LAW

421. Kepler’s third law is stated mathematically, in the following way:

422. In the above equation, “a” represents ______________ , "p” represents
, ”G” represents and and "M2" rep­

resent ,

DISTANCE; PERIOD; THE GRAVITATIONAL CONSTANT; THE MASSES OF TWO BODIES

423. In the expression for Kepler’s third-law, the letters , ____ , ___
and ____  represent variables —ie.—numbers that change with the ex­
amples we are considering.

a; p; M1; M2  
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424. In the case of the one example which we have already considered 
(the Sun), we are able to observe the motions of planets associated 
with it. In the case of any particular planet, we know its distance 
from the Sun —ie.—the value for the variable   and the length 
of time it takes to orbit the Sun once —ie.— the value for the 
variable _____.

a; p

425. From knowing values for these two variables, it is possible to calcu­
late those for the other two: ie.—_____ and ____ .

__

426. That is to say, it is possible to say something about the masses of 
the Sun and one of its planets,  by knowing the __________ bet­
ween them and the  associated with their motions.

DISTANCE; PERIOD  

427. Unfortunately, we do not, at present, have the facilities to observe 
planets around other stars (if, indeed, they do exist). However, 
estimates concerning the masses of some of them are still possible 
using the same tool that we used to make this kind of estimate for 
the Sun. That is, we again use 

KEPLER'S THIRD LAW  

428. Most of the stars whose masses we can estimate in this way, are part 
of binary systems. A binary system is an instance where two stars 
exist in close proximity to one another, in such a way that the grav- 
itational attraction between them can be studied. In a way similar 
to the one which we used to calculate the mass of the Sun, we can 
determine the masses of stars in a binary system by knowing the 
    between them and the ________ associated with 
their regular motions with respect to one another.

DISTANCE; PERIOD

429. It should be obvious that the regular motions observed for two stars 
in a binary system is a result of  attraction
between them.

GRAVITATIONAL     

430. That is, for a binary system, we know the values for the variables 
___ _ and __ in the Kepler's third law equation (which is

From this, we can calculate the values for the variables ____and
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431. Most of the stars whose. masses have been calculated in this way, fall 
within the range: .1 to 100 solar masses, where 1 solar mass is 
is equal to  .

THE MASS OF THE SUN

432. From this we can conclude that the Sun is a (small/middle/large) 
 sized star, where mass is concerned.

SMALL    

433. It is now time to review some of the concepts that we have learned in 
this segment which has dealt mostly with objects called .

STARS      

434. One example of a star (the one with which we are most familiar) is 
called .

SUN ————— — — - - -

435. It is possible to make a rough calculation regarding how long we ex­
pect the Sun to last by knowing its .

POWER OUTPUT    .......

436. The centimeter (cm.) is a unit of .

DISTANCE  ——

437. The gram (g.) is a unit of .

MASS     

438. The equation, relating Power to Energy is as follows: .

POWER = ENERGY/TIME  ...........

439. Two units for Energy are the and the .

JOULE;  

440. One unit for Power is the .

WATT    -

441. 1 Watt = (how many?) Joules/sec.
= (how many?) Ergs/sec.

1; 107

442. The equation for the surface area of a sphere is the following:
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A = 4πr2

443. Einstein’s equation relating matter to Energy is as follows:

E = mc2

444. A number, in scientific notation, is written as: k X 10n, where “n” 
represents — , and ”k” represents 

THE. VALUE OF SOME EXPONENT; A NUMBER GREATER. THAN OR EQUAL TO 1 AND LESS 
THAN 10 .........

445. In Astronomy, the brightness of things is talked about in terms of 
something called .. ....

MAGNITUDE  --------- ----- --------- —-- '-------- -

446. Two kinds of magnitude are  and

APPARENT MAGNITUDE; ABSOLUTE MAGNITUDE ------

447. Apparent magnitude refers to  while abs­
olute magnitude is defined as     

THE BRIGHTNESS OF OBJECTS AS THEY APPEAR TO- US; THE APPARENT MAGNITUDE AN 
OBJECT WOULD HAVE AT A DISTANCE OF 10 PARSECS

448. An equation which allows us to calculate distances, knowing absolute 
and apparent magnitude,is the following: ... ............

( m - M + 5 )  ------
r = 10 5 )

449. In the above equation, ”m” represents "M" rep-
resents, and ”r” represents   

APPARENT MAGNITUDE; ABSOLUTE MAGNITUDE; DISTANCE (IN PARSECS)  

450..For stars, colour is related to       --------

"OUTSIDE” TEMPERATURE ------- ------------——----------------

451. The more "blue” a star is the (greater/less) " will be its out-
side temperature, while the more "red” a star is, the (greater/less) 

 will be this temperature.

GREATER; LESS ----  ----------------------
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452. Stars are classified this way in terms of something called 

SPECTRAL CUSS

453. Seven spectral classes from the blue to the red end of the spectrum 
can be listed consecutively as follows; .

O, B, F, G, K, M

454. The higher the "outside” temperature of a star, the more (red/blue) 
_ the star will tend to be, and the (brighter/fainter)...........  
the star will tend to appear. 

BLUE; BRIGHTER       

455. The masses of some stars can be calculated by using .

KEPLER’S THIRD LAW      

456. Most of the stars whose masses we can calculate in this way are part 
of .

BINARY SYSTEMS

457. You have completed this section of the program on stars. -If you have 
not taken a break recently, we suggest that you do so before contin- 
uing on in the program.  ... 

458. This final segment of the program will be a relatively short one. Its 
aim is to help you come to some understanding of the structure of the 
Universe as we know it. Hopefully it will also allow you to review 
some of the concepts you have learned previously. One type of object 
that helps to make up the Universe is something we have already dis­
cussed in some detail. These light emitting sources are called .

STARS

459. Stars are organized into huge "islands” in space known as Galaxies. 
These galaxies arc then separated by great distances. A ______

 then, is simply a very large collection of stars.
GALAXY     

460. The Sun is situated in one of these vast collections of stars call­
ed the Milky Way galaxy. Our galaxy (which is shaped like a disk or
"plane”) contains approximately 200 billion stars. In scientific 

notation, we would express this as (how many?)  stars.

2.0 X 1011
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461. This is quite a large number. In fact it has often been remarked 
that there are more stars in our galaxy than there have been people 
who have ever lived on the face of this planet. Numbers such as this 
are extremely hard to visualize. To help you out in this respect, 
we .are going to develop a few models of the galaxy based on things 
with which you are familiar in your every day life. At this point, 
we would like you to go back to frame 61 and do the question presented 
there. When you arc sure that you have the correct answer, continue 
on with the material in frame 462.

462. You will remember, from frame 61, that the number of solar system 
diameters between our Sun and the nearest star is (how many?) •

3,160

463. If we were now to construct a model of our own region of space, with 
the diameter of our solar system being represented by a distance of 1 
inch, then the next nearest star, on this scale, would be (how many?) 

 inches away.

3,160  

464. In other words, on this scale, the next nearest star is (how many?) 
_ yards (rounded off to one decimal place) away.(l yard = 36 
inches)  

87.8   
465. This is almost the length of a football field. In other words, the 

nearest star to our system is almost as distant as the length of a 
football field, on a scale that would have the diameter of the solar 
system represented by a distance of .

1 INCH

466. If we assume that the diameter of the Sun is 1/100 A.U.s , how large 
would it be, on the same scale (remembering that the diameter of our 
solar system is 80 A.U.s, and that this diameter is represented by a 
distance of one inch.)?..

(a) 1/80 inch. see frame 467A
(b) 1/8,000 inch. see frame 467B
(c) 1/100 inch. see frame 467C
(d) I do not know. see frame 467D

467A. Your answer: 1/80 inch. 
is incorrect.
This answer would only be right if the diameter of the Sun was 1 A.U.
That is, if the diameter of the solar system (80 A.U.s) is represen­
ted by 1 inch, a distance of 1 A.U. would be represented by 1/  of 
this distance, or (how many?)inches.

80; 1/80    
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467A2. However the diameter of the Sun is only 1/100 A.U., where 1 A.U. is 
represented oh our scale,you will recall, as (how many?) inch­
es.

1/80    —------- ----------------------------------

467A3. That is to say, the diameter of the Sun, on our scale, would be rep­
resented by 1/100 X _ = inches.

1/80; 1/8,000  

467A4. Go back, now, to frame 466 and choose the correct answer,

467B. Your answer; 1/8,000 inch. 
is correct.
You realize immediately that a diameter such as this would be much 
too small to be perceptable, so let us try something else; Let us 
represent the size of the Sun by a grain of sand. The kind of sand 
we arc working with is of such a size that 20 grains of it, lined up 
side by side, in a straight line, would measure 1 inch in length. 
That is, the length of one grain of sand is (how many?) inches.

1/20 Proceed, now, to frame 468   

4670. Your answer; 1/100. inch.  
is incorrect.
Your answer would only be right if the diameter of the solar system 
was l A.U. In this case, the Sun, being 1/100 A.U. in diameter, and 
the diameter of the solar system being represented by one inch, the 
diameter of the Sun would be represented by (how many?)  inches.

1/100   -

467C2. However the diameter of the solar system is 80 A.U.s. That is, if 
the diameter of the solar system is to be represented by 1 inch, 
then a distance of 1 A.U. would be represented by 1/ ____ of this
distance or (how many?)  inches.

80; 1/80 Proceed, now, to frame 467A2

467D. Your answer; I do not know  
is, of course, insufficient.
Let us develop the correct answer; We arc representing the diameter 
of the solar system (a distance of 80 A.U.s) by a distance of one  
inch. On this scale, a distance of 1 A.U. would be represented by 
1/ of this distance or (how many?) inches.

80; 1/80  Proceed, now, to frame 467A2.

468. In our new model, then, the diameter of the Sun is represented by a 
distance of (how many?) inches.

1/20   ---------------- -—"
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469. You will recall that the actual diameter of the Sun is (how many?) 
 _ A.U.s.

1/100 
470. What this means, then, is that, in our model,' a distance of 1/100 

A.U.s is represented by (how many?) inches.

1/20
471. On this same scale, a distance of 1 A.U. would be represented by (how 

many?) _____  times as much as this(ie.—the distance in the previous
frame), or (how many?)inches.

100; 5
472. As you will recall, the solar system is (how many?) A.U.s in 

diameter.

80

473. So, then, the diameter of the solar system, on this scale, would be 
represented by  X ____  = inches.

80; 5; 400    

474. This means that, if the Sun’s size were to be represented by a grain 
of sand (ie.—the diameter of the Sun is represented by a distance of 
1/20 inches) then the solar system would be (how many?) . yards. 
(rounded off to one decimal place) across. (1 yard = 36 inches)__

475. You will recall, from frame ¿1, that the number of Astronomical units 
in one light year is (how many?) _____ and that the nearest star
to our system is (how many?)  light years distant.

63,200; 4

476. This allows you to conclude, then, that the distance from here to the 
nearest star outside our solar system is _ ____ X ____  =________
________ A.U.s .

63,200; 4; 252,800

477. On our scale (where the size of the Sun is represented by a grain of 
sand 1/20 inches across) a distance of 1 A.U. is represented by (how 
many?) ____  inches.

5   — —
478. A distance of 252,800 A.U.s then, would be represented by ________ X 

 =  inches.
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252,800; 5; 1,264,000  ---------------------

479. In other words, on the scale which we are using, the distance to the 
nearest star outside our own solar system would be (how many?) 
miles (rounded off to one decimal place) in length, (1 mile = 63,360 
inches)     

19 .9 -----------------------

480. At this point, we are going back and consider, once again, the 
number of stars in our galaxy which, as you will recall (see frame 
460) is (how many?) .

200 Billion or 2.0 X 1011 

481. Let us assume that the average diameter of these stars is equal to 
that of the Sun —ie.—this average diameter is (how many?) 
A.U.s .in length.

1/100  ———————---——----------------- —------

482. On the scale we have been working with, then, the stars in our galaxy 
would be represented by grains of sand each of which would be (how 
many?)  inches in length.

1/20   --------------------
483. To demonstrate how large a number like 

     2.0 X 1011 is, we are going 
to attempt to pack all of the grains of sand that represent stars in 
our galaxy, into one pile. The size .of this pile will, hopefully, 
provide you with some conception of the meaning of a number like

2.0 X 1011 which, as you remember, represents 

THE NUMBER OF STARS IN THE MILKY WAY GALAXY --------------------

484. If we assume that each of the grains of sand that we are using to rep­
resent a star in our galaxy, is roughly cube-shaped, then each side of 
the grain of sand will measure (how much ?)  in length.

1/20 INCHES   ----

485. The volume of a cube ( (ie.—the amount of space it occupies) can be cal­
culated by multiplying its length times its width times its height.
In the example we are considering, length, -width, and height are all 
equal to (how mcuh?)   

1/20 INCHES —-------------------------------- —

486. Hence, the volume of one grain of sand is given by the expression: 
X  X cubic inches.
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1/20; 1/20; 1/20 

487. When the above multiplication is performed, the result is the number;

1/8,000

488. This number (l/8,000) represents the of one grain of sand
in (what units?).

VOLUME; CUBIC INCHES
— - — -

From this, we can conclude that 2.0 X 10 grains packed together in 
one pile would have a volume of  X cubic inches.

2.0 X 1011; 1/8,000

490. When we perform the multiplication indicated in the. previous frame, 
we come up with the fraction;/ .

2.0 X 1011; 8,000

491. The bottom part of this fraction can be written, in scientific notat­
ion, as .

8.0 X 103

492. This fraction, then, can now be written as / .

2.0 X 1011; 8.0. X 103

493. If we now divide the top part of this fraction by the bottom part, 
the result (in scientific notation) is the number .

2.5 X 107

———————
This number (2.5 X 107), represents the . ..______ in (what units?) 

of (how many?)._____ _____ grains of sand packed 
together in one pile.

VOLUME; CUBIC INCHES; 2.0 X 1011

495. Let us suppose that we wish to pile this amount of sand on a lot 100 
feet long by 25 feet wide. The dimensions of this let, in inches, 
are; (how many?) ’ inches long by. (how many?) ____  inches wide.
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1200; 300

496. We know that the volume of sand that we are going to pile on this lot 
will be equal to (how much?) 

2.5 X 107 CUBIC INCHES

497. Therefore, in the expression Volume = Length X Width X Height, we 
know the values for the variables ,  and 

VOLUME; LENGTH; WIDTH 

493. When we substitute these numbers into the equation above, for volume, 
the result is the expressions (how many?) ____  cubic inches =
(How many?) _inches X (how many?)  inches X .

2.5 X 107; 1200; 300; HEIGHT

499. The numbers 1200 and 300 are written, in scientific notation, as 
 and  respectively.

1.2 X 103; 3.0 X 102

500. The result of the multiplication of those two numbers is the number 
.(in scientific notation)

3.6 X 105

501. Our expression for Volume, then, can now be written as: (how many?) 
.  cubic inches = (how many?)  square inches X

2.5 X 107; 3.6 X 105; HEIGHT

502. To determine an expression for the variable HEIGHT, we must divide 
each side of the above equation by (how much?) 

3.6 X 105 SQUARE INCHES

503. When this is done, it is now possible to express the equation as 
HEIGHT = / ...

2.5 X 107 CUBIC INCHES; 3.6 X 105 SQUARE INCHES
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504. When we perform the division indicatced in the above frame, the result 
is the number _____ (in scientific notation with the decimal port­
ion rounded off to one decimal place).

6.9 X 101

505. This number (69) is the in (what units?) of a
box-shaped pile of sand on a lot whose dimensions are (how many?) 
________  feet long, by (how many?) ________  feet wide, where each 
grain of sand represents____________________________________ .

HEIGHT; INCHES; 100; 25; A STAR IN THE MILKY WAY GALAXY

506. The height in the above frame (69 inches) is equal to (how many?) 
 feet (rounded off to one decimal place).

507. In other words, if we were to represent each star in our galaxy by a 
grain of sand (how many?) _ inches long, we could pack all of
this sand into a pile of dimensions: (how long?) ________ , by (how
wide?) , by (how high?) .

1/20; 100 FEET; 25 FEET; 5.8 FEET — - - —-

508. Stars are not packed together like this, in our galaxy, however. You 
will recall that the distance between the Sun and the nearest star to 
to it, on this same scale (ie.—where stars are represented by grains 
of sand) is (how long?) (see frame 479).

19 .9 MILES  

509. The length of the galaxy is about 100,000 light years. This can be 
expressed, in scientific notation, as (how many?) • light
years.

1.0 X 105

510. You will recall, from earlier in this segment (see frame 475) that. 1 
light year = (how many?) A.U.s . -

63,200  

511. This number (63,200) can be expressed, in scientific notation, as 
 ____  (with the decimal part of it rounded off to one decimal 
place).

6.3 x 104

512. We can now calculate the distance, in  A.U.s, from one end of the 
Milky Way Galaxy to the other: This is given by the expressions

 X A.U.s .
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6. 3 X 104; 1.0 X 105

513. When we do the multiplication indicated above, the result is the 
number (in scientific notation).

6. 3 X 109

514. This number (6.3 X 109) represents the ________  of the Milky Way
Galaxy in (what units?) •

LENGTH; ASTRONOMICAL UNITS (A.U.s)  ---------------------- -----------

515. You will recall, from earlier in this segment (see frame 471) that a 
distance of 1 A.U. on the scale we are using, is equal to (how much?)

5 INCHES

516. Therefore, on this same scale, a distance of 6.3 X 109 A.U.s would be 
represented by _____  X ____  = __________  inches (in Scientific
notation, with the decimal portion rounded off to one decimal place).

6.3 X 109; 3.2 X 1010

517. You will recall (see frame 479) that 1 mile is equal to (how many?) 
 ___ inches.

63360 ——-------------------------

518. This number can be expressed, in scientific notation, with the dec­
imal portion of it rounded off to one decimal place, as (how many?) 
 _____ inches.

6.3 X 104

519. Remembering that the diameter of our model of the Galaxy, in inches, 
is (how much?) _____ , you should be able to calculate that this

same diameter, in miles, will be miles.

3.2 X 1010; 3.2 X 1010; 6.3 X 104

520. When the division, indicated in the above frame, is performed, the 
result is the number _____ _ (in scientific notation, with the 
decimal portion rounded off to one decimal place).
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55.1 X 10

521. This number (510,000) represents the _____________________
where individual stars are represented by grains of sand (how much?) 
________________  in length.

THE DIAMETER? OF A MODEL OF THS MILKY WAY GALAXY MILES; 1/20 INCHES

522. 510,000 miles is approximately equal to the diameter of the Moon’s 
orbit around the Earth. Our model of the Galaxy, then, (would/would 
not)  be very practical to construct.

WOULD NOT  

523. For the next few frames, we are going to discuss the contents of
■ galaxies. You are already familiar with one of the contents —these 
light emitting sources are called .

STARS

524. Sometimes, stars cluster together into groups within our galaxy. The 
term applied to such collections of stars is derived from the fact 
that the stars  together. 

CLUSTER

525. Collections like this are, in fact, called .

CLUSTERS 

526. When clusters appear within the plane of the galaxy, they are called, 
for obvious reasons, "Gala otic ”.

CLUSTERS   

527. Galactic clusters are usually quite irregular in shape. If, for ex­
ample, you look through a tel escope at a cluster that has what you 
conclude to be a definite spherical shape, you can be reasonably cer­
tain that you are not looking at a  

GALACTIC CLUSTER

528. Clusters that are spherical in shape (which, are also part of our gal­
axy) usually reside outside the plane of the galaxy. Since clusters 
like these consist of stars which are associated with each other in a 
globular (from the word "globe”) arrangement, they are called 

GLOBULAR CLUSTERS

529. Globular clusters differ from Galactic clusters in that Galactic 
clusters are  in shape.
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IRREGULAR - ----- -------------

530. Globular clusters are, however, _______________  or in
shape.

SPHERICAL; GLOBULAR  ---------- ---------

531. Another difference is that exist out­
side the plane of the galaxy, 
exist within the Galactic plane.

GLOBULAR CLUSTERS; GALACTIC CLUSTERS  ----- -------

532. In the night sky, it is sometimes possible to see a band of light 
which is called the "Milky Way”. This band of light represents the 
part of our galaxy that is visable to us from our position in it. 
"Milky Way” is also the name of ...   .

THE GALAXY IN WHICH WE LIVE —--------

533. If a friend now informs you that he has located a cluster in the
Milky Way with his telescope, more often than not, he would have found 
a ____________________________

GALACTIC CLUSTER   --

534. If, in fact, your friend has found a galactic cluster, you can expect 
when you look into his telescope, to see a collection of stars with 
a(n) shape.

IRREGULAR —— ----------------- --

535. If, on the other hand, your friend locates a cluster whose shape is 
spherical, it is extremely likely that he has found a 

GLOBULAR CLUSTER

536. Other contents of galaxies are gas clouds. These are called Nebulae. 
(Nebulae is the plural of Nebula.) A nebula, then, is simply a 
  in space.

GAS CLOUD   ---——--------------

537. As a simplification, there are three main types-of nebulae, each defin­
ed in terms of what they do with light: Ono type of nebula emits (or 
"sends out“) light. It is called an emission nebula. Another kind of 
nebula reflects light. This kind of nebula would be called a 
____  nebula.

REFLECTION

538. A third kind of Nebula absorbs light. We would call this kind of 
nebula an.
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ABSORPTION NEBULA

539. Of these three types of nebulae, the kinds that we can see light com­
ing from are and .

EMISSION NEBULAE; REFLECTION NEBULAE

540. These kinds of Nebulae would be visable in this way because they 
either  or  light.

EMIT; REFLECT  

541. On the other hand, ____________________________ would not send light
directly to our eyes, because they  light.

ABSORPTION NEBULAE; ABSORB ——

542. From Earth, we can see  only a small fraction of the stars in our 
own galaxy. One reason to explain the fact that we can not see the 
rest of these stars, is that the light from them becomes  
in .

ABSORBED; ABSORPTION NEBULAE

543. In review, our galaxy consists of _______ , some of which collect to­
gether into groups called, and gas clouds called

STARS; CLUSTERS; NEBULAE

544.  Two types of clusters are called and 

GALACTIC CLUSTERS; GLOBULAR CLUSTERS

545. Galactic clusters tend to exist (where?)
and are _____ _________ in shape, whereas Globular clusters tend to
exist (where?) ___________________________  and are 
in shape.

WITHIN THE PLANE OF THE GALAXY; IRREGULAR; OUTSIDE THE PLANE OF THE GALAXY 
SPHERICAL

546. Three types of Nebulae arc called____________________  
and.

EMISSION NEBULAE; REFLECTION NEBULAE; ABSORPTION NEBULAE

547. These types are defined in terms of what the nebulae do with 

LIGHT  

548. An emission nebula, for example, __________  light, a reflection neb­
ula  light, and an absorption nebula  light.
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EMITS; REFLECTS; ABSORBS

549. "Milky Way” is the name given to which of the following?

(a) A cluster within our galaxy
(b) A nebula that emits light
(c) A Galaxy
(d) A bond of light in the night sky
(e) Both (c) and (d)
 (f)A chocolate bar

sec 
set 
see 
sec. 
see 
see

frame 
frame 
frame 
frame 
frame 
frame

550A 
55OB 
550C 
550D 
550E
550F

550A. Your answers A cluster within our galaxy 
is incorrect.
You have obviously worked too quickly through 
ters. Go back and do the sequence from frame 
Then proceed to frame 549 2nd select a better

the section on clus- 
523 to 535 again. 
answer.

550B. Your answers A nebula that emits light 
is incorrect.
You have obviously worked too quickly through the section on nebulae. 
Go back and do the sequence from frame 536 to 542 again. Also, you 
would be well advised to review the contents of frame 532. After 
you have done this, proceed to frame 549 and select a better answer.

550C. Your answers A Galaxy 
is incomplete. 
If you do not know why, go back and review the contents of frame 
532. Otherwise proceed to frame 549 and select a better answer.

550D. Your answers A band of light in the night sky 
is incomplete.
If you do not know why, go back and review the contents of frame 532. 
Otherwise, proceed to frame 549 and select a better answer.

550E. Your answers both (c) and (d) 
is correct. 
We will now go on to talk about other galaxies. You will remember 
that a galaxy is simply a___________________________

VERY LARGE COLLECTION OF STARS Proceed, now, to frame 551

551. The Galaxy in which we live is known as the.

MILKY WAY GALAXY  Proceed, now, to frame 552

  Your answers a chocolate bar
550F. is not incorrect, but it is quite out of context. This is the last 

abort frame that appears in this book. If you feel it to be app­
ropriate, you may take a break at this point before continuing on 
through the "home stretch” of this program.
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552. We are aware of about a billion other Galaxies as well. The nearest 
major galaxy to our’s — called the Andromeda galaxy, is about 2.1 
X 106 light years away. You will recall that, on the scale that we 
have been using (where a star is represented by a grain of sand 1/20 
inches across) a distance of 1 A.U. was represented by (how much?) 

 (see frame 471).

5 INCHES

553. Knowing this fact, along with the facts that: 1 light year - 6,3 X 
10^A.U.s; and 1 mile = 6.3 X 104 inches; how far away would the 
Andromeda galaxy be on our scale (in miles)?

(a) 1.1 X 107miles
(b) 1.3 X 1011miles
(c) 6.5 X 1011miles
(d) I do not know

see frame 554A 
see frame 554B 
see frame 554C 
see frame 554D

554A. Your answer: 1.1 X 107 miles 
is correct.
If the decimal part of your answer is different from this by one 
tenth, do not be concerned: You are correct as well; you have just 
done the operations in a slightly different order. The distance 
you have calculated is about 1/4 the distance from Earth to the 
planet Mars when both planets and the Sun arc in a straight line 
(with the Earth in the middle). In other words, if we were to con­
struct a model of our part of space on the scale we have been using, 
the ___________________ ____ would fit just inside the orbit of the
Moon about the Earth; and the ___________________ ____  would be as
far away as 1/4 the distance to the orbit of Mars.

MILKY WAY GALAXY; ANDROMEDA GALAXY Proceed, now, to frame 555.

554B. Your answer: 1.3 X 1011 miles
is incorrect.
You have part of the answer, however. What you have calculated is 
the distance to the Andromeda Galaxy in A.U.s (calculated by mult­
iplying  

2.1 X 106 times 6.3 X 104). You will recall, however,
that, on our scale, a distance of 1 A.U. is represented by a dist­
ance of  .

5 INCHES ———

554B2. Therefore, on our model, the distance to Andromeda would be repre­
sented by a distance of ____X inches,

5; 1.3 X 1011; 6.5 X 1011
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554B3. This distance can be converted into one in miles, remembering that
1 mile = (how many?) ____________ inches (see frame 553).

6.3 X 104

554B4. Therefore, the distance to Andromeda, on our model, is 
divided by ----- . ____  =_____ miles (in scientific notat­
ion with the decimal part rounded off to one decimal place).

6.5 X 1011; 6.3 X 104; 1.0 X 107

554B5. If the question we have considered was done in a slightly differ- 
ent way, the decimal part of the answer could differ by one tenth. 
Either answer, however, can be considered to be correct. In either 
case, this number represents____________________________

THE DISTANCE TO ANDROMEDA (IN MILES) ON OUR MODEL 

554B6. Go back, now, to frame 553 and choose the correct answer.

554C. Your answer: 6.5 X 1011miles 
is incorrect.

have part of the answer, however: What you have calculated is 
the distance, in inches, to Andromeda, on our model. This can be 
converted to a distance, in miles, remembering that 1 mile = (how 
many?) inches (see frame 553).

6.3 X 104 Proceed, now, to frame 554B4

554D. Your answer: I do not know
is, of course, inadequate.
Let us construct the correct answer: The distance to Andromeda is

2.1 X 10 light years. lou will recall that 1 light year is equal 
to (how many?)A.U.s (see frame 553).

6.3 X 104

554D2. Therefore, the distance from here to Andromeda, in Astronomical 
Units is _--  X_________ _ = __________ .(in scientific notat­
ion, with the decimal portion rounded off to one decimal place.)

2.1 X 106; 6.3 X 104; 1.3 X 1011

554D3. lou will recall that, on our scale, a distance of 1 A.U. is repre­
sented by a distance of .

5 INCHES Proceed, now, to frame 554B2
 



555. The limit to how far out in the Universe we can "see” is, at present, 
about 12 billion light years. Everything within this distance cons­
titutes what is known as the "observable universe”. The "observable 
universe” extends outward to a distance of (how far?) _________  
(in scientific notation).

1.2 X 1010 LIGHT YEARS

556. How far away, then, would the 
on our scale (in miles)?

"edge" of the "observable universe" be,

(a) 3.8 X 1015 miles see frame 557A
(b) 6.0 X 1010 miles see frame 557B
(c) 7.6 X 1014 miles see frame 557C
(d) I do not know sec frame 557D

557A. Your answer: 3.8 X 1015 miles 
is incorrect.
You have part of the answer, however. What you have calculated is 
the distance, in inches, to the “edge" of the "observable universe" 
on our model. This can be converted to a distance, in miles, rem- 
embering that 1 mile = (how many?) inches (see frame 553).

6.3 X 104

557A2. Therefore, the distance to the "edge" of the "observable universe" 
on our model is ___ /  = __________ miles. (in
scientific notation with the decimal part rounded off to one dec­
imal place.)

3.8 X 1015; 6.3 X 104; 6.0 X 1010 

557A3. This number (6.0 X 1010) represents 

THE DISTANCE TO THE "EDGE" OF THE “OBSERVABLE UNIVERSE", IN MILES, ON OUR 
MODEL

557A4. Go back, now, to frame 556 and choose the correct answer.

557B. Your answer: 6.0 X 1010 miles 
is correct.
This is quite a large distance. It represents almost 8 times the 
diameter of the solar system. In other words, if we were to cons­
truct a model of the "observable universe" on the scale we have been 
using, the _________ _ would fit just inside the orbit of the Moon
about the Earth; ___________________ would be at 1/4 the distance to
the orbit of Mars; and the _________________________ would be 8 solar
system diameters away.
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MILKY WAY GALAXY; ANDROMEDA GALAXY; "EDGE" OF THE ”OBSERVABLE UNIVERSE” 
Proceed, now, to frame 558 

557C. Your answer: 7.6 X 1014 miles
is incorrect.
You have part of the answer, however. What you have calculated is 
the distance to the "edge” of the "observable universe” in Astronom­
ical Units (calculated by multiplying 1.2 X 1010 times 6.3 X 104).
You will recall,however, that, on our scale, a distance of 1 A.U. 
is represented by a distance of 

5 INCHES

557C2. Therefore, on our model, the distance to the "edge” of the ”obser­
vable universe” would be represented by a distance of ____  X
__________  = __________  inches (in scientific notation, with the 
decimal portion rounded off to one decimal place).

5; 7.6 X 1014; 3.8 X 1015

557C3. This con be converted to a distance in miles remembering that 1 
mile = (how many?)  inches (see frame 553).

6.3 X 104 Proceed, now, to frame 557A2

557D. Your answer: I do not know
is, of course, inadequate.
Let us construct the correct answer: The distance to the “edge" of 
the "observable universe” is 1.2 X 1010light years. You will recall 

 that 1 light year = (how many?) A.U.s (see frame 553).

6.3 X 104

557D2. Therefore, the distance, from here to the "edge” of the "observable 
universe" , in Astronomical Units, is__X____________  =
__________ (in scientific notation with the decimal portion rounded 
off to one decimal place).

1.2 X 1010; 6.3 x 104; 7.6 X 1014

557D3. You will recall that, on our scale, a distance of 1 A.U. is repres­
ented by a distance of.

5 INCHES Proceed, now, to frame 557C2
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558. So far, we have attempted, in this book, to acquaint you with some 
principles of Modern Astronomy. This has been done for the purpose of 
furthering your knowledge of the Universe, as we know it. On the 
basis of what you have learned, up to this point, which of the follow­
ing conclusions, in your opinion, can be accepted?

(a) The Universe is Finite (with end) see frame 559A
(b) The Universe is Infinite (without end) see frame 559B
(c) The Universe constitutes a molecule of

water inside a huge goldfish bowl see frame 559C
(d) I do not know see frame 559D

559A. Your answer: The Universe is Finite 
is incorrect.
At no point does any of the information we have presented in these 
pages lead to the conclusion you have drawn. Go back to frame 558 
and select a better answer.

559B. Your answer: The Universe is Infinite 
is incorrect.
At no point does any of the information we have presented in these 
pages lead to the conclusion you have drawn. Go back to frame 558 
and select a better answer.

559C. Your answer: The Universe constitutes a molecule of water inside a 
huge goldfish bowl.

Ha, ha, ha, ha, ha, ha!!!! Hee-hee-hee, Ho, ho, ha, ha, ha, he-he!! 
Ho-ho-ho-ho, chuckle, chuckle, chuckle!!!!! Snort! Ha-ha-ha-ha!!! 
Chortle,-chuckle, he, he, he, ho-ho, ha-ha-ha-ha!!! Chortle-chortle!! 
He-he-he-he-he, Ho, ho, ho, Ha-ha-ha-ha-ha!!!!! Snort!! Chuckle, 
Chuckle, Ho-ho-ho-ho, Ha, ha, ha, ha, ha, Chuckle-chortle, ha, ha...

The above is a very implicit way of indicating that the conclusion 
you have drawn does not follow from any premises which we are famil­
iar with. Go back to frame 558 and select a better answer.

559D. Your answer: I do not know 
is correct !!!
You have realized that the question "Does there have to be an end to 
the Universe?” does not have an answer at present, particularly on 
the basis of information presented in this book. Unfortunately, there 
still exist many people who believe that they can answer this ques­
tion and others like it (with as little information). The authors 
of this book think that it is quite possible for things to be infin­
ite however, for the convenience of everyone concerned, the authors, 
after much deliberation, formally declare this book to be FINITE....
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Notes:

1. Miles per hour means miles/hour or miles divided by hours.
2.    By the same exponential notation” we mean numbers that are written as 

the same base to some exponent. For example, the numbers 52 and 56 
are in the "same exponential flotation”. In this example, the base is 
the number 5.   

*3. Implicit in our rule for division in exponential^is the fact that the 
exponent of the number you are dividing by is subtracted from that of 
the number you are dividing into.    (6 - 2)  4

 For example 5 = 5    .
 52

It is assumed that the conversion of hydrogen to helium is the only 
energy producing process that will ever take place in the Sun.  This 
is a good assumption for our purposes; however it is not believed to 
be correct.

It is assumed that all available hydrogen will be consumed in this pro­
cess. This is not believed to be correct. However the simplicity of 
this assumption makes this segment much less confusing.
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